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Abstract: Spatio-temporal epidemic simulation, assessment, and risk monitoring serve as the core
to establishing and improving the national public health emergency management system. In this
study, we investigated Oncomelania hupensis breeding grounds and analyzed the locational and envi-
ronmental preferences of snail breeding in Dongting Lake (DTL), Hunan, China. Using geographic
information systems and remote sensing technology, we identified schistosomiasis risk areas and
explored the factors affecting the occurrence and transmission of the disease. Several key conclusions
were drawn. (1) From 2006 to 2016, the spatial change of potential O. hupensis breeding risk showed a
diminishing trend from the eastern and northern regions to southwest DTL. Environmental changes
in the eastern DTL region resulted in the lakeside and hydrophilic agglomerations of the O. hupensis
populations. The shift in snail breeding grounds from a fragmented to centralized distribution indi-
cates the weakening mobility of the O. hupensis population, the increasing independence of solitary
groups, and the growing dependence of the snail population to the local environment. (2) The
spatial risk distribution showed a descending gradient from west Dongting area to the east and an
overall pattern of high in the periphery of large lakes and low in other areas. The cold-spot areas had
their cores in Huarong County and Anxiang County and were scattered throughout the peripheral
areas. The hot-spot areas had their center at Jinshi City, Nanxian County, and the southern part
of Huarong County. The areas with increased comprehensive risks changed from centralized and
large-scale development to fragmented shrinkage with increased partialization in the core area. The
risk distribution’s center shifted to the northwest. The spatial risk distribution exhibited enhanced
concentricity along the major axis and increased dispersion along the minor axis.

Keywords: breeding grounds; comprehensive risk of epidemic; spatio-temporal evolution; disease
geography; schistosomiasis

1. Introduction

In recent years, researchers from around the world including those in the field of
geography have focused their research on health-related topics such as epidemic assess-
ment, risk monitoring, and time–space simulation of regional epidemics, helpful in sound
public health emergency management [1–3]. One natural focal disease with a long history
and wide-ranging effect in many parts of the world is Schistosomiasis Japonica (here-
inafter referred to as schistosomiasis). In China, schistosomiasis is mainly distributed in
12 provinces (or autonomous regions and municipalities) of the Yangtze River and the
south of the Yangtze River including Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan,
Sichuan, Guangxi, and Yunnan. This disease is seriously detrimental to people’s health and
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hinders the socio-economic development of affected areas [4]. Monitoring and identifying
risks of an epidemic and reducing its effect on the population’s health and well-being is
key to achieving a “Healthy China Strategy” and ensuring high-quality life and human
development.

In terms of prevention and cure, the treatment of diseases falls under the realm
of medicine, while prevention and control is a systematic regional venture involving
multiple disciplines and fields. Since the 20th century, researchers in disease geography
and spatial epidemiology have carried out numerous studies on schistosomiasis prevention
and control. For instance, De et al. (2012) used QuickBird panchromatic and multispectral
images to quantitatively evaluate land-use and, with geographic information systems
(GIS), analyzed changes in schistosomiasis-endemic areas [5]. Walz Yvonne and Wegmann
(2015) adopted high-resolution remote sensing (RS) data to establish habitat suitability
index-based models [6]. They found that RS data could be updated periodically through
empirical analysis to monitor potential new hot-spots of schistosomiasis transmission.
Wang et al. (2012) used regression analysis combined with geostatistics to quantitatively
characterize the spatial information of O. hupensis distributions with environmental factor
indicators [7]. They established the relationship between spatial environmental factors and
snail distribution to establish a risk model and a prediction model of snail distribution. Xia
et al. (2017) collected data of O. hupensis breeding grounds in the Poyang Lake area and
related environmental factors to construct a maximum entropy niche model to generate a
distribution map of O. hupensis breeding grounds [8].

As an epidemic with pronounced geographic characteristics, schistosomiasis is theoret-
ically suitable for the simulation study of the spatial evolution of epidemic areas. Regarding
technology and research, the focus of schistosomiasis control in China has shifted from
epidemic data analysis to micro-ecology, epidemiology, and geographic research, and from
locally focused management toward global monitoring and prevention [9]. Currently, more
focus has been given to county, town, and village-scale epidemic studies, while larger areas
such as river and lake basin levels have been overlooked.

The monitoring of O. hupensis and its breeding environment has become essential in
schistosomiasis prevention and mitigation of “human–land contradiction” between potable
and infested water. In recent years, the human–land contradiction between O. hupensis
breeding grounds and human–animal activities has become the focus of risk control and epi-
demic rebound management [4,10]. As a natural focal disease, research on response factors
for schistosomiasis and its hidden interaction mechanisms can help develop early warning
and assessment capabilities and improve major epidemic schistosomiasis prevention and
control systems and mechanisms [11,12].

Currently, the schistosomiasis epidemic in the Dongting Lake (DTL) area of Hunan
Province has been controlled and mitigated, and its prevention and control have shifted
from transmission control to transmission interruption. Plans and strategies are in place
toward eliminating schistosomiasis. However, based on the Schistosomiasis Elimination
Plan of Hunan Province (2016–2025), schistosomiasis elimination should be reached by
2025, which means that existing schistosomiasis control policy and strategies must be
adjusted appropriately [10,13]. Studying the spatio-temporal evolution characteristics of
schistosomiasis risk is crucial to achieving schistosomiasis elimination.

To address this need, this study used the DTL area as the research object and applied
spectral feature analysis, data mining and fusion, and spatial analysis in GIS to identify
potential epidemic risk areas. We analyzed the snails and their preferred breeding locations
using spectral index. Quantitative assessment and schistosomiasis risk simulation in the
DTL area from 2006 to 2016 were conducted based on epidemic and susceptibility indexes
obtained from epidemiological and land-use data. The results from this study can be used
to improve the sensitivity and accuracy of risk identification, particularly in low-level
epidemic areas.
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2. Materials and Methods
2.1. Research Framework

Risk detection and quantitative assessment are crucial in monitoring and early warn-
ing development in the regional public health emergency management system [14–16].
This study analyzed the epidemic source, carrier, and motivation of schistosomiasis in
the aspects of epidemiology, geography, and ecology. By defining the O. hupensis breed-
ing risk, regional susceptibility risk, and epidemic prevalence risk, and by following the
‘understanding—identification—monitoring—optimization’ strategy, we combined the
spectral feature analysis, data mining and fusion, spatial analysis, and other GIS functions
to identify and assess the comprehensive risk of schistosomiasis epidemic in the DTL area.
We then conducted zoning analysis on spatio-temporal distribution and control strategies
for schistosomiasis.

Schistosomiasis epidemic is a complex systemic problem, which is affected by various
risks. The main aspects of risks analyzed in this study were O. hupensis breeding risk,
epidemic risk, and susceptibility of land-use mainly for the following reasons.

(1) Since O. hupensis, patients, livestock, and contaminated water can be potentially
exposed to infection and have strong spatiotemporal dynamics, evaluating the com-
plex relationships of these factors is important in understanding the schistosomiasis
risks [17,18]. Simply studying a single parameter’s activity patterns cannot accurately
reveal the potential risks for an epidemic outbreak. However, the breeding grounds
of O. hupensis can be monitored as the epidemic source using the environmental
detection of important sources for the breeding and spread of O. hupensis.

(2) The development and change of an epidemic is a long-term, spatio-temporal, cause-
and-effect process and is closely related to snail status, patients, and sick animals [19].
The epidemic risk data, comprehensively defined based on epidemiological data, can
be used to measure the influence of various factors including snail distribution, snail
density, number of patients, number of sick animals, and their activities.

(3) Epidemic factors are both complex and changeable. Schistosomiasis distribution
characteristics, patterns, and trends vary considerably for different regions, prevalence
types, and socio-economic attributes [20,21]. Hence, the sensitivity of different types
of ground objects to changes in the epidemic was determined. We also measured the
susceptibility for the different regions based on the combination of land-use types to
quantify the potential risks of epidemic carriers.

Aside from these parameters, the interaction of epidemic risk, susceptibility risk, and
snail breeding risk can be used to determine the dynamic changes of schistosomiasis risk
in the DTL area. Specifically, the O. hupensis breeding environment serves as the source
factor responsible for the occurrence, prevalence, and spread of schistosomiasis, which, to a
certain extent, determines the probability of a regional schistosomiasis epidemic. Epidemic
risk, based on regional historical epidemiological data, and human–land contradiction
based on the regional land-use types, can be used to characterize and evaluate the de-
velopment potential, driving force, and carrier of the epidemic. The superposition of
these parameters was used for the comprehensive risk assessment of the schistosomiasis
epidemic in the DTL area, as shown in Figure 1.
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2.2. Research Methods
2.2.1. Construction of the Grid System

This study conducted a quantitative assessment of integrated risks in an epidemic
from three dimensions: snail brewing risk, epidemiological risk, and susceptibility based on
land use. It involves many kinds of sub-data with varying spatial resolution. Therefore, by
constructing a hexagonal grid system, we can unify the quantization scale of multi-source
data in the grid system to facilitate the matching and operation of data with different
spatial resolutions. It can also ensure fitting for grid systems with irregular edges and
maintain spatial balance in the mosaic. The method of grid system is widely used in the
fields of ecology, economics, and geography. This paper was based on the related research
results published by Xu, Ouyang, and He [22–27].

We utilized the hexagons fishnet tool (Tessellation) of ArcGIS 10.2 and established
a grid system consisting of 5887 hexagonal cells covering the whole area. Each cell was
2 km wide from east to west, 2.32 km long from north to south, an area of 3.48 km2, and a
2-km distance between center points. Using the rule of area dominance, the cells located on
the border of each administrative region were organized into subordination levels [22,23].
ArcGIS 10.2 Zonal Statistics was used to create statistics for various land-use, spectral
feature, epidemiological, and risk assessment data for each cell and in each time period.
The data were saved accordingly in cell attribute tables, and the grid system for potential
epidemic risk areas in the DTL region was generated from 2006 to 2016.

2.2.2. Identification and Extraction of Snail Breeding Grounds

(1) Identification and extraction of environmental types of potential O. hupensis breeding
grounds based on spectral features

This study mainly utilized environmental factors with significant sensitivity such
as ground object types and regional environmental characteristics for key analysis. The
vegetation index is a simple, effective, and empirical measure of surface vegetation based on
spectral characteristics. Taking into account the feasibility and reliability of the vegetation
index, we applied the research method of He, Zhang, and Tan, using normalized differential
vegetation index (NDVI), green vegetation index (GVI), and brightness index (BI) in the
analysis [28–30]. We processed the RS images to identify and analyze the environmental
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characteristics of the O. hupensis breeding grounds within the DTL epidemic area. The
following equations were used in the calculations:

NDVI = (TM4 − TM3)/(TM4 + TM3) (1)

GVI = −0.247TM1−0.163TM2− 0.406TM3+0.855TM4 +0.055TM5− 0.117TM7 (2)

BI =
1
3

[
(TM2)

2 + (TM3)
2 + (TM4)

2
] 1

2 (3)

The environmental categories suitable for O. hupensis and schistosomiasis breeding
were surveyed and classified. The main environmental types that could be suitable for
the breeding of snails and schistosomiasis in the study area include paddy fields, reeds,
Italian poplar forest, interplanting rape, and marsh wetland [29]. Based on the spectral
distribution maps for NDVI, BI, and GVI, the spectral feature indexes of 900 samples were
extracted. We then obtained the NDVI, BI, and GVI index averages for the nine environment
types and their corresponding confidence intervals (95%) [31]. Based on the distribution
characteristics of the three indexes, we conducted spectral index analysis and evaluated
the land-use for the DTL area. Sample area verification and visual interpretation were
used to improve the classification accuracy of the surface environment. We then identified
and extracted the typical environment and secondary environment maps for the DTL area
(2006–2016), as shown in Figure 2.

(2) Identification of potential O. hupensis breeding grounds in the DTL area from 2006 to
2016

In China, there is a lack of a unified identification standard for O. hupensis breeding
grounds. Most studies detect O. hupensis breeding grounds using biological and specific
environmental characteristics. For this study, we adopted concepts of relativity such as
NDVI, BI, GVI, and snail density to predefine the snail breeding area. We collected the
environment data from 2006 to 2016, recorded the extent (i.e., longitude and latitude coordi-
nates) of the susceptible environment, and organized them into a susceptible environment
checklist. The calculated average density of live snails in the susceptible area was 0.37/0.11
m2, and the variance was 0.29. The average value was used as cut-off; susceptible areas
with density of live snails equal to or higher than the average value were considered
suitable for the survival and reproduction of snails. The vegetation, soil, and humidity
characteristics of these areas provide the necessary food, reproduction, and migration
conditions for breeding snails. Therefore, we defined these areas as samples of breeding
areas. Areas with snail density less than 0.37/0.11 m2 and greater than 0 possess basic
conditions suitable for the survival of snails. These areas can become breeding grounds
under certain circumstances and were designated as potential snail spreading areas. In the
meantime, since the density of O. hupensis in other areas was 0/0.11 m2, we confined these
places with low risk, which are not suitable for O. hupensis.

Through extracting the remote-sensing image of samples in the breeding area and
diffusion area, we extracted and calculated their 95% confidence interval of the NDVI, GVI,
and BI [32]. Threshold analysis found an overlap in the spectral index threshold of the
breeding area and diffusion area. The overlapping area for vegetation indexes indicates that
the susceptible environment corresponding to the overlap threshold of the NDVI, GVI, and
BI was “the best location” for the breeding and spread of infectious sources (O. hupensis and
Schistosoma). From an environmental perspective, these areas are most likely epidemic risk
regions where schistosomiasis can occur or spread. Then, using the spectral data threshold
distribution for the classification rule, potential epidemic risk areas were identified and
classified into four categories: potential epidemic area, suspected breeding area, suspected
spreading area, and other areas. Then, the samples of potential epidemic area, suspected
breeding area, suspected spreading area, and the other areas were normalized according to
the snail density data, and the breeding risk value of the sample area was obtained.
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to 2016.

2.2.3. Evaluation and Calculation of Potential Epidemic Risk of Schistosomiasis

(1) 2006–2016 epidemic index evaluation and calculation in potential risk areas

The epidemic risk assessment is a comprehensive evaluation based on the conditions
of a particular area, reflecting the development trend of a given epidemic. This study
synthesized the epidemiological data for 15 risk areas in the DTL using the epidemic index
as a quantitative evaluation basis for schistosomiasis epidemic risk. From the 2006–2016
Annual Report of Schistosomiasis Control in DTL District, 13 parameters characterizing
the environment, livestock conditions, and population demographics were selected for the
index layer (e.g., snail inspection and the area of snails inside and outside the embankment,
the area of susceptible regions inside and outside the embankment, the number and posi-
tive rate of blood and fecal tests, the number of farm cattle and the number of sick cattle,
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the number of patients). We aggregated indicators according to the calculating methods to
control and eliminate schistosomiasis in China based on formulas with statistical signifi-
cance. We used the MATLAB data processing software and EWM (entropy weight method)
to calculate the formation entropy of comprehensive epidemiological indicators, weight
coefficient, and the epidemic index for schistosomiasis epidemic risk in the 15 endemic
areas of DTL from 2006 to 2016 [27,33,34]. Then, we extracted the evaluation index of the
sample area, and used the above method to calculate and save the epidemic index.

(2) 2006–2016 susceptibility index calculation of potential risk areas

The significant differences in the distribution characteristics, patterns, and trends for
schistosomiasis in different epidemic type areas are caused mainly by people–land conflicts
resulting from interactions between potable and contaminated water. The land factor is
the important carrier of epidemic trends, spreads, and human–land conflict. It reflects the
situation that the land types, which exert positive and negative influence on schistosomiasis,
combine and restrict others in specific areas. It is also an integrated expression of regional
social and natural attributes. The functional nature of land determines the land cover
type. Aside from being a major determinant of socio-economic activities, land/cover can
significantly impact the survival of schistosomes and snails [35,36].

In this study, we introduced the concept of regional susceptibility risk. We used the
spatial lag model (SLM) to establish an epidemic risk description method based on land-use
types. We calculated the epidemic sensitivity coefficients βij, which provide the relative
estimate of the influence of different land-use types on the schistosomiasis epidemic in
different regions. We calculated the susceptibility index Yi using the quantization formula:

Yi =
n

∑
j=1

Xij∗βij + cij (4)

where cij is a constant term to quantify the comprehensive influence of various land types j
in a specific area i in the development of a schistosomiasis epidemic.

2.2.4. Extraction and Storage of Data in Grid System

Based on the data of O. hupensis breeding risk and epidemic risk in the sample area,
the distribution map of breeding risk and epidemic risk in the potential risk area with
30 m resolution was made by the kriging interpolation method. Then, the attribute fields
in the mean value of breeding risk and epidemic risk from all grids are counted through
the zonal statistical as a table in ArcGIS 10.2 software, as shown in Figure 3. In addition,
we used the formula above-mentioned to conduct field operations on the land-use data
that belonged to the grid system in the potential risk area in 2006–2016, and generated the
susceptibility index for all hexagonal cells in potential risk areas from 2006 to 2016.The
output results were saved as the grids of breeding risk, epidemic index, and susceptibility
index attribute field for each area. More details on the calculation methods can be searched
in the “Identification and risk monitoring of potential risk areas for schistosomiasis in DTL
area” by Xu et al. in the Chinese Journal of Disease Control and Prevention [22].
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2.2.5. Quantification and Visualization of Comprehensive Risks in Epidemic Areas

The standardized O. hupensis breeding risk, standardized epidemic index, regional
susceptibility index, and breeding risk were used as primary indicators, and their respec-
tive sub-indices were used as secondary indicators. We utilized Grey relational analysis
(GRA) and the analytic hierarchy process (AHP) to obtain the weights of the primary and
secondary indicators [37–39] and combined the discretized grid data with three types of
risk weights to get the comprehensive risk value Gi. We then established a spatial rect-
angular coordinate system, where xi, yi, and zi indicate the epidemic risk, breeding risk,
and the weighted quantitative value for susceptibility risk, respectively. We calculated the
Euclidean distance [40,41] from all grid coordinate points to the central reference point
(xmax, ymax, zmax) and used the P-quantile division method to divide the value of the
corresponding point in each grid into five grade intervals. Based on the classification
requirements from the Law of the People’s Republic of China on Response to Emergencies,
the areas were subdivided into five levels based on their comprehensive risk values: Level
I (extremely high-risk area; red), Level II (high-risk area; orange), Level III (moderate-risk
area; yellow), Level IV (low-risk area; blue), and Level V (risk-free area; white). Finally,
the comprehensive risk assessment and early warning map for schistosomiasis in the DTL
was generated.

2.3. Data Source and Extraction of the Potential Risk Study Area

Based on the definition of potential risk area, the research data should contain the max-
imum range of the intersection of these areas, which include 15 schistosomiasis endemic
cities (also counties and districts), the “winter land, summer water” area where O. hupensis
thrive, and the contradiction area between potable and infected water. We obtained the
annual schistosomiasis endemic data for 15 schistosomiasis endemic cities (also counties,
districts) in the DTL area from the Hunan Province Schistosomiasis Control Center and
acquired the land-use and land-cover change (LUCC) data from the Resource and Envi-
ronment Science and Data Center of the Chinese Academy of Sciences. We downloaded
Landsat5 and Landsat8 remote sensing images during the low-water and high-water peri-
ods in 2006–2016 from the geospatial data cloud at 123-40, 123-39, 124-39, and 124-40 orbit
and with 30 m pixel size. As Landsat5-TM images and Landsat8-OLI images were used for
2006–2010 and 2010–2016, respectively, the images had to be preprocessed to ensure the
mutual unity of the data. Analyzing the historical water level data of the DTL from 2006 to
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2016, we found that the highest water level was at 34.47 m, which occurred in July 2016,
while the lowest was at 20.38 m in December 2015.

Modified normalized difference water index (MNDWI) was used to enhance the
water body effect and extract the water area from the RS images at that time, which
were then converted into polygons in ArcGIS 10.2. Using overlay analysis and RS image
processing, the largest extent of the “winter land, summer water” area for 2006–2016 was
acquired [40,41]. We demarcated this designated area with a 4-km buffer zone (diameter of
daily activities of the residents, livestock, and poultry in the lake area, obtained through
the questionnaire). Moreover, we amended the buffer zone using several kinds of data to
build classification rules. These data include the AsterGDEM data with 30 m resolution
ratio in DTL area, EVI index, and the distance from the water [42]. The spatial data were
superimposed and analyzed in ArcGIS 10.2, and the potential epidemic risk areas in DTL
were determined, as shown in Figure 4.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 9 of 20 
 

 

counties, districts) in the DTL area from the Hunan Province Schistosomiasis Control Cen-

ter and acquired the land-use and land-cover change (LUCC) data from the Resource and 

Environment Science and Data Center of the Chinese Academy of Sciences. We down-

loaded Landsat5 and Landsat8 remote sensing images during the low-water and high-

water periods in 2006–2016 from the geospatial data cloud at 123-40, 123-39, 124-39, and 

124-40 orbit and with 30 m pixel size. As Landsat5-TM images and Landsat8-OLI images 

were used for 2006–2010 and 2010–2016, respectively, the images had to be preprocessed 

to ensure the mutual unity of the data. Analyzing the historical water level data of the 

DTL from 2006 to 2016, we found that the highest water level was at 34.47 m, which oc-

curred in July 2016, while the lowest was at 20.38 m in December 2015.  

Modified normalized difference water index (MNDWI) was used to enhance the wa-

ter body effect and extract the water area from the RS images at that time, which were 

then converted into polygons in ArcGIS 10.2. Using overlay analysis and RS image pro-

cessing, the largest extent of the “winter land, summer water” area for 2006–2016 was 

acquired [40,41]. We demarcated this designated area with a 4-km buffer zone (diameter 

of daily activities of the residents, livestock, and poultry in the lake area, obtained through 

the questionnaire). Moreover, we amended the buffer zone using several kinds of data to 

build classification rules. These data include the AsterGDEM data with 30 m resolution 

ratio in DTL area, EVI index, and the distance from the water [42]. The spatial data were 

superimposed and analyzed in ArcGIS 10.2, and the potential epidemic risk areas in DTL 

were determined, as shown in Figure 4. 

 

Figure 4. Regional map of potential risk of schistosomiasis in the DTL area from 2006 to 2016. 

3. Results 

3.1. Spatial Distribution Analysis of Potential O. hupensis Breeding Grounds 

Using the generated map for potential O. hupensis breeding grounds and the calcula-

tion results (as shown in Figure 5), we assessed the overall distribution pattern and dy-

namic changes of potential epidemic areas, likely breeding area, likely spreading area, and 

other areas. For 2006–2016, the four area types exhibited varying spatial evolution charac-

teristics. In the areas of evolution, improved area with decreasing breeding risk was in the 

majority, which accounted for 33%. The area with increasing risk accounted for around 

20%. In both of these areas, the changes were minor, either slightly improved or slightly 

intensified. In terms of the spatial characteristics of risk evolution, the breeding risk gen-

erally exhibited a declining NE to SW pattern: high in the eastern and northern regions 

and low in the southwestern portion. The areas with increased breeding risks were mostly 

concentrated along the east DTL, particularly in Yiyang City, Yuanjiang City, Yueyang 

Figure 4. Regional map of potential risk of schistosomiasis in the DTL area from 2006 to 2016.

3. Results
3.1. Spatial Distribution Analysis of Potential O. hupensis Breeding Grounds

Using the generated map for potential O. hupensis breeding grounds and the calcula-
tion results (as shown in Figure 5), we assessed the overall distribution pattern and dynamic
changes of potential epidemic areas, likely breeding area, likely spreading area, and other
areas. For 2006–2016, the four area types exhibited varying spatial evolution characteristics.
In the areas of evolution, improved area with decreasing breeding risk was in the majority,
which accounted for 33%. The area with increasing risk accounted for around 20%. In both
of these areas, the changes were minor, either slightly improved or slightly intensified. In
terms of the spatial characteristics of risk evolution, the breeding risk generally exhibited
a declining NE to SW pattern: high in the eastern and northern regions and low in the
southwestern portion. The areas with increased breeding risks were mostly concentrated
along the east DTL, particularly in Yiyang City, Yuanjiang City, Yueyang City, Xiangyin
County, and Yueyang County. There were also a number of scattered distributions in Jinshi
City, Linli City, and in the northern part of Changde City, located in the northwest DTL.
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Figure 5. The spatial evolution characteristics of potential O. hupensis breeding grounds in the DTL
area from 2006 to 2016.

The four area types shifted from fragmented distributions into more centralized con-
figurations. For example, suspected spreading and suspected breeding areas transformed
from an interlaced, scattered, and mixed distribution in 2006 to a north–south pattern
in 2016, indicating the evolution of centralized contiguous pieces had basically formed.
The other scattered areas become homogenization continuously by the surroundings. The
potential epidemic focus areas evolved from multiple patches and scattered points in 2006
to compact and denser clusters in the central region of the DTL, particularly in Yuanjiang
City, Jin City, and Li County. A large area around east DTL, which includes large portions
of “winter land, summer water” areas, changed from being a suspected spreading area in
2006 to a suspected breeding area in 2016. This shift suggests that due to some natural or
anthropogenic factors in the lakeside and waterfront areas, more land became suitable for
O. hupensis breeding. This may also mean that the snail population exhibits lakeside and
hydrophilic agglomeration.

Despite the potential epidemic focus areas becoming more clustered, their aggregate
size declined. To some extent, this clustering and shrinkage of potential epidemic focus ar-
eas suggest that the spatial distribution of snail density has distinct regional differentiation.
This also implies the weakening of the spatial mobility of the snail population, the growing
independence of solitary groups, and the increasing dependence of the snail population
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to the local environment. Such spatial characteristics are more conducive for O. hupensis
detection and extermination, which can help schistosomiasis control staff more efficiently
minimize snail population and reduce potential epidemic breeding areas [43,44].

3.2. Analysis of Comprehensive Risk Evolution Characteristics of Schistosomiasis Epidemic

As shown in Figure 6, the spatial distribution of schistosomiasis risk in the DTL area
can be characterized as having an overall pattern of being high in the core area, low in the
peripheral area, high in the periphery of large lakes, low in other areas, high in the west
Dongting area (northwest of the central part), and low in the east Dongting area (northeast
of the central part). Level I and Level II risk areas were distributed in the following regions:
the area around the Maoli Lake and West Lake in Jinshi City, which lies in the west DTL
area; area north of the Liuye Lake in Changde City; and the area around Datong Lake in
Nanxian County in the hinterland of DTL. The low-lying embankment around the Lishui
Basin was also included. The Level III and Level IV risk areas were mainly distributed
in south and northeast DTL, which includes Yueyang City, Yiyang City, Huarong County,
Yuanjiang City, Xiangyin County, Yueyang County, and Anxiang County. The spatial
interaction between Level III and Level IV areas increased considerably, with recurring
conversion between risk types. The overall pattern for the Level III risk area spread from
southwest DTL to the northeast, which gradually shifted into a fragmented reduction.
The Level IV risk area exhibited a progressive and fluctuating increase in size, gradually
extending to neighboring areas.
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Figure 6. Spatio-temporal pattern of schistosomiasis comprehensive risk evolution in DTL from 2006 to 2016.

We utilized local spatial autocorrelation analysis (Getis-Ord Gi*) in the GIS exploratory
spatial data analysis method (ESDA) to characterize the spatial autocorrelation of epidemic
risk in potential risk areas. We adopted the Z (Gi*) value to identify the spatial evolution
pattern of high-high agglomeration (hot-spots) and low-low agglomeration (cold-spots).
As shown in Figure 6, the epidemic area was divided into seven types based on the
positive and negative significance of Z (Gi*): Hot-spots 90%, Hot-spots 95%, Hot-spots
99%, Cold-Spots 90%, Cold-Spots 95%, Cold-Spots 99%, and no spatial correlation.
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The high- and low-value distributions of epidemic risk in potential risk areas exhibited
distinct spatial correlation. As shown in Figure 7, the grid count for hot-spots and cold-
spots in 2006 were 821 and 1123, respectively, accounting for 12.57% and 17.19%. In 2016,
the grid count was 824 for hot-spots (12.61%) and 954 for cold-spots (14.60%). Compared
to 2006, hot-spot areas with 99% significance decreased by 22.64%, with 95% significance
increased by 0.37%, and with 90% significance increased by 57.59%. For cold-spot regions,
areas with 99% significance decreased by 18.73%, with 95% significance decreased by
18.92%, and with 90% decreased by 4.9%. The risk agglomerations exhibited a gradual
weakening trend.
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The distribution and evolution of high- and low-risk values in potential risk areas
showed noticeable spatio-temporal continuity. In 2006, the cold-spots were mainly dis-
tributed in the north and east DTL, while the hot-spots were in the central and west DTL
and along the lake. In 2016, the cold-spots were mainly in the north and south peripheral
areas of the DTL, while the hot-spots were along the west DTL. The cold-spot region
can be characterized as having Huarong County and Anxiang County as the core and a
scattered distribution in other peripheral areas. From 2006 to 2016, while the extent of the
core cold-spot region declined, and the patches along the margins dropped, the number
of cold-spot patches grew significantly. This means that the spatio-temporal evolution
pattern for low risk areas shifted from a huge decline in concentrated and contiguous areas
to distinct breakthroughs in a number of areas. The hot-spot areas had a concentrated
distribution centered in Jinshi City, Nanxian County, the southern part of Huarong County,
and the northern area of Changde City. The coverage area of the core hot-spot area de-
clined, while the degree of fragmentation increased. The apparent reduction of scattered
patches in the periphery indicates that the spatio-temporal pattern of high risk areas shifted
from concentrated contiguous regions into more fragmented and shrinking areas, with
increasing fragmentation reduction of the interior core region.

The standard deviational ellipse method was used to present and analyze the com-
prehensive risk distribution and evolution direction of potential risk areas. The standard
deviational ellipse involves key elements such as the position of the center point, the
semi-major and semi-minor axes, and the azimuth angle. The position of the center point
represents the center position of the comprehensive risk element in the epidemic area.
The semi-major axis indicates the discrete degree of the data distribution in the principal
direction, while the semi-minor axis represents the discrete degree of the data distribution
in the sub-principal direction [45,46]. The larger the difference between the semi-major
and semi-minor axes (the greater the flattening), the more distinct the directivity of the
data. Conversely, the closer the values of the semi-major and semi-minor axes, the less
obvious the directivity. As shown in Figure 7 and Table 1, the difference in ellipse coverage
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area and in ellipse direction angle between 2006 and 2016 were small. From 2006, the
coverage area in 2016 decreased by 0.36%, and the direction angle shifted by 1.65◦. The
geographic coordinates of the center of the ellipse moved from (29.174◦ N 112.418◦ E) to
(29.183◦ N 112.415◦ E), and the overall offset shifted from west to north. The semi-major
axis increased by 1.429 km while the semi-minor axis decreased by 1.252 km, indicating
increased flattening of the ellipse. The risk distribution and the evolution of potential
risk areas were relatively stable, with the center shifting northwest and the distribution
axis extending from the northeast to the southwest. The evolution was initially along the
east–west direction, and then shifted to a north–south trend. The spatial risk distribution
featured enhanced concentricity along the major axis and increased dispersion along the
minor axis.

Table 1. Main parameters of comprehensive risk standard deviation ellipse in potential epidemic
risk areas.

Attributes 2006 2016

Shape_Length 399.203 km 400.390 km
Shape_Area 12,314.978 km2 12,270.277 km2

Center X 112.418◦ E 112.415◦ E
Center Y 29.174◦ N 29.183◦ N
XStdDist 72.042 km 73.471 km
YStdDist 54.415 km 53.163 km
Rotation 92.817◦ 94.468◦

Oblateness 0.245 0.276

3.3. Comprehensive Risk Classification Criteria of Schistosomiasis in DTL Area

As shown in Table 2, we used the comprehensive risk value quantification and grading
rules in Section 2.2.5 to evaluate all grids in the study area and statistically analyze the
different attribute data in each grid. We analyzed the characteristics of extremely high-risk
(Level I), high-risk (Level II), and moderate-risk (Level III) regions.

Table 2. Characteristics of the comprehensive risk areas of schistosomiasis in the DTL area.

Comprehensive Risk Level Comprehensive
Risk Value

Environmental Spectral
Characteristics

Epidemic Index
Characteristics

Susceptibility Index
Characteristics

Level I (Extremely
high-risk area) 8.92–12.09

BI: 29.31–39.45
GVI: 11.69–42.51
NDVI: 0.15–0.35

≥0.44 ≥3.92

Level II (High-risk area) 6.10–8.81
BI: 27.30–44.64
GVI: 3.45–59.37
NDVI: 0.09–0.40

≥0.35 ≥1.5

Level III (Moderate-risk area) 4.68–6.05
BI: 18.46–29.31 ∪ 39.45–46.36

GVI: −19.27–11.69 ∪ 42.51–62.55
NDVI: −0.14–0.15 ∪ 0.35–0.61

0.07–0.46 0–2.5

Level IV (Low-risk area) 2.63–4.64
BI: 18.46–27.30 ∪ 42.69–46.36

GVI: −19.27–15.68 ∪ 59.51–62.55
NDVI: −0.04–0.09 ∪ 0.39–0.61

≤0.35 ≤1.5

In terms of epidemiological data, the extremely high-risk (Level I) areas had compara-
tively more infected people and animals, large susceptible environments, and considerable
snail populations, conducive for accelerating the occurrence and spread of schistosomiasis.
Highly susceptible land-use types accounted for a relatively large proportion of Level
1 areas, making these places highly conducive to the occurrence and spread of the epi-
demic [43]. In terms of land-use, Level 1 areas were dominated by waterfront planting
areas, waterfront marsh wetlands, farmland cultivation areas, and agro-forestry areas.
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These areas provide ecological functions such as hydrological regulation, agricultural
production, and ecological conservation.

According to the epidemiological data, the risk index for human and animal infection,
the proportion of susceptible environment, and the quantity of oncomelonia snails inside
and outside the embankment were possibly higher than the global average, which could
significantly affect the spread and development of epidemics. A large proportion of
high risk (Level II) areas were highly susceptible areas including cultivated farmlands,
waterfront planting areas, agro-forests, and other socio-economic functional areas. Much
of the Level II areas were used mainly for agricultural production, and a small portion is
reserved for ecological conservation.

Through the sampling survey, the epidemic index and susceptibility index of moderate
risk (Level III) level areas were found to be near the global exponential average in DTL areas.
The number of human and animal infection, the proportion of susceptible environment, and
the number of snails inside or outside the embankment were at a medium level, while snail
density fluctuated slightly around 0.37/0.11 m2. These areas could play an intermediary
role in the prevalence and development of the epidemic. When the land-use in these regions
was extracted and analyzed, we found that the land-use types with higher sensitivity
index β accounted for a moderate proportion, which could promote the occurrence and
transmission of the epidemic. Level III areas were mainly cultivated farmlands, mixed
cultivated and residential areas, and waterfront planting areas. Additionally, Level III
areas were supplemented with mixed agricultural and forest lands, flood plains, and other
ecological areas, mainly used for agricultural production, water, and soil conservation, and
some non-agricultural functions.

4. Discussion
4.1. Regional Characteristics and Control Strategies for Medium- and High-Risk Areas

(1) Level I risk areas

The major environments in Level 1 areas included farmlands, marsh wetlands, “winter
land, summer water” environment, grass islands, shrub forests, and sparse woodland
environments. In terms of distribution, the extremely high-risk epidemic areas were mainly
situated close to Lake Basin, within 2–6 km from concentrated settlements. The area falls
somewhere in between usually active regions for humans and animals and low-activity
areas. The interaction between potable and contaminated water for Level 1 areas was
relatively low. Human and livestock activities in the area were all non-daily ones rather
than normal production and life. Level 1 areas have not been subjected to anthropogenic
modifications. It is difficult for schistosomiasis control work to cover this area and is easily
ignored by the objects that conduct activities in it [47,48]. These are highly critical areas
that need to be prioritized and closely monitored.

Combined with vegetation cover and epidemic index characteristics, we believe that
the key to reducing the comprehensive risk is to prevent snail breeding. The better methods
include optimizing the planting structure, adjusting the vegetation index, and enriching
the means of snail destruction. Therefore, the prevention and control model for Level
1 areas should include flood prevention, waterlogging mitigation, and water and soil
conservation measures. The control strategies should consist of developing the beach
economy, afforestation, and snail control, and should be supplemented by measures such
as fencing and sealing off the island, trenching and draining, and engineering snail control.
The policies should adhere to principles of protection-oriented, moderate development,
and unified management and control for ecologically sensitive areas. Governance and
management for Level 1 areas should focus on water conservancy, schistosomiasis control,
forest maintenance, and environmental protection to ensure ecological and biodiversity
conservation. An early warning and monitoring system is particularly important for
high-risk areas. The government should invest more in personnel development, facility
upgrading, and technological modernization to help monitor the local snail population,
identify risk factors, and promptly respond to the epidemic spread [43,44].
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(2) Level II risk areas

In terms of environmental types, Level II risk areas were dominated by farmland,
“winter land, summer water”, and grassland environments and supplemented by shrub
forest and sparse woodland environments. These lands were mainly distributed in West
DTL, Nanxian County, and Yuanjiang River and included low potable and contaminated
water interaction areas. They tended to be near lake basins, within 2–6 km distance
from concentrated settlements or urban-rural construction land boundaries, the area falls
somewhere between the usually active regions for humans and animals and low-activity
areas. Although the high-risk areas had similar distribution characteristics to extremely
high-risk areas, they were more widely distributed and had faster spatial evolution rates,
which are very challenging in epidemic monitoring and risk management.

It is rational to use the adaptability of agricultural production factors in waterfront
areas and the incentive mechanisms of economic development in the epidemic area. The
regional agriculture, forestry, and animal husbandry structures must be improved; em-
bankments should be developed and utilized; and the swamp and grassland environments
must be modified to reduce ideal O. hupensis breeding grounds and prevent the build-up
of contaminated water in the embankment. The management of forestry areas should pay
attention to the use of forest space. It is necessary to choose vegetation with the function
of killing and driving out O. hupensis to carry out under-forest interplanting. This action
can form a system with trenching waterlogging, lifting continents, and lowering beach
engineering. At the same time, through the establishment of wetland parks and natural
ecological reserves, wetland resources and grassland environments are protected to guide
people to enter in an orderly and safe manner and reduce the occurrence of sudden and
random epidemics.

(3) Level III risk areas

The environments found in Level III areas included farmland, grass island, reed, shrub
forest, and sparse woodland environments. These lands were mainly concentrated in the
west and south DTL including urban and rural construction lands, concentrated rural
settlements, and surrounding vicinity within 6 km, and are commonly used by residents,
livestock, and poultry. This covers the scope of high- and low-activity areas for residents,
livestock, and poultry. The comprehensive risk in this area has a fast change rate. It also
has frequent expansion and contraction and covers the area of potable and contaminated
water interaction intensity at all levels. Frequent human and livestock activities occur in
these areas including production and other daily-life activities, and many environment
types can be found in this risk group.

The large area indicated by spectral characteristics, a large number of land-use types
with high epidemic density, and the complex social and economic activities of residents
bring up many uncertainty elements. All these elements caused the prevention and control
of the environment in risk areas, or O. hupensis breeding areas were more difficult and
less efficient [49]. Residents in Level III areas have to be guided on which areas are safe.
The government should consider introducing policies such as relocation subsidies and
increased personnel training for agricultural professionals. Measures should be taken to
speed up land transfer and management and develop collective agriculture and large-scale
contract agriculture. Changes in the embankment area should be introduced including
modifying the area’s backward single-reed and fishing economy, expanding the pilot
scope for shrimp, crab, fish, waterfowl, and fungus breeding, developing economic crop
cultivation, promoting mechanization and industrialization, and using engineered inter-
vention to control snail population and make the area less conducive to snail breeding and
habitation [26].

4.2. Driving Factors of Comprehensive Risk

The driving factors of the comprehensive risks of schistosomiasis epidemic involve
natural factors such as temperature, humidity, soil properties, light intensity, vegetation
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types, and vegetation coverage. They are also closely related to human factors such as
regional economic development, population health, mode of production and lifestyle,
prevention awareness, and governance. Previous studies such as Kristensen [50], Tayo [51],
and Liu et al. [52], extracted ecological factors (e.g., vegetation, climate change, and pre-
cipitation) and combined them with local epidemiological data to determine the regional
distribution of schistosomiasis and identify environmental risks.

A schistosomiasis epidemic originates from the snails’ breeding environment. Breed-
ing environment refers to the macro-ecosystem and micro-ecological environment suitable
for the survival, development, and reproduction of snails and schistosoma. It shows the
interaction between schistosoma eggs, miracidia, cysts, cercaria, adults, and the natural
environment, and it serves as the natural carrier of schistosomiasis infection in humans
and animals. Aside from the breeding environment, comprehensive risks are also affected
by human factors and land factors. Yingnan Niu et al. found that there were essential
correlations between land use, ditch density, production methods, and the infection rate of
residents [45,46]. Human factors are the driving mechanisms for the spread of schistosomi-
asis. Particular socio-economic economic activities may cause significant spatio-temporal
changes to schistosomiasis risks. The human-to-land conflict between potable and contam-
inated water causes spatial interaction between snail breeding grounds (or contaminated
water) and human activities.

Schistosomiasis is a highly social disease. Human factors affecting the spatio-temporal
aspects of this disease include regional socio-economic level, sanitation, prevention and
control awareness, the population’s production mode and lifestyle, and the intensity of
epidemic prevention and control. Jun Yang used a questionnaire survey to evaluate the
acceptability and effect of afforestation and improving farmers’ lifestyles as O. hupensis
reduction measures. As the main carrier for the development and spread of the epidemic,
land is a comprehensive expression of a region’s social and natural attributes and can
significantly inhibit or promote the prevalence and breeding of the epidemic. The functional
nature of the land affects the type of cover on its surface, which can positively or negatively
impact snail and schistosome populations [53].

Using simulation analysis of O. hupensis breeding grounds and the spatio-temporal
evolution of epidemic risks, the epidemiological characteristics, distribution pattern, socio-
economic, and natural parameters of risk areas can be more accurately evaluated at different
levels and be used in developing epidemic prevention and control strategies.

This study has several limitations. O. hupensis breeding and migration are highly
complex processes with many changeable variables. Much can still be improved in the
accuracy of detecting O. hupensis and identifying breeding areas. In addition, the definition
of potential epidemic risk remains an open debate. The selection of factors to be evaluated
is limited by the statistical caliber in the epidemic region and external parameters. At the
same time, studies on the universality of social-economic and natural parameters in specific
regions need to be strengthened.

5. Conclusions

This study evaluated potential schistosomiasis risk areas in Dongting Lake and ex-
plored the factors affecting the occurrence and transmission of the disease. Using remote
sensing and geospatial analyses, this study explored the “locational preference” and breed-
ing patterns of O. hupensis and how they relate to epidemic risks. Data on snail population,
vegetation, environmental attributes, water conditions, and soil characteristics were inte-
grated to identify suspected O. hupensis breeding areas and epidemic susceptible zones at
the macro-level using quantitative analysis. This study helps improve the sensitivity and
evaluation accuracy of risk identification, particularly in low-level epidemic areas. The
main conclusions of the study are as follows:

(1) From 2006 to 2016, the spatial change of potential O. hupensis breeding grounds
showed a weakening trend from the eastern and northern areas of DTL to the south-
western area. In the four types of risk areas, most of the improved areas exhibited



Int. J. Environ. Res. Public Health 2021, 18, 1950 18 of 20

a decrease in risk over time. For those that exhibited some change in breeding, the
changes were mostly minor. More potential O. hupensis breeding areas emerged in
east DTL, exhibiting some lakeside and hydrophilic agglomeration characteristics.
The snail breeding areas evolved from fragmented to centralized distribution and
had distinct regional (spatial) differentiation. The results also indicate the weakening
of the snail population’s spatial mobility, the increasing independence of single snail
groups, and the growing dependence of snail populations on their local environment.

(2) The spatial risk distribution in potential risk areas in DTL exhibited an overall pattern
of high in the core area, low in the peripheral area, high in the periphery of large
lakes, low in other areas, high in the west Dongting area, and low in the east Dongting
area. The cold-spot areas had Huarong County and Anxiang County as the core,
with scattered distributions in peripheral areas. From 2006 to 2016, the core cold-spot
region declined, the marginal cold-spot patches shrank, but the number of patches
significantly increased. The risk distribution’s center shifted to the northwest, and the
distribution axis extended from northeast to southwest. The evolution was initially
in the east–west direction and then shifted to the north–south direction. The spatial
risk distribution exhibited enhanced concentricity along the major axis and increased
dispersion along the minor axis.

(3) Using the epidemiological, socio-economic, and environmental characteristics of
extreme high-risk, high-risk, and modern risk areas, we put forward targeted and
differentiated strategies to prevent and control the occurrence and spread of the
schistosomiasis epidemic. These strategies and measures can reduce the O. hupensis
brewing risk, aesthetic risk, and susceptibility of land use in various regions. They can
also be used to promote socio-economic development and environmental protection
in different regions.
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