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In this communication, we introduce a general framework and discussion on the role
of models and the modeling process in the field of biosciences. The objective is to
sum up the common procedures during the formalization and analysis of a biological
problem from the perspective of Systems Biology, which approaches the study of
biological systems as a whole. We begin by presenting the definitions of (biological)
system and model. Particular attention is given to the meaning of mathematical model
within the context of biology. Then, we present the process of modeling and analysis
of biological systems. Three stages are described in detail: conceptualization of the
biological system into a model, mathematical formalization of the previous conceptual
model and optimization and system management derived from the analysis of the
mathematical model. All along this work the main features and shortcomings of the
process are analyzed and a set of rules that could help in the task of modeling any
biological system are presented. Special regard is given to the formative requirements
and the interdisciplinary nature of this approach. We conclude with some general
considerations on the challenges that modeling is posing to current biology.
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INTRODUCTION

A theory has only the alternative of being right or wrong. A model has a third possibility: it may be right,
but irrelevant.

Manfred Eigen. The Origins of Biological Information.

There are many definitions of science (Popper, 1935; Kuhn, 1962, 1965; Lakatos, 1970), but
all of them refer to a body of knowledge obtained through a particular method based on the
observation of the physical world, linked to systematically structured reasoning, strategies by which
general principles and laws are deduced. That particular method is the “ScientificMethod”, defined
by the Oxford English Dictionary as “. . .the procedure. . ., consisting in systematic observation,
measurement, and experiment, and the formulation, testing, and modification of hypotheses.” In the
above statements there are two core ideas which are relevant here and that derive directly fromwhat
science is: the first one is that any scientific activity requires measurements and thus, quantification
of real magnitudes. The second is that any scientific activity makes sense only if it allows us to gain
“knowledge”; that is understanding, predicting and control. In science these goals are achieved
through the building of models and theories. Both serve, with different degrees of generality, to
explain the observed facts and predict with high probability the evolution and behavior of natural
systems.
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Biological Systems and Models
Before describing the modeling process, it is advisable to clarify
the meaning of two key concepts, “biological system” and
“model” that we assume are inextricably linked.

Any biological system is composed of a set of elements,
physical objects, usually numerous and diverse, that influence
each other (i.e., they interact) and that are physically and
functionally separated from their environment. The physical
separation is a frontier, which can be real (e.g., a membrane)
or imaginary, which is permeable to matter, and energy (i.e.,
an open system). The functional separation is a consequence
of the fact that biological systems are far from thermodynamic
equilibrium, in contrast with the environment. The interchange
of matter and energy with the environment is indeed a necessary
requisite to sustain the chemical–physical processes that occur
far from equilibrium. Thus defined, a living system involves
a reference to the environment in which it is located and
with which it interacts. It is worth noting here that when
we focus solely on the elements, disregarding the interactions
between them and with the environment, the system disappears,
because a set of entities devoid of interaction is a mere
aggregation of elements. This is the essence of “system”, a
holistic approach to research as opposite to a reductionist
view.

For our purposes here, a model is a conceptual or
mathematical representation of a system that serves to
understand and quantify it. The difference between conceptual
and mathematical resides only on the way the representation
is formulated. A model is always a simplified representation of
the reference system, which the scientist wishes to understand
and quantify. It ultimately serves as a means of systematizing the
available knowledge and understanding of a given phenomenon
and the facts concerning it.

A first step in any model-building attempt is the simple
verbalization of statements about the biological system. Soon
this phase leads to a more productive one, where observations
and hypothesis transform the observations and data into an
organized core, the so-called “conceptual” model. Conceptual
models constitute, thus, a first level of qualitative integration
of the information on the system under scrutiny. Conceptual
models are so ingrained in our everyday life that we usually do not
make a distinction betweenmodels and the real thing. Very often,
they come as diagrams, words or physical structures, which deal
with either the structure and/or the function of the real system.
The causal diagrams are examples of suitable tools that help in
dealing with the conceptual models (Voit, 1992; Minegishi and
Thiel, 2000; Allender et al., 2015).

A key feature of the conceptual models is that they only
make a qualitative description of the real system. Examples of
such conceptual models in biology range from the typical plant
or animal cell diagram (one that integrates many observations
of multiple types of cells obtained through a great variety of
techniques) to the models about enzyme action and metabolic
pathways. The enzyme action model describes how the substrate
attaches to the active site of the enzyme, and how the enzyme
structure changes in different molecular environments. Another
ubiquitous conceptual model is that of metabolic pathways;

they represent the coordinated and sequential activities and
regulatory features of many enzymes. The main value of
the conceptual models is that, as the result of the (tough)
complex process involved in its development, it allows the
integration of disperse information obtained from different
sources. However, their origin renders them imprecise, and
conceptual models can be interpreted differently by different
people.

A further refinement in the process of system understanding
is given by the translation of the conceptual model into a form
subject to a quantitative description, evaluation and validation.
This form is the mathematical model. A mathematical model
is the formalized description of the system derived from a
previous conceptual model. Mathematical models may be very
diverse in nature. Dynamical models consider changes in the
elements with time, and can be categorized into deterministic
and stochastic. In the deterministic ones, the velocities only
depend on the concentration of the elements and the parameters
of the model. The opposite are the stochastic ones, in which
the velocities also depend on the random noise of the system,
due to the uncertainty present in systems containing statistically
non-abundant elements. On the other hand, static models try to
understand the structure of the interconnection of the elements,
which remains constant during time under specific conditions
(Voit, 2012).

The mathematical models not only help us to understand
the system, but also are instrumental to yield insight into the
complex processes involved in biological systems by extracting
the essential meaning of the hypotheses (Wimsatt, 1987; Bedau,
1999; Schank, 2008) and allows to study the effects of changes in
its components and/or environmental conditions on the system’s
behavior; that is, they allow the control and optimization of the
system.

Mathematical Models in Biology
The usefulness of mathematical models in physics and
technology is well documented; in fact they can be traced back
to the very origins of physics. Since the days of Galileo, Kepler
and Newton scientists have striven to develop their models by
means of mathematical formalism. What we want to present and
develop here is the tenet that modeling in general, but specifically
mathematical modeling, particularly in biology –as well as in
science in general- is the only way to attain such quantitative
understanding and control. Mathematical modeling should thus
be an essential and inseparable part of any scientific endeavor in
the realm of XXI century bioscience.

It has been claimed that the maturity of a scientific field
correlates positively with how often mathematical models are
developed and used to understand and control the real system
(Weidlich, 2003; Medio, 2006; Brauer and Castillo-Chavez, 2010;
Gunawardena, 2011). In this regard, it has not been until recently
that dynamic mathematical models in biology have become a
common feature. Besides the well-known cases of the Michaelis–
Menten model to describe the dynamics of the enzyme-catalyzed
reactions (Michaelis and Menten, 1913) and its subsequent
development for the case of allosteric enzymes (Monod et al.,
1965), the Hodgkin–Huxley model of the action potentials in
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neurons (Hodkin and Huxley, 1952), the Lotka–Volterra model
about the interaction of species (Lotka, 1920; Volterra, 1926) and
the epidemiological models of epidemics (Ross, 1915;MacDonald
et al., 1968), the emergence and widespread recognition of the
role and importance of mathematical models in biology is a
recent phenomenon.

It is easy to understand why only until very late in scientific
research mathematical modeling of biological systems has been
put in use. Biological systems, by their nature, are refractory
to precise quantitative and mathematical description. They are
composed by many elements closely interconnected by processes
and interactions that take place at different levels of organization
(molecular, cellular, in tissue, whole animals and ecological).
At the same time, these processes occur in an open system
as a result of the existence of multiple gradients far from
the thermodynamic equilibrium, which in the end produce
very complicated non-linear dynamics between the elements of
the system (Prigogine, 1961). This situation has impaired the
quantitative and dynamic approach to the understanding of
biological systems through the use of mathematical models.

However, two technological advancements that have made
feasible the construction and resolution of mathematical models
for biological systems have been developed in the last decades.
There is a general accessibility and almost universal ubiquity
of the computational power required for the management of
information and the calculation of large systems. On the other
hand, the development of the high throughput techniques and the
emergence of the “omics” sciences (genomics, transcriptomics,
proteomics, signalomics, and metabolomics) have generated a
great deal of dynamic information on the structure and behavior
of the biological systems. This information has become easier and
cheaper to acquire, process and store than ever before.

All the above have been instrumental to the arrival of Systems
Biology, as the XXI century approach to the quantitative and
interdisciplinary study of the complex interactions and the
collective behavior of a cell, an organism or an ecosystem. The
distinctive feature of Systems Biology is the concern with the
organization and biological function. This approach goes beyond
the classical reductionist approach, where the researcher seeks
to understand the systems by breaking them down into their
constituent elements and analyzing them separately or, in a novel
version of the old paradigm facilitated by the high throughput
techniques, by collecting every piece of accessible information.
In the Systems Biology approach, research is focussed not on
the parts considered individually, but on the relationships that
exist between the structural components of biological systems
and their function, and on the characteristics of the interactions
that occur between different sub-systems. This method allows the
detection of emerging higher levels of structural and functional
organization. In contrast with the reductionist approach, Systems
Biology deals with the reconstructive and integrative task upon
the available biological information. And it is here where
models and modeling becomes a central tenet in Systems
Biology.

In the following section we will develop a general framework
where the role of models and the modeling process within the
scientific activity in biosciences is highlighted. Also, a set of rules

that help the modeling activity is presented together with some
general considerations on the challenges that modeling currently
poses.

A MODEL OF THE MODELING PROCESS
IN BIOSCIENCES

The purpose of models is not to fit the data but to sharpen the
questions.

Samuel Karlin

The Figure 1 summarizes the set of activities and elements
involved in the development of models, as organized following
the Scientific Method.

I. Conceptualization
The first stage of the scientific modeling process is the
conceptualization phase. In any research process all activities
are organized around the Real System, which is the compulsory,
continuous reference in the whole process. This central position
is represented in Figure 1 as a circle.

The first step in the conceptualization stage is to formulate,
from the very first observations of the phenomenon
(Observation; see Figure 1), generally made in an unsystematic
form, an explanatory hypothesis of it: the first version of the
conceptual model. This is a critical task where it is necessary
to coordinate, to contrast and discuss many issues with the
aim of making the best decisions. Some of the questions that
should be addressed at this stage are: what aspects of the real
system should be incorporated into the model? What features
should/can be ignored? Or, what hypotheses can support the
observations/information rendered by the system?

Given that any model is an instrument designed for a purpose,
the very first question that should be posed at this stage is: what
is the model for? That is, the objective of the model. No model
makes sense or is justified for its own sake. Thus, what first defines
a model is the specific question that it is going to answer.

Trying to develop a model to explain all aspects of a
biological phenomenon will be practically impossible, a very
complex and highly unmanageable task. However, a model
with a limited purpose will be feasible, and easier to be
analyzed and managed. At this stage of modeling, our thinking
process uses the categories of space, time, substance (namely,
material components, and elements), quality, quantity, and
relationship. These categories help us to bring order to the
perceived complexity of the real world. Nevertheless, this act
of classification and identification differ considerably from one
scientific discipline to another.

The meaning and significance of the modeling process is
rooted in the core of the scientific process: from the observation
of some part of the biological world some questions arise, the
model being the tool that eventually would serve to provide an
answer. As can be seen, any modeling exercise forces, from the
very beginning, to define and make explicit the focus of our
research and to keep, all along the way, our attention on the main
objective.
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FIGURE 1 | The modeling process in biosciences. The main activities
involved in this procedure are observation followed by mathematical modeling;
simulation, analysis, optimization and back to observation. In this cycle the
mathematical model occupies, just after the real system, the center position. I.
Conceptualization. Having chosen the subject of research and after some
initial observations are made, the biologist should reflect on the model to be
built. From the information available and a set of well-founded hypothesis, it
will build a first version of the model that presents a first selection of variables,
processes and interactions considered relevant (conceptual model). The
iteration of this process constitutes the classical version of the scientific
method (light pink arrows). II. Mathematical formalization. From this
proposal the first mathematical formulation of the model is derived
(Mathematical model). Getting to this point has required an exercise of
integration of hypotheses and information that yields a new, deeper degree of
knowledge about the system not reached before (light blue arrows). III.
Management and optimization. As a result of these two phases the
information needed to validate the model becomes evident, which in turn
suggests new experimental designs that propitiate a new round of
improvement cycle (purple arrows). As can be seen the process of building a
model, itself determines the path to a greater and coherent understanding of
the system that makes feasible its rational control and management. See text
for more information.

The conceptualization stage is where modeling becomes very
often an art, a subjective task. The choice of the essential
attributes of the real system and the omission of irrelevant
ones requires a selective perception that you cannot specify
through an algorithm. There is some dosage of freedom and
arbitrariness at this stage since different researchers equally
well informed can define different models. As we are educated
in a specific biological scientific discipline, we are trained to

observe the real world in the light of a certain conceptual
framework.

In some instances, the discussion of contrasting opinions
addressed to demarcate the border between the system and
its environment, or to discriminate between different possible
scenarios or to evaluate the importance of the experimental error
associated with the observed values, leads to different versions
of the model. Based on the final selection of hypotheses, the
next step is to carry out experiments (Experimental design;
see Figure 1) devised to obtain experimental data to test
the chosen hypothesis. From the analysis of the experimental
results, the hypothesis can be reformulated or discarded (Model
refinement; see Figure 1), thereby initiating a virtuous cycle
(pink arrows) that leads to an improved conceptual model.
Eventually, this refined model version is expected to answer,
though qualitatively, the questions initially raised. At this stage,
the need to change the initial hypothesis, far from being a failure,
should be understood as progress toward a better understanding
of the behavior of the system. This allows to rule out some
proposals, which will be replaced by new ones that might
be more effective in the building process of the conceptual
model.

The above sequence illustrates the fact that observation and
science are not the same thing. The aim of the scientific
method is not to describe but to explain the observed, to
understand and interpret the observations. It is here where the
collaboration between the modeling part and the field experts
becomes essential. And it is at this stage where interdisciplinarity
occurs. The best version of the modeling task results when
it is a team effort, where the competences and expertise of
different specialists blend. Those with the best knowledge on
the particular subject should be able to communicate with the
modeler. They must be able to understand each other; the expert
presenting the whole picture and selecting from it the elements,
interactions, processes, and values that are deemed relevant in
the light of the model’s objective. At this point the modeler
should translate this selection into a conceptual representation
that usually takes de form of a mechanistic picture where the
elements and their relations are represented. To be useful, this
picture should be explicit enough to be translated into a series
of elementary steps representing the individual mechanisms.
The modeler here is instrumental in defining which are the
magnitudes considered as variables and which are not; this is a
critical distinction that determines to a great extent the model’s
output.

The development of the modeling approach has at this point
one of its great challenges, because it requires that the different
specialists share a common language. There is a need, on the
side of the modeler, to become acquainted with the features and
nuances of the system under scrutiny, and to speak in terms easy
to understand by the non-modeler party. On the other side, the
specialist should adopt an integrative way of thinking and be able
to make explicit his knowledge and express it in the most precise
terms.

More often than not, it is necessary to repeat the
conceptualization stage of discussion and analysis several
times, before the proposed model becomes able to respond
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successfully to all the objections that could be raised by the
experts who come in contact with the model. Once you have
reached an acceptable version you will be able to consider the
next stage: the mathematical formalization.

At this phase of the model building process it could happen
that the modeler may be tempted by the challenge of building
a wholly comprehensive model system, that is, one that takes
into account, if not all, most of the characteristics of the real
system. Besides the misunderstanding of the modeling process
that this shows, this attitude has additional costs, because if two
models serve to give the desired answers, the simpler one is better.
A modeler intending to include all variables and parameters
described would also be faced with the task of analyzing the
influence of all the parameters on all the variables. This in turn
would require an additional, usually non-negligible effort for its
interpretation, making the model more difficult to understand.
In modeling, more and harder is not necessarily better. In fact
it sometimes happens that the largest and most complicated
model may be the poorest in attaining its objectives or expressing
necessary or meaningful details of the reality. A nice illustration
of this point is the very simple model of the signaling pathway
of NF-κβ, in which with only three elements it is reproduced
the main dynamical behavior of the original system (Krishna
et al., 2006). In other words, we should try to make the complex
as uncomplicated as possible. Despite this, the discussion of
its results can enrich the conceptual model building when
considering the traits and characteristics that were not initially
included.

Related with this is the fact that the developments of the
conceptual model force the analysis and the systematic review
of available knowledge about the system and its behavior. As a
result of this exercise of verbalization of the knowledge -often
unconscious- that experts have about the system, a new light is
shed on the phenomenon, which very often contributes to a better
understanding of the system.

It may happen that some gaps of information about
interactions or relevant parts that had hitherto gone unnoticed
become evident. This usually suggests new avenues of exploration
and ultimately contributes to a better understanding of the
observed reality. Also, the discussions on the variables or the
processes involved help to change previous assumptions or
facilitates a new view and understanding of some facts that
previously remained without an explanation. As an example,
Cheong et al. (2008) review the contributions of mathematical
modeling on the understanding of the NF-κβ pathway. It is
also very common to become aware of contradictions in the
understanding of biological mechanisms. Most of the knowledge
or information about an issue may pass through several authors
undisputed, but when all this is mathematically formalized,
problems to join all in a single framework emerge. Mathematical
thinking forces to reconsider every piece of knowledge.

Finally, there is a modeling principle that should be
commented here: “If the hypotheses of the model are erroneous,
the conclusions raised from it will be wrong too.” As obvious as it
may be, this principle is not less important. This principle should
be taken into account all along the model-building process,
particularly in the mathematical formalization that follows,

because the resulting model should be faithful to the proposed
hypothesis.

II. The Mathematical Formalization
Mathematical Translation
The first question to be addressed in this new phase is about
which mathematical formalism is best suited to represent the
system (Translation; see Figure 1). There are many formal
modeling approaches, based on differential equations, Bayesian
equations, stochastic systems, agent-based modeling, etc. (for
a review, see ElKalaawy and Wassal, 2015). Each of these has
unique strengths and limitations. The choice heavily depends on
the nature of the model. It often happens that a research group
ends up enslaved by the modeling techniques which it dominates
or prefers. For example, a teamwith experience inmodeling using
differential equations may tend to approach every problem from
the standpoint of this technique, when in fact not all biological
problems are deterministic. It is natural to preferentially use the
methods that are best known and previously proven fruitful. But
the ideal attitude is to adapt the specific modeling technique to
the nature of the problem.

The task of developing a model is a process of approximation
due to the simplifications that must be introduced. These
simplifications should make sense in terms of the physical–
chemical processes being studied, but must also be valid form
a mathematical point of view. The general approach to the
mathematical formulation usually involves the definition of the
key variables and the expression of their functional relationship
with the other variables of the system. Equations are then
derived establishing the actual mathematical relationship among
the variables. This derivation can be done empirically (data-
driven), through the use of statistical methods (curve fitting)
analytically o numerically, or by deriving the equations from
theoretical considerations (model-driven). A classic example of
model-driven is given by Michaelis and Menten (1913) kinetics.
Other common techniques of data-driven modeling are shown
in Janes and Yaffe (2006). In the model we should make
clear the differences among the variables (concentrations of
biochemical compounds of the investigated network: metabolites,
proteins, messenger RNAs, etc.) and the parameters. Variables
can be dependent, being the elements which vary over time
according to the state of the system (also called states); and
independent, being the ones that can be controlled during
the experiment (light, pH, etc.). The parameters set internal
and external constraints on the system. The specific numerical
values for the parameters are determined using prior biological
knowledge, such as information about the basal steady states of
the system (Voit, 2000), or experimental data from dynamical
perturbations (Vera et al., 2007, 2008). Usually the models
integrate kinetic data and other available information about
the elements of the process, as well as fluxes obtained from
experimental observations.

It often happens that an existing model is used to describe
another system. This strategy, although tempting, should be used
with caution. Each new system should be studied in their specific
conditions of environment and structure. It is also necessary to
consider that a model not only depends on the system that it
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represents and the techniques used for its construction, but also
from the motivations and objectives of their creators. Therefore
one must always beware from attributing the motivations and
objectives of others to our own model.

The process of developing a mathematical formulation of the
conceptual model forces the investigator to describe the system
in simple terms. At this stage the research team must take
into account details about the system which might otherwise
go unnoticed, which contribute to the improvement of the
model. Also, a healthy consequence of the formalization process
is that the explanations of the initial, sometimes unexamined
assumptions reveal processes and features that remained
unrecognized under the less precise conceptual formulations.

The interpretation and understanding of the system has an
additional resource in the mathematical expression of it (see
Figure 1). The set of equations of the mathematical model
is likely to be discussed with the plethora of techniques and
mathematical tools that allow the description and analysis of
the complex interrelated processes that occur in the real system;
these techniques can help to elucidate the structure, properties,
and dynamic behavior of the system. These analyses can reveal
details about the behavior of a model such as the occurrence
of oscillations or other complex behaviors that are often the
motivating force for studying these systems.

Parameter Estimation and Quality Assessment
Once the conceptual model has been translated to its
mathematical form, the model should be provided with the
values of its parameters. Parameter estimation or model
calibration is a recurrent issue in the model building process; it
deals with the finding of the numerical values which characterize
the mathematical representation of a given system from
experimental data (Park et al., 1997). A key feature of these
experimental measurements is that they must come from
variables representing their main features both at a given
particular time, as well as along its evolution over time (Polisety
and Voit, 2006; van Riel, 2006; Ashyraliyev et al., 2008; Banga,
2008). In addition, the quality of the model should be tested
through some numerical quality assessments. The quality
assessment of the model includes the evaluation of aspects such
as the stability of steady states, a prerequisite for any model
describing actual biological systems; and the robustness of the
model, a test to evaluate whether the model is able to tolerate
small structural changes (Savageau, 1971; Hsiung et al., 2008) and
the dynamic features that characterize the transient responses
to temporary perturbations or permanent alterations (Wu et al.,
2008). These analyses often pinpoint problems of consistency
and reliability of the mathematical representation (Okamoto and
Savageau, 1984, 1986; Ni and Savageau, 1996a,b); this constitutes
by itself a further cycle of model refinement (Figure 1, light
blue cycle). These changes result in improvements of the initial
conceptual model. The conceptual model so improved will in
turn suggest further experimentation leading to a new refined
version that is enriched from the formalization phase.

At all instances it should be borne in mind that both the
parameters and the structure of real systems change over time.
Therefore, a given model, which can be satisfactory at one time

or certain conditions, may lose its effectiveness at another time
or in other conditions. But the equations by themselves do
not contribute much to the understanding of the system. It is
necessary to solve the equations for some representative values
of the parameters. Accordingly, the model is submitted to the
simulation and validation processes.

Simulation and Prediction
The mathematical model should be programmed in the
computer. The computer program is the translation of the
mathematical model to another language useful for computing
purposes. There are many computer languages and platforms
to deal with this task; advances in computer numerical analysis
have made the solution of complicated systems fast and accurate.
It is at this point where computation becomes critical, since
the equations describing biological processes nearly always
involve control and regulatory mechanisms that have non-
linear components. In contrast with linear differential equations
that often can be solved analytically, non-linearities make it
generally impossible. But through the use of numerical methods
implemented on computers we can obtain good estimates and
model predicted data.

Model Validation
Validation stands here as the correspondence between the real
system and the mathematical model. A model can be considered
good and useful only if its predictions in a given scenario agree
with the experimental observations made on the actual system
setting. As it is shown in the Figure 1, we can accept the model as
a plausible representation of the system under scrutiny only when
the comparison of the predicted outputs with the real ones yields
similar results (and when this occurs in a significant number of
situations).

The validation process can only be based on comparative
observations of the output values and trajectories of the model
and the real system, under certain given experimental conditions.
As it is shown in the Figure 1, for validation purposes, a first cycle
of calibration and quality assessment is needed, and then a second
one, with new experimental data from a different condition. As
a result, the model might require some modification in order to
minimize the observed discrepancies.

There are several ways to perform the validation process. One
is to compare the evolution of the variables from some, other
initial conditions; with data obtained by different, other research
groups in similar systems. Another way is to use all available data
in some given conditions, not for the development of our own
model, but to use these data for the comparison with our model’s
predictions instead (Santos and Torres, 2013). In some cases,
a useful technique is to vary some model’s parameters within
the range of biologically plausible values, and observe how the
system responds in relation to its actual behavior (Segre et al.,
2002). Finally, a technique that can be used in some instances
involves subjecting the model to extreme conditions, deliberately
looking for their failures. The logic behind this is that, if a model
represents the system well in extreme conditions, so it will under
normal conditions. In any instance the observed discrepancies
indicate errors in the assumptions used in the building of the
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mathematical and/or the conceptual model. The discrepancies
may be large enough as to require the revision and change of
the hypothesis of the conceptual model, or the introduction of
only slight modifications in the parameters of the mathematical
version.

It should be recalled that the quality of a model depends
directly on the quality of the information on which it is based.
This statement is just the translation to the modeling context of
the classical motto: “garbage in, garbage out”. A mathematical
model logically processes the information with which it has been
built; it cannot recognize or correct errors in the definitions or
the input information. The model predictions are the result of the
assumptions used, hence the extreme importance of caring for the
conceptualization phase and the quality of the initial information.

Very often the most important results of this phase are
negative: a well-crafted model would serve to discard a particular
mechanism as the explanation for experimental observations.
After sufficient validation, we will eventually arrive to a
mathematical version of the model that can be used to perform
experiments in much the same manner as in the real system.
A model is considered valid in this respect when the decisions
made using the mathematical model are “similar” to those that
would have been made by physically experimenting with the real
system.

This model version and its computer counterpart allow testing
conditions that may be difficult to attain in the laboratory, or
that have not yet been examined in actual experiments. Each
numerical solution of the model provides a simulation of a
real or potential experiment carried out on the Real System.
As an example of mathematical simulations which were useful
to understand the dynamics of the cell membrane, a biological
process elusive under laboratory experiments see Marrink and
Tieleman (2013).

In this phase, starting from a first version of the mathematical
model we come to an improved, validated version, through a
new virtuous cycle (light blue arrows) that sum up to the first
one (light pink arrows). Repeated excursion through this research
loop can result in further improvements in both themathematical
and the conceptual model that provides an unbiased test of
the hypothesis involved in the conceptual model. This type of
feedback loops, which are an essential part of the process of
developing a model (and indeed of the scientific method), must,
however, stop at some point. The validation phase often leads to
a situation in which a slight increase in the trust of the model
requires a huge effort. In these cases, it is advisable to stop the
process at this point.

Model Refinement and Interpretation
Once we have reached a sound mathematical version of the real
system we can advance in its interpretation and understanding.
At this stage, there is an opportunity to debate and criticize
the validity of the consequences and results of the model. The
ultimate aim should be to achieve plausible associations between
the model and the real system. At this point it should be clear
that, if the conceptualization process was successful, the logical
conclusions are as valid as rigorous the mathematical techniques
employed, given that the model’s results are a direct consequence

of the hypotheses and concepts defined in the conceptualization
phase.

III. Management and Optimization
A model fulfills its objective if it is useful and fruitful for
the purpose for which it was developed. The availability of
such a model has then additional benefits: it allows informed
management of the system and its optimization. In this vein,
mathematical modeling can be combined with operations
research in order to support bio-scientists in the improvement of
bioprocesses with technological or biomedical purposes (Torres
and Voit, 2002; Vera and Torres, 2003; Vera et al., 2010). These
type of questions can be rationally answered using mathematical
modeling in combination with data mining and operations
research, that have been shown to be a promising approach in
fields such as drug discovery (Vera et al., 2007) and operations
research (Vera et al., 2010).

The optimized model, as any candidate model, should be
evaluated in terms of its numerical quality in the same terms
as presented above, to be a proven suitable representation of a
real system (see the Parameter estimation and quality assessment
section). And, as usual in these cases (see the parameter
estimation and quality assessment section above) these analyses
contribute to the refinement of the model through another
iterative virtuous cycle (purple arrows) that superimposes to the
previous one, leading to a further improved conceptual model.

CONCLUDING REMARKS

Mathematical modeling was made possible as early as the 17th
century, but it is with today’s techniques that it has become
available to natural (and even social) scientists. There is already
an ample evidence of the value and usefulness of the modeling
approach in solving relevant problems in biosciences (Hübner
et al., 2011; Lanza et al., 2012; Visser et al., 2014). However, in
order to place modeling at the core of biological research it is
necessary for the new generations of bio-scientists to be prepared
to be able to build models. Currently, there are two conditions
that must be met for this trend to accelerate. First, it is a
matter of fact that the ecumenical nature of the training required
by the modeling task in biosciences has impaired this desired
evolution. The paradigm shift that involves the incorporation
of the integrative approach requires shaping and expanding the
training base of the new bioscience graduates with elements
that include a broad and solid background in mathematics,
thermodynamics, and scientific computing, among other new
disciplines, in addition to the classic as chemistry, genetics and
bioinformatics. Mathematical modeling of bioprocesses also has
severe limitations for development and generalization because
of the lack of training in math observed in many bioscience
postgraduates (Watters and Watters, 2006; Koenig, 2011). It is
our view that the best way to overcome this flaw is through the
inclusion of two elements that are, at least not well developed in
the curricula of the biosciences graduates, if not absent. One is the
appropriate, and properly adapted mathematical contents, which
could deal with the normally underdeveloped mathematical
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thinking of the students. There is some discussion as to what
contents and to what extent the biosciences students should be
exposed to (Voit and Kemp, 2009). But what seems unavoidable
is the fact that the biological scientist of the XXI century
should be fluent not only in mathematics (in statistics and also
in other mathematical concepts such as ordinary differential
equations) but also in modeling techniques. Fortunately, there
is an increasing awareness in this regard and some material is
already available to fill this gap (Voit, 2012; Torres, 2013).

The understanding of the system through the use of the
mathematical tools that allow the description and analysis of
the complex systems can help to deepen the knowledge of
the structure, properties and dynamic behavior of the system.
However, the collaboration with experienced mathematicians
is required for analyses such as the choice of the proper
numerical methods, and the selection of the valid simplifications
of complicated models. This is the area where most of the typical
modeling projects develop: the fertile interface among established
disciplines such as cellular biology, biochemistry, genetics and
mathematics, and others. In this task all parties are benefited from
valuable insight from the interdisciplinary experience. Modeling
implies the definition of the model’s objectives, and the curation
of the available information. It facilitates not only the finding of
previously unsuspected areas of exploration, but the proposition
of new questions that were not at all evident from the reductionist
approach. The systematic practice of modeling in this context
also naturally facilitates the fusion of scientific disciplines; this
unifying tension is felt not only among biological specialties
(e.g., biochemistry, cell biology, microbiology, and genetics) but
also with other (seemingly) distant ones, as operational research,
computer science and mathematical analysis.

Most of the modelers are well between two extreme positions.
On one side lie the idealistic ones who consider model building as
a mental process in which the inductive dimension is not valued.
For them the mathematical structure obtained represents reality.
Opposed to this is the one with a pragmatic view, for whom the
goal is to adjust the model to the actual data but without paying
attention to a better understanding of reality. The right position
would be that in which the model is adjusted to the data, but

reaching an understanding of the observed reality is always the
aim. The optimum position of a good modeler is halfway between
the most pragmatic and utilitarian view of an engineer and the
more general outlook of the philosopher.

Finally, it should be noted that although the most common
approach in the current biological research is the study of the
design of living organisms by observing examples available in
nature, there is an inductive, subsequent task that should not be
forgotten. We refer to the derivation of general principles from
these examples. Efforts are being carried out to gain insight into
what is possible in biological design (Savageau, 1976; Alon, 2006;
Salvado et al., 2011; Wolkenhauer and Green, 2013) that may
lead to practical techniques for generating designs for biological
systems intended to carry out particular tasks.
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