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SUMMARY

Many gene signatures have been developed by applying machine learning (ML)
on omics profiles, however, their clinical utility is often hindered by limited inter-
pretability and unstable performance. Here, we show the importance of embed-
ding prior biological knowledge in the decision rules yielded byML approaches to
build robust classifiers. We tested this by applying different ML algorithms on
gene expression data to predict three difficult cancer phenotypes: bladder cancer
progression to muscle-invasive disease, response to neoadjuvant chemotherapy
in triple-negative breast cancer, and prostate cancer metastatic progression.
We developed two sets of classifiers: mechanistic, by restricting the training to
features capturing specific biological mechanisms; and agnostic, in which the
training did not use any a priori biological information. Mechanistic models had
a similar or better testing performance than their agnostic counterparts, with
enhanced interpretability. Our findings support the use of biological constraints
to develop robust gene signatures with high translational potential.

INTRODUCTION

In oncology, machine learning (ML) algorithms are actively used to decipher gene expression data and

identify predictive or prognostic gene signatures for specific cancer phenotypes such as tumor progression

or therapeutic response. Some of these signatures are currently being used in clinical settings to predict

the prognosis and to guide further treatment.1,2 The process of gene signatures discovery and validation

is hindered by relevant challenges.3 The most striking one is the unstable performance of the discovered

signatures when tested on different data than the ones used in their training. The main reason for this is

the great discrepancy between the number of features or genes used for prediction (tens of thousands)

and the number of observations or samples (tens to hundreds). In these settings, what can easily happen

is that the ML model misinterprets "noise" as "signal" and ends up memorizing all the details in the

training data which in turn cannot be generalized to other datasets, this is known as overfitting.4 There

are several approaches to reduce overfitting and increase robustness, the most important of which is

increasing the number of samples; however, this is not always feasible in biomedical research due to

financial limitations or rarity of the studied disease phenotypes. Other options include using simple algo-

rithms which are less susceptible to overfitting,5 using regularization with complex ones,6,7 and reducing

dimensionality by filtering out non-informative features or by using feature selection methods.8

We hypothesize that embedding biological, mechanistic constraints in the decision rules during the

training process will guide the ML algorithm to a set of features important for the phenotype being pre-

dicted, which in turn can reduce overfitting, and improve the performance, robustness, and interpretability

of the resulting models. These constraints take the form of gene pairs which are derived from existing bio-

logical knowledge from the literature or pre-curated databases, and whose relative ordering determines

the predicted class.9–11 Here, we test if this method can yield more interpretable gene signatures with

comparable performance to agnostic methods (i.e., not based on prior biological knowledge) by using

gene expression data to develop predictive classifiers in three distinct and hard prediction cases: 1. pre-

dicting the progression of non-muscle invasive bladder cancer (NMIBC) (stage T1) to muscle-invasive

disease (MIBC) (stages T2-T4); 2. the response to neoadjuvant chemotherapy (NACT) in triple-negative

breast cancer (TNBC); and 3. prostate cancer (PCa) metastasis from primary tumor samples. In each of these

three cases, we use four different ML algorithms: k-Top Scoring Pairs (k-TSPs), Support Vector Machine

(SVM), Random Forest (RF), and Extreme Gradient Boosting (XGB).
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To build mechanistic models, we restrict the training process to a specific biological mechanism relevant to

the phenotype under study. For bladder cancer (BLCA) progression, we use feedforward loops (FFLs) which

consist of transcription factors (TFs) and microRNAs (miRNAs) target genes. TFs regulate the expression of

their target genes through various mechanisms,12 while miRNAs—a class of small, non-coding RNAs—play

an important role in post-transcriptional gene regulation through the modulation of mRNA degradation.13

Current evidence shows that both TFs and miRNAs regulate the expression of common target genes and

the expression of each other through feedback (FBLs) and feedforward loops (FFLs).14–17 Moreover, other

studies have shown that the interaction between miRNAs targets and TFs is involved in the progression of

several cancers including bladder cancer.18–22 Using the same principle for the TNBC case, we restrict the

training process to mechanisms involving gene targets downstream to the Notch and MYC pathways,

owing to the role these play in mediating cancer chemoresistance. Notch signaling pathway is involved

in promoting cancer angiogenesis and epithelial-mesenchymal transition (EMT).23 It also promotes chemo-

resistance in several cancers including breast cancer by inhibiting apoptosis and mediating cancer stem

cells (CSC) self-renewal capacity.24 Similarly, MYC promotes chemoresistance by mediating CSC self-

renewal and proliferation,25,26 and also by dysregulating the expression of some ATP-binding cassette

(ABC) transporters necessary for cellular drug transport.27 Finally, since metastatic progression is mediated

by several known biological processes, including loss of cell-cell adhesion and hypoxia in the tumor micro-

environment (TME),28,29 we designed a set of mechanistic pairs capturing such processes for predicting

PCa metastasis.

In summary, here we embed prior knowledge of cancer biology directly into the algorithmic process

to identify robust decision rules. We show that such mechanistic models, even with a relatively small num-

ber of features, have a similar or even superior performance and robustness, and an enhanced interpret-

ability compared to agnostic models based on hundreds of genes solely selected based on statistical

significance.

RESULTS

Building mechanistic classifiers by embedding prior knowledge in the predictive decision

rules

We hypothesized that integrating existing biological knowledge in the training process can yield robust

and interpretable models the translational potential of which can surpass that of agnostic methods. For

each classification task, we identified several biological processes related to the phenotype under study

and used these to build corresponding biological mechanisms. To simplify the decision rules, we designed

each mechanism as a list of gene pairs, each consisting of a gene associated with bad prognosis (e.g., pro-

gression or chemo-resistance) and another associated with good prognosis. Specifically, for predicting

BLCA progression, we built a mechanism based on feedforward loops (FFLs) consisting of a TF which

inhibits a downstream miRNA target gene (Figure S1). For the TNBC task, we based the mechanistic con-

straints on NOTCH and MYC signaling based on their involvement in mediating chemoresistance.23–26

Specifically, the mechanistic constraints were built by pairing the genes up-regulated with those down-

regulated by NOTCH or MYC. Finally, for predicting PCa metastasis, we restricted the training process

to gene pairs orchestrating cellular adhesion and O2 response.

We used such mechanistic pairs to train biologically constrained, rank-based models,9,11 and then compared

their performance to agnostic ones trained without biological constraints, starting from differentially ex-

pressed genes or their pairwise combinations (Figure 1). Furthermore, we performed such a comparison using

two distinct designs: training bootstrap and cross-study validation. In the bootstrap design, we proceeded as

follows: we a) divided the data into training and testing sets; b) bootstrapped the training set 1000 times with a

sample size equal to that of the training set (resampling with replacement); c) trained agnostic and mecha-

nistic models on each training resample; and d) evaluated their performance on the untouched testing set.

In the cross-study validation design, we used all but one study (n-1) for training, while the left-out study

was used for testing, this process being repeated n times so that each study was used for testing.

Mechanistic models based on feedforward loops outperform agnostic ones in predicting

bladder cancer progression

In the BLCA task, we used gene expression profiles from 350 patients with NMIBC (stage T1) to train pre-

dictivemodels for cancer progression toMIBC (stage T2 or higher). We trainedmechanistic classifiers using

FFLs (37 unique mechanistic pairs) and compared their performance and robustness to agnostic models
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Figure 1. Building mechanistic classifiers by embedding prior knowledge in the predictive decision rules

Three different cancer cases were considered: predicting bladder cancer progression, predicting the response to neoadjuvant chemotherapy in patients

with triple-negative breast cancer, and predicting prostate cancer metastatic progression. We adopted two different experimental designs: the balanced

stratification (training bootstrap) and cross-study validation. In the balanced stratification design, all datasets were pooled together after normalization and

preprocessing then split into training and testing sets. The training set was bootstrapped 1000 times and on each resample, we trained agnostic and

mechanistic models and then evaluated their performance on the testing set. In the cross-study validation, the analysis included n iterations where n

corresponds to the number of studies. In each iteration, we used all, but one study for training agnostic and mechanistic models and then evaluated their

performance on the left-out study. k-TSPs: K-top scoring pairs, RF: random forest, SVM: support vector machine, XGB: extreme gradient boosting, DEGs:

differentially expressed genes.
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trained on the top differentially expressed genes, or the pairwise combinations of their ranks, without any

prior biological consideration. Since the number of features used in the training process can be a major

contributor to overfitting, we restricted the initialization of the agnostic models to the top 74 DEGs, match-

ing the starting number of features used for training in the mechanistic case. Additionally, we also com-

bined such top DEGs into 37 rank-based pairs to examine if this could improve the performance. In the

bootstrap design, using the Area Under the ROCCurve (AUC) as evaluation metric, the agnostic andmech-

anistic k-TSPs models had a similar performance at predicting bladder cancer progression in the indepen-

dent testing set (Figure 2). However, the mechanistic k-TSPs models were more parsimonious yielding on

average five gene pairs compared to 16 pairs used by the agnostic ones. Importantly, the testing perfor-

mance of the mechanistic models was more comparable with what was observed in the training. For the

other three algorithms (RF, SVM, and XGB), the mechanistic models showed, on average, a higher testing

performance than agnostic ones trained using the top DEGs (Figure 2). Interestingly, using pairwise com-

parisons derived from the top DEGs—instead of using their individual expression values—improved the

performance of the agnostic models, slightly reducing the gap between training and testing. In secondary

analyses, we also tested whether increasing the number of starting features in the agnostic case could

improve their performance by training additional models using either the top 100, 200, and 500 DEGs or

their pairwise comparisons (50, 100, and 250 pairs). Our results show that mechanistic classifiers still had

a comparable or superior performance and robustness to agnostic ones, even when increasing the number

of features (Figure S2). In addition, we also confirmed that mechanistic models held a clear advantage over

agnostic ones trained using randomly selected genes (see Figure S3).

Figure 2. Mechanistic models based on FFLs outperform agnostic ones in predicting bladder cancer progression

The figure depicts the performance of the agnostic and mechanistic models as obtained using the described bootstrap design. Briefly, all models were

trained on 1000 bootstraps of the training data (transparent colors), then evaluated on untouched testing data (solid colors) using the Area Under the ROC

Curve (AUC) as performance metric. Mechanistic models were based on the feedforward loops (37 pairs) (purple) and agnostic models were trained either

using the top differentially expressed genes (74 genes) (green) or the corresponding pairwise comparisons (37 pairs) (yellow). Curves represent the

smoothed density distributions of the AUC values, and each panel corresponds to one of the four algorithms used. KTSP: K-top scoring pairs; RF: random

forest; SVM: support vector machine; XGB: extreme gradient boosting; FFLs: feedforward loops; DEGs: differentially expressed genes.
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To examine the consistency of gene signatures across the 1000 bootstraps, we ranked the gene pairs re-

turned by the agnostic and mechanistic k-TSPs classifiers by their frequency. Interestingly, the mechanistic

models tended to return more frequent pairs across the different training data re-samples compared

to the agnostic models, in which the selected pairs differed significantly with each training iteration

(Figure 3A). For example, the most frequent gene pairs selected by the mechanistic k-TSPs models were

Figure 3. Mechanistic and agnostic k-TSPs signatures for predicting bladder cancer progression from non-muscle- to muscle-invasive stages

(A) Bar plot showing the frequency of the agnostic (red) and mechanistic (blue) scoring pairs across the different bootstraps. The bar plot includes all the

mechanistic pairs (n = 93) and the most frequent agnostic pairs (n = 93), both sorted by their frequency across the different bootstraps.

(B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by their frequency.

(C and D) Networks of the top 93 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair consists of a gene voting for BLCA progression (red) and no

progression (yellow). The vertex size corresponds to 2*log2 of the individual gene frequency across unique pairs while the edge thickness corresponds to the

log2 of the top scoring pair frequency.
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ARHGEF11-RAD21 (n = 564), CNOT3-RNF44 (n = 422), CHD4-DFFA (n = 380), HNRNPF-TP53 (n = 324), and

EPB41-GTF2B (n = 280) (Figure 3B). On the other hand, the five most frequently selected pairs by the

agnostic k-TSPs were MDC1-DECR1 (n = 75), MDC1-USP31 (n = 50), CPSF4-RPP40 (n = 43), CHSY1-

NIF3L1 (n = 41), and SAC3D1-RPP40 (n = 37) (Figure 3B). Each TSP gives a vote for a particular class

(BLCA progression vs no-progression) if gene1 is more expressed than gene2. This means that the first

gene in each pair can be interpreted as a gene associated with cancer progression, while the second would

be expected to have an opposite role. With this notion in mind, we obtained—and then compared—the

networks representing the frequency of each TSP and that of each individual gene (across unique pairs),

for both the agnostic and mechanistic k-TSPs approaches. The agnostic network was dominated by several

genes associated with progression (mainly MDC1, RBP1, MMP11, CHD1L, and CDC25B) and no-progres-

sion (RPL12, RPP40, PSMB10, and PTGES2) (Figure 3C). In contrast, the mechanistic network was found to

be more coherent, being dominated mainly by EZH2 serving as progression-associated gene (gene1) and

RAD21, followed by TP53, serving as non-progression associated genes (gene2) (Figure 3D).

To examine the functional states of genes associated with BLCA progression compared to those associ-

ated with no-progression, we performed gene set enrichment analysis (GSEA) on all the genes positioned

as either gene1 (i.e., the ‘‘bad’’ genes) or gene 2 (i.e., the ‘‘good’’ genes) in the TSPs, separately for mech-

anistic and agnostic classifiers. Interestingly, genes in the mechanistic signatures (55 unique genes) were

significantly enriched in 62 biological processes, many of which are related to invasion and progression

including EMT, cell proliferation, and cell cycle transition (Table S1). On the other hand, genes in the

agnostic signatures were significantly enriched in only one biological process despite their larger number

(74 unique genes) (Table S1).

Finally, in the cross-study validation design, we found that both the mechanistic and agnostic k-TSPs

models had a similar average AUC in the testing data, while the mechanistic one outperformed its agnostic

counterpart on multiple metric (balanced accuracy, sensitivity, and MCC,30 see Table S2). In agreement

with the bootstrap results, the testing performance of the mechanistic k-TSPs was also highly comparable

with that of the training, suggesting improved generalizability. Similar results were also seen with the other

three ML algorithms (RF, SVM, and XGB, see Table S2).

NOTCH-MYC-based models outperform their agnostic counterparts in predicting response

to neoadjuvant chemotherapy in triple-negative breast cancer

For predicting the response to NACT in patients with TNBC, we used the pre-treatment gene expression

profiles of 369 patients with TNBC. Mechanistic models were trained using the NOTCH-MYC mechanism

(241 unique pairs), while agnostic models were trained using the top 500 DEGs, or their corresponding

pairwise ranks (250 pairs). Performance was compared with the same two designs described for the bladder

cancer case.

In the bootstrap approach, our results show that the mechanistic k-TSPs models have a similar testing per-

formance to the agnostic ones, however, the mechanistic RF, SVM, and XGB models still slightly outper-

formed their agnostic counterparts trained on the top DEGs (Figure 4). Notably, agnostic models trained

on pairwise ranks instead of individual gene expression values had a similar (using RF and SVM) or even

better (using XGB) testing performance than mechanistic ones trained on the NOTCH-MYC mechanism

(Figure 4). Furthermore, changing the number of training features only improved the testing performance

of the agnostic models based on pairwise ranks, while still falling short of the mechanistic ones (Figure S4).

Finally, mechanistic models clearly outperformed those trained on random genes (Figure S5).

Ranking out pairs by their frequency across the different iterations showed that a similar and more robust

set of mechanistic pairs get selected much more often than agnostic ones (Figure 5A). For instance, the five

most frequently returned pairs by the mechanistic k-TSPs models included DDIT3-DDX18 (n = 531), TSC2-

PLK4 (n = 499), COL5A1-ITGA6 (n = 442), GARS-PDCD10 (n = 385), and NDE1-EZR (n = 347) (Figure 5B).

However, the five most frequent pairs returned by the agnostic k-TSPs models included SLC43A1-ABT1

(n = 204), ITGA5-EPHB3 (n = 119), METRN-MCM5 (n = 116), PARM1-MAPK9 (n = 97), and SLC22A5-

DCAF7 (n = 96) (Figure 5B). Here, the decision rules follow the same pattern discussed in the BLCA

case, with each pair voting for either residual disease (RD) or pathological complete response (pCR) based

on the expression of the two genes. In agnostic models, the most frequent gene associated with RD (gene1

in the TSP) was MAST3 while RPL39L was the most frequent gene associated with pCR (gene2 in the TSP)
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(Figure 5C). For themechanistic models, the oncogeneCCND1was themost frequent gene overexpressed

in samples from patients with RD (gene1 in the TSP) while the WNT antagonist SFRP131 was the most

frequently overexpressed in samples from patients who had pCR (gene2 in the TSP) (Figure 5D).

The genes from the mechanistic classifiers (656 unique genes) were significantly enriched in 780 different

pathways and processes including those used to build the priori mechanism (NOTCH and MYC signaling)

(Table S3). They were also enriched in other cancer-related pathways such as the regulation of apoptosis,

beta-catenin-TCF complex assembly, TGF-B signaling, T-cells activation, and differentiation. While

genes from agnostic classifiers were larger in number (1335 unique genes), they were significantly en-

riched in only 49 gene sets without a strong association with cancer biology. Altogether, these results

reflect the signatures selected by the k-TSPs models are consistent and more associated with the biolog-

ical processes underlying chemotherapeutic resistance compared to those returned by agnostic models

(Table S3).

Lastly, also in the cross-study validation case, we did not observe significant differences in performance be-

tween the model types, however, the mechanistic classifiers showed slightly more consistency in perfor-

mance metrics like the AUC between training and testing, especially using the k-TSPs and XGB algorithms

(Table S4). While using biological constraints did not offer a clear advantage in terms of performance, it

significantly enhanced interpretability, and reduced the computational costs by limiting the training to a

few hundred features instead several thousand used for the agnostic models.

Figure 4. NOTCH-MYC-based models outperform their agnostic counterparts in predicting response to neoadjuvant chemotherapy in patients

with triple-negative breast cancer

Models were trained on 1000 bootstraps of the training data (transparent colors) and evaluated on the untouched testing data (solid colors) using the Area

Under the ROC curve (AUC) as metric. Mechanistic models were based on the NOTCH-MYC mechanism (241 pairs) (purple) while agnostic models were

trained either using the top differentially expressed genes (500 genes) (green) or the corresponding pairwise comparisons (250 pairs) (yellow). Shown are the

smoothed density distributions of the AUC values with each panel corresponding to one of the four algorithms used. KTSP: K-top scoring pairs; RF: random

forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes; TNBC: triple-negative breast cancer.
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Mechanisticmodels based on cellular adhesion and oxygen response have a similar performance

to their agnostic counterparts in predicting prostate cancer metastatic progression

For predictingmetastatic progression in prostate cancer, we used seven gene expression datasets comprising

1239 primary tumor samples including 399 with metastatic events.

Figure 5. Mechanistic and agnostic k-TSPs signatures for predicting the response to neoadjuvant chemotherapy in patients with triple-negative

breast cancer

(A) Bar plot showing the frequency of the top 100 agnostic (red) and mechanistic (blue) scoring pairs across the different bootstraps.

(B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by their frequency.

(C and D) Networks of the top 100 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair consists of a gene voting for RD (red) and pCR (yellow). The

vertex size corresponds to 2*log2 of the individual gene frequency across unique pairs while the edge thickness corresponds to the log2 of the top scoring

pair frequency.
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In the bootstrap approach, mechanistic models using 50 pairs had a similar performance to their agnostic

counterparts and incurred less overfitting irrespective of the number of training features (Figure 6). Addi-

tionally, these mechanistic classifiers still maintained their performance even when more features were

used for training the agnostic models (Figure S6), or when random genes were used in the training process

(Figure S7).

Mechanistic TSPs showed high frequency (Figure 7A) with the five most frequent pairs including S100A10-

PTN (n = 540), CD74-SATB1 (n = 455), CBX3-AZGP1 (n = 414), CXCR4-PCDH18 (n = 237), and STAT1-DPP4

(n = 214) (Figure 7B). Agnostic models on the other hand frequently returned CAMK2N1-CDC42EPS

(n = 389), CXCR4-LPAR3 (n = 230), EN O 1-CDC42EPS (n = 217), RFTN1-DPT (n = 202), and GNPTAB-

CTBS (n = 190) (Figures 7B and 7C). Interestingly, in the mechanistic TSPs, genes related to PCa progres-

sion and metastases such as THBS2,32 NRP1,33 and WNT5A34 were frequently represented as metastases-

voting genes (gene1 in the TSPs) (Figure 7D).

Gene set Enrichment analysis showed that genes derived from the mechanistic signatures (906 unique

genes) were significantly enriched in 1920 gene sets, many of which are associated with cell migration,

motility, adhesion, and proliferation (Table S5). They were also enriched in other important pathways

involved in PCa progression and metastases including the regulation of MAPK and ERK cascades, NF-

kB, STAT, TGF-beta, and RAS signaling pathways. Similarly, genes from the agnostic models (1622 unique

Figure 6. Mechanistic models based on cellular adhesion and oxygen response have similar performance to their agnostic counterparts in

predicting prostate cancer metastatic progression

The figure depicts the results from the bootstrap design in which the training set (transparent colors) was resampled 1000 times. On each resample, models

were trained to predict metastatic progression in prostate cancer and their performance was evaluated on the untouched testing set (dark colors) using the

Area Under the ROC Curve (AUC) as evaluation metric. Mechanistic models were based on the cellular adhesion and O2 response mechanism (50 pairs)

(purple) while agnostic models were trained using either the top differentially expressed genes (100 genes) (green) or the corresponding pairwise

comparisons (50 pairs) (yellow). Shown are the smoothed density distributions of the AUC values and each panel corresponds to one of the four algorithms

used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes.
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genes) were enriched in 96 gene sets, some of which included the regulation of cell migration and motility

and PCa-related pathways such as WNT signaling (Table S5).

Finally, these results were also confirmed in the cross-study validation analysis, in which the mechanistic

models had similar performance compared to the agnostic ones, but provided superior interpretability

Figure 7. Mechanistic and agnostic k-TSPs signatures for predicting prostate cancer metastases

(A) Bar plot showing the frequency of the top 100 agnostic (red) and mechanistic (blue) scoring pairs across the different bootstraps.

(B) The top 10 most frequent agnostic (red) and mechanistic (blue) pairs sort by their frequency.

(C and D) Networks of the top 100 agnostic (C) and mechanistic (D) top-scoring pairs. Each pair consists of a gene voting for metastasis (red) and no-

metastasis (yellow). The vertex size corresponds to the 2*log2 of the individual gene frequency across unique pairs while the edge thickness corresponds to

the log2 of the top scoring pair frequency.
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and improved computational efficiency, due to the reduced number of features (tens versus thousands)

used in the training process (Table S6).

The right mechanism for the right task: mechanistic constraints should be related to the

phenotype under consideration

We have shown that using biological constraints in the training process can improve the performance of the

resulting gene signatures, however, we hypothesized that this is contingent on using a mechanism related

to the phenotype under study. To investigate this, we assessed the performance of several different

mechanisms in each of the three classification tasks we considered. This analysis included the three

afore-mentioned cancer-related mechanisms (FFLs, NOTCH-MYC signaling, and cellular adhesion and

O2 response), together with three other, non-cancer related ones, constructed from molecular profiles

involved in: a) Alzheimer’s disease (266 pairs); b) diabetes (6776 pairs); and c) viral infection (6384 pairs).

For each cancer phenotype, models trained on the relevant mechanism of choice showed the best

performance (Table 1). Specifically, classifiers trained using the FFLs had higher testing AUCs for predicting

bladder cancer progression compared to those based on the other mechanisms. Similar results were also

obtained for NACT response prediction in TNBC using NOTCH-MYC signaling, and for prostate cancer

metastatic progression using cellular adhesion and O2 response.

Notably, the three cancer-related mechanisms maintained a superior performance over the non-cancer

related ones in each of the three prediction tasks. For example, while the FFLs-based classifiers had

the best performance at predicting bladder cancer progression, the NOTCH-MYC signaling and cellular

adhesion/O2 response mechanisms also achieved a good testing performance. On the other hand, the

Alzheimer, diabetes, and viral infection mechanisms performed poorly in the three classification cases

(Table 1), highlighting the fact that choosing the right mechanism for the prediction task is essential for

achieving an optimal performance.

DISCUSSION

Overfitting and lack of generalization remain among the most difficult problems in machine learning espe-

cially in transcriptomics owing to the very large number of features and the much smaller number of sam-

ples.3,4 The inconsistency of performance of genomic predictive models is one of the reasons why their

clinical usage has not been widely implemented, and it represents a major obstacle toward personalizing

health care. While some approaches such as increasing the sample size may help improve the performance

and stability of such models, these may not always be feasible in medical research, owing to financial lim-

itations or the unavailability of samples in cases of rare cancer phenotypes.

Some studies have shown that using prior knowledge can help to choose the input data or the correct al-

gorithm.35,36 In this study, we employed a similar concept to train robust and interpretable predictive

models by adding biological constraints to the decision rules used for classification. We examined this

approach in three clinically important classification cases: predicting bladder cancer progression from

non-muscle invasive to muscle-invasive stages, predicting the response to neoadjuvant chemotherapy in

TNBC, and predicting prostate cancer progression to metastasis disease. In each setting, we employed

multiple algorithms and compared the performance of mechanistically constrained models to agnostic

ones. In the bladder cancer case, we used FFLs based on the evidence supporting their involvement in can-

cer progression and invasion.18–22 In the TNBC case, we focused on NOTCH and c-MYC targets based on

their role in mediating cancer stem cells self-renewal and chemo-resistance.24–26 Finally, for predicting

prostate cancer metastasis, we used gene pairs capturing cell-cell adhesion and the cellular response to

O2.
28,29 Since each of these priori mechanisms is already known to be associated with the corresponding

phenotype, the features constituting the mechanism are expected to be of high quality for the prediction

task undertaken. In this case, the ML algorithm is essentially used to extract the smallest number of features

that can serve as a gene signature and has more potential to generalize to other datasets. It is true that

agnostic models can also extract a number of features with a similar performance if not better. However,

in that case, the search process would be applied to all genes and has more risk to overfit the training

data and select non-informative features that can’t be generalized. When evaluated on the testing data,

the mechanistic models yielded a similar or superior performance than the agnostic ones. Moreover, in

both the bladder (using the K-TSPs and SVM algorithms) and prostate (using the SVM and XGB algorithms)

cancer cases, mechanistic models demonstrated better generalization from training to testing, even
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in situations where there was a small number of samples available for training. Furthermore, these results

were not dependent on any specification or characteristics pertaining to the training data, as shown by

results from both the bootstrap and the cross-validation analyses.

It is important to note that the mechanism used in the training should be biologically related to the pheno-

type being predicted.We demonstrated this by assessing the performance of different mechanisms in each

classification case and noticed that the mechanisms we designed based on prior knowledge had the best

performance at predicting their corresponding phenotype. Interestingly, the three cancer-related mecha-

nisms we have considered achieved optimal performance in each cancer phenotype, while the non-cancer

ones performed poorly, which further supports our rationale for using prior related biological knowledge to

develop robust classifiers.

Overall, these results show that models using a small number of biologically important features can have a

similar or better performance metrics compared to those using hundreds or thousands of genes. Further-

more, mechanistic rank-based decision rules greatly enhance the interpretability of the resulting predictive

models, which is crucial to their clinical adaptation. Specifically, the priory mechanism is designed before-

hand by pairing genes from pathways positively and negatively associated with the phenotype of interest.

Table 1. The performance of different mechanisms at predicting each of the three cancer phenotypes assessed by

the Area under the ROC curve (AUC)

Prediction Task Mechanism

k-TSPs RF SVM XGB

Train Test Train Test Train Test Train Test

Bladder cancer

progression

FFLsa 0.75 0.73 0.98 0.79 0.91 0.82 0.88 0.78

NOTCH-MYC 0.85 0.72 1.00 0.70 0.98 0.68 1.0 0.67

Cell adhesion/O2 response 0.89 0.76 1.00 0.70 1.0 0.64 1.0 0.71

Alzheimer 0.60 0.49 0.61 0.52 0.54 0.43 0.59 0.52

Diabetes 0.82 0.65 0.96 0.68 0.86 0.60 0.75 0.52

Viral infection 0.81 0.63 0.96 0.59 0.90 0.50 0.82 0.57

Response to NACT

in TNBC

FFLs 0.74 0.64 0.85 0.73 0.79 0.66 0.75 0.69

NOTCH-MYCb 0.86 0.75 1.00 0.86 1.0 0.87 1.0 0.87

Cell adhesion/O2 response 0.88 0.79 1.00 0.85 1.0 0.82 1.0 0.82

Alzheimer 0.68 0.61 0.77 0.66 0.77 0.59 0.69 0.64

Diabetes 0.78 0.75 0.94 0.79 0.98 0.74 0.84 0.72

Viral infection 0.81 0.73 0.96 0.77 0.95 0.69 0.89 0.70

Prostate cancer

metastasis

FFLs 0.61 0.63 0.64 0.62 0.62 0.60 0.61 0.60

NOTCH-MYC 0.73 0.73 0.99 0.69 1.0 0.73 0.83 0.71

Cell adhesion/O2 response
c 0.80 0.75 0.97 0.73 0.97 0.71 0.85 0.73

Alzheimer 0.58 0.50 0.59 0.53 0.50 0.50 0.60 0.53

Diabetes 0.69 0.67 0.89 0.69 0.70 0.68 0.71 0.69

Viral infection 0.68 0.65 0.81 0.64 0.73 0.63 0.72 0.67

Three important cancer phenotypes were considered for prediction: bladder cancer progression from non-muscle invasive to

muscle-invasive stages, response to neoadjuvant chemotherapy (NACT) in patients with triple-negative breast cancer

(TNBC), and metastatic progression in prostate cancer. For each phenotype, we built a priori mechanism capturing the un-

derlying biology and used it for prediction in the main analysis. FeedForward Loops (FFLs) were designed for predicting

bladder cancer progression while the NOTCH-MYC signaling and cellular adhesion and O2 response mechanisms were

developed for predicting the response to NACT in TNBC and prostate cancer metastatic progression, respectively. Three

cancer unrelated mechanisms were used as negative controls: Alzheimer, diabetes, and viral infection. The performance

of the different cancer-related and unrelated mechanisms at predicting each of the three cancer phenotypes was assessed

using the Area Under the ROCCurve (AUC). FFLs: feedforward loops, NACT: neoadjuvant chemotherapy, TNBC: triple-nega-

tive breast cancer.
aThe feedforward loops mechanism was used for predicting bladder cancer progression in the main analysis.
bThe NOTCH-MYC signaling mechanism was used for predicting the response to neoadjuvant chemotherapy in triple-nega-

tive breast cancer.
cThe cell-cell adhesion and O2 response mechanism was used for predicting prostate cancer metastasis.
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In this case, the mechanism consists of multiple gene pairs belonging to opposing pathways or biological

processes. Subsequently, we use the k-top scoring pairs (k-TSPs) algorithm which is rank based and serves

by selecting the gene pairs whose expression consistently switch between the two classes of interest. For

example, the NOTCH mechanism consists of hundreds of gene pairs up- and down-regulated by NOTCH

signaling and we use this mechanism to design a classifier to predict the response to chemotherapy in

breast cancer. The resulting classifier consists of a number of gene pairs with each consisting of a gene

up- and another down-regulated by NOTCH signaling. Each pair votes for a particular class (sensitive

versus resistant) based on the order of expression of the two genes and the final prediction of a patient/

sample is determined by the majority of votes. As such, the classifier is interpretable because its decision

rules and the function of its genes are known beforehand. Also, such models are more robust to prepro-

cessing techniques, and can be more easily implemented using other technologies already being used

for clinical applications. For example, we have shown that such mechanistic signatures derived frommicro-

arrays or RNA-Seq studies can be implemented using technologies such as RT-PCR, which further increases

their translational value.37

Together with their good performance, the mechanistic signatures captured the underlying biology of the

associated cancer phenotype as expected. Since we used TF-miRNA targets as a priorimechanism to train

ML models capable of predicting bladder cancer progression, the resulting signatures were always gene

pairs with the first gene being a TF while the second is amiRNA target genemirroring the priori mechanism.

Even with different training data resampling, these signatures were often consistent indicating their predic-

tive value rather than perfectly fitting the training data. For instance, ARHGEF11-RAD21 was present in

more than 50% of the mechanistic BLCA progression signatures voting for progression if ARHGEF11 is

more expressed relative to RAD21. While the role ARHGEF11 in bladder cancer is not well-defined, it

was found to be associated with the invasiveness of progression of glioblastoma38 and hepatocellular car-

cinoma.39 Across all mechanistic pairs, the transcriptional repressor EZH2 was prominent as a progression

voting gene being present in 41 unique TSPs in which its expression relative to the second gene determines

the vote given by the TSP (progression if EZH2 is more expressed than gene2). This is consistent with ex-

isting evidence linking EZH2 to progression and poor prognosis in several cancers including BLCA.40,41

Similarly, predicting the response to NACT in patients with TNBC relied on a priori mechanism of gene

pairs regulated by NOTCH and MYC signaling. Expectedly, the resulting signatures consisted of a small

subset of gene pairs up- and down—regulated by either NOTCH or MYC, and among these, genes

down-regulated by either TF (e.g., SFRP1, ITGB4, and ITGA6) were predominantly associated with pCR.

The same pattern was seen in predicting PCa metastases in which the mechanistic signatures frequently

included genes known to be involved in mediating EMT and distant metastases e.g., THBS232 and

WNT5A.34 Gene set enrichment analyses showed that genes from the mechanistic signatures were signif-

icantly enriched in many more coherent biological processes and pathways compared to the genes from

their agnostic counterpart, despite the latter being in much larger numbers. Moreover, In the three classi-

fication tasks, genes from the mechanistic classifiers were enriched in the pathways used to build the priori

mechanism (as to be expected), together with other pathways associated with the phenotype under study.

Altogether, these results show that mechanistic signatures tend to capture important cancer biology

related to their corresponding phenotypes.

Limitations of the study

It is important to note that our study has some inherent limitations. First, the biological mechanisms we

used take the form of contrasting gene pairs, but these pairwise relationships may not completely capture

the complexity of the underlying biology compared to other formulations such as gene networks. However,

this lack of sophistication in the design of the biological mechanism was deemed necessary for the inter-

pretability of the resulting predictive models. Moreover, such pairwise comparisons, which are used by the

k-TSPs algorithm, can also be used as input to other more complex approaches (e.g., SVM, RF, and XGB),

with the advantage of increasing the level of interpretability of the resultingmodels. Finally, while our study

was focused on cancer, the same conceptual framework can be also applied to other diseases, provided

there is available prior knowledge about the underlying pathophysiological mechanisms.

Despite these limitations, our work supports the adoption of mechanistically constrained decision rules for

the development of robust prognostic and predictive models. Their high performance and intrinsic inter-

pretability will promote a wider integration into clinical practice, bringing routine personalized medicine

one step closer to reality.
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Gudjonsson, S., Veerla, S., Patschan, O., Aine,
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

BLCA1 dataset (van der Heijden et al., 2016)44 GEO: GSE57813

BLCA2 dataset (Kim et al., 2010)45 GEO: GSE13507

BLCA3 dataset (Sjodahl et al., 2012)46 GEO: GSE32894

BLCA4 dataset (Dyrskjøt et al., 2005)47 https://doi.org/10.1158/1078-0432.CCR-04-2095

BLCA5 dataset (Hedegaard et al., 2016)48 ArrayExpress: E-MTAB-4321

BRCA1 dataset (Hatzis et al., 2011)49 GEO: GSE25055

BRCA2 dataset (Hatzis et al., 2011)49 GEO: GSE25065

BRCA3 dataset (Edlund et al., 2021)50 GEO: GSE140494

BRCA4 dataset (Birkbak et al., 2018)51 GEO: GSE103668

BRCA5 dataset (Popovici et al., 2010; Shi et al.,

2010)52,53
GEO: GSE20194

BRCA6 dataset (Shen et al., 2012; Tabchy et al.,

2010)54,55
GEO: GSE20271

BRCA7 dataset (Miyake et al., 2012)56 GEO: GSE32646

PCA1 dataset (Jain et al., 2018)57 GEO: GSE116918

PCA2 dataset (Ragnum et al., 2015)58 GEO: GSE55935

PCA3 dataset (Ross et al., 2014)59 GEO: GSE51066

PCA4 dataset (Erho et al., 2013)60 GEO: GSE46691

PCA5 dataset (Boormans et al., 2013)61 GEO: GSE41408

PCA6 dataset (Ross et al., 2016)62 JHU Natural History cohort

PCA7 dataset (Ross-Adams et al., 2015)63 GEO: GSE70769

TF-target and TF-miRNA interactions (Rouillard et al., 2016)66 Harmonizome

miRNA-target interactions1 (Agarwal et al., 2015)68 TargetScan

miRNA-target interactions2 (Chou et al., 2021)69 miRTarBase

miRNA-target interactions3 (Sticht et al., 2018)70 miRWalk

The feed-forward loops mechanism This paper GitHub repository

The NOTCH-MYC signaling mechanism This paper GitHub repository

The cell-cell adhesion, activation, and

O2 response mechanism

This paper GitHub repository

The Alzheimer disease mechanism This paper GitHub repository

The diabetes mechanism This paper GitHub repository

The viral infection mechanism This paper GitHub repository

Code for reproducibility This paper GitHub repository

Software and algorithms

R (v4.0.3) (Ihaka and Gentleman, 1996) https://www.r-project.org/

MergeMaid (v3.1) (Cope et al., 2004)84 https://bioconductor.riken.jp/packages/3.1/bioc/html/

MergeMaid.html

SwitchBox (v1.24.0) (Afsari et al., 2015)85 https://www.bioconductor.org/packages/release/bioc/html/

switchBox.html

caret (v6.0-86) (Kuhn, 2008)86 https://topepo.github.io/caret/

limma (v3.44.3) (Ritchie et al., 2015) https://bioconductor.org/packages/release/bioc/html/limma.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact,

Dr. Luigi Marchionni (lum4003@med.cornell.edu).

Material availability

This study did not generate new materials.

Data and code availability

This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in

the key resources table. All original code together with our curated biological mechanisms have been

deposited at https://github.com/MohamedOmar2020/Biological_Constraints and are publicly available.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data collection

Bladder cancer

Weused both theNCBI Gene ExpressionOmnibus (GEO)42 and ArrayExpress43 to identify gene expression

datasets containing primary tumor samples from non-muscle invasive bladder cancer (NMIBC). We refined

the initial results to keep only the datasets with information about the progression status (progression to

MIBC versus no progression). Five datasets met our inclusion criteria, four of which are microarray-based

(GSE57813,44 GSE13507,45 GSE32894 46 and pmid15930337 47) and the fifth is RNA-Seq based dataset

(E-MTAB-4321 48).

Breast cancer

We identified seven datasets with pre-treatment gene expression profiles from patients with breast

cancer who received neoadjuvant chemotherapy: GSE25055,49 GSE25065, GSE140494,50 GSE103668,51

GSE20194,52,53 GSE20271,54,55 and GSE32646.56

Prostate cancer

For predicting PCa metastatic progression, we identified seven gene expression datasets containing

primary tumor samples from PCa patients: GSE116918,57 GSE55935,58 GSE51066,59 GSE46691,60

GSE41408,61 JHU natural history cohort,62 and GSE70769.63

Data preprocessing

Bladder cancer

In each dataset, we removed non-invasive papillary carcinoma (Ta) and carcinoma in situ (Tis) samples and

kept only T1 lesions with information about the progression status. To remove uninformative features in the

microarray datasets, we kept genes with raw intensity greater than 100 in at least 50% of the samples. Simi-

larly, in E-MTAB-4321 (RNA-Seq) we kept genes with more than one count per million (CPM) in at least 50%

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

boot (v1.3-25) (Davison and Hinkley, 1997)89 https://cran.r-project.org/web/packages/boot/index.html

randomForest (v4.6-14) (Breiman, 2001)79 https://cran.r-project.org/web/packages/randomForest/index.html

kernlab (v0.9-29) (Karatzoglou et al., 2004)87 https://cran.r-project.org/web/packages/kernlab/index.html

xgboost (v1.2.0.1) (Chen and Guestrin, 2016)80 https://cran.r-project.org/web/packages/xgboost/index.html

pROC (v1.16.2) (Robin et al., 2011) https://cran.r-project.org/package=pROC

MsigDB (v6.1) (Subramanian et al., 2005)71 https://www.gsea-msigdb.org/gsea/msigdb/

igraph (v1.3.0) (Csardi and Nepusz, 2005)90 https://cran.r-project.org/web/packages/igraph/index.html

enrichR (v3.0) (Jawaid, 2022; Xie et al., 2021)91,92 https://cran.r-project.org/web/packages/enrichR/index.html
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of the samples. The four microarray datasets were normalized and log2-scaled upon retrieval from GEO.

For E-MTAB-4321, the read counts were normalized using trimmed mean of M-values (TMM) and trans-

formed to log2-counts per million (log-CPM). Next, we performed Z-score transformation (by gene) of

each normalized dataset separately to ensure that the datasets from both technologies (microarrays and

RNA-Seq) are on a similar scale.

Breast cancer

The seven breast cancer datasets originally included 1013 samples which we filtered to keep only

samples in which ER, PR, and HER2 were all negative by immunohistochemistry (IHC) and with available

information about the response to NACT whether pathological complete response (pCR) or residual dis-

ease (RD). This reduced the number of samples used in downstream analysis to 369 TNBC samples. All

datasets were normalized and log2-scaled when retrieved from GEO, except for GSE20271 in which the

expression values were not logged and so was log2-transformed. Finally, we mapped each probe ID to

the corresponding gene symbol and filtered the expression matrices to the gene symbols in common

(13299 genes).

Prostate cancer

In each of the seven PCa datasets, we kept primary tumor samples with information aboutmetastatic events

resulting in 1239 primary tumor samples eligible for downstream analysis. Normalization and preprocess-

ing were performed as described above followed by z-score transformation for each dataset separately.

Finally, probe IDs were mapped to their corresponding gene symbols and expression matrices were

restricted to the genes in common.

Platform harmonization

For the prediction tasks in bladder and prostate cancers, which included data obtained across different

platforms and technologies (microarrays and RNAseq), we harmonized the final datasets by identifying a

subset of cross-study reproducible genes using integrative correlation coefficient (ICC)64,65 keeping only

genes whose ICC was greater than 0.15 or the 33rd percentile. In summary, the ICC is computed by calcu-

lating the Pearson correlation coefficient of the expression values of each pair of genes within and across

studies (correlation of correlation). Although the integrative correlation analysis was performed on all data

before division into training and testing, this does not violate the validation process since this method only

uses the expression data and does not consider the phenotype information. Using the ICC threshold

mentioned above, 3109 and 4055 genes were identified and used in the bladder and prostate cases,

respectively.

Mechanistic pairs assembly

Feedforward loops

The TF-miRNA mediated gene regulatory loops that we are interested in are the coherent feed-forward

loops in which a TF (e.g., MYC) inhibits a target gene (e.g., CD164) directly and indirectly via activation

of a hub miRNA (e.g., has-miR-346). The TF and target gene have an inverse relationship; over-expression

of the TF results in down-regulation of the target gene and vice versa (Figure S1). This inverse relationship

makes these pairs suitable for classification. To construct these loops, three different interaction typesmust

be obtained: the interaction between the TF and target gene (TF-target), the interaction between the

TF and miRNA (TF-miRNA), and the interaction between miRNA and target gene (miRNA-target). The

TF-target interactions were obtained from Harmonizome66 using the following databases: ENCODE,

ESCAPE, CHEA, JASPAR, MotifMap and TRANSFAC. The TF-miRNA interactions were obtained from

the same databases as above together with TransmiR v2.0 database.67 Finally, the miRNA-target interac-

tions were obtained from TargetScan,68 miRTarBase69 and miRWalk.70

The loops were constructed by merging the three different interaction types. It was assumed that the TF

always activates the miRNA and always inhibits the target gene. This assumption could be made since

loops in which the TF does not activate the miRNA and/or inhibit the target gene, will not be selected

as top scoring pairs by the k-TSPs algorithm, as described below. Finally, we chose TF-miRNA and TF-

target interactions which were present in at least one of the databases and miRNA-target interactions

which were present in at least two databases. This resulted in 985 gene pairs which were used for predicting

BLCA progression.
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The NOTCH-MYC signaling mechanism

We used theMolecular Signature Database (MsigDB)71 to retrieve gene sets associated with the regulation

of the NOTCH signaling pathway or including genes up and downregulated by NOTCH. The NOTCH

mechanism was constructed by pairing the genes involved in the positive regulation of NOTCH signaling

pathway or genes up-regulated by NOTCH with those involved in the downregulation of the NOTCH

signaling pathway or those down-regulated by NOTCH. Similarly, the MYC mechanism was constructed

by pairing the genes up-regulated with those down-regulated by MYC. Finally, both mechanisms were

combined into a single mechanism consisting of 78672 pairs which was further used in the TNBC classifi-

cation case.

The cell-cell adhesion, activation, and oxygen response mechanism

We used three gene ontology (GO) biological processes to build a mechanism that can capture the biology

of metastasis. These processes included: GOBP_CELL_CELL_ADHESION, GOBP_CELL_ACTIVATION,

and GOBP_CELLULAR_RESPONSE_TO_OXYGEN. Unique genes were paired together resulting in

409965 gene pairs which we used as biological constraints for training classifiers to predict PCa metastatic

progression.

Non-cancer related mechanisms

As negative controls, we designed three non-cancer related mechanisms and assessed their performance

at predicting each of the three main phenotypes. First, we built a mechanism for Alzheimer disease using

two gene sets including genes up- and down-regulated in the brain endothelial cells of patients with Alz-

heimer disease.72 Up- and down-regulated genes were paired together to form a mechanism consisting of

266 pairs. Second, we built a diabetes mechanism consisting of 6776 pairs by pairing up- and down-regu-

lated genes in the peripheral blood monocytes from patients with diabetes at the time of the diagnosis

versus 1-4 months later.73 Finally, we designed a mechanism consisting of 6384 pairs representing the

changes in the gene expression profiles of immune cells following viral infections.74–76 It is important to

note that these three mechanisms were chosen randomly with the aim of using them as negative controls

to test our hypothesis.

Data splitting for training and testing

In each classification case, we implemented two data splitting designs: bootstrap and cross-study valida-

tion77 (see Figure 1). In the bootstrap design, all datasets were combined based on the set of reproducible

genes. The data was then divided into 75% training and 25% testing using balanced stratification. This was

done to ensure a balanced representation of the parent datasets together with important clinical and path-

ological variables. In the BLCA case, the clinical variables used in the stratification included age, sex, tumor

grade, recurrence status, and intra-vesical therapy while in the breast cancer case, we included age, tumor

grade, T and N stages. Finally, in the PCa case, we focused on age, Gleason score, tumor stage, and pros-

tate-specific antigen (PSA) levels. Subsequently, models were trained to predict the phenotype of interest

on 1000 bootstraps of the training data and their performance was evaluated on the unseen testing data

using the Area Under the ROC Curve (AUC) as evaluation metric.

In the cross-study validation design, we used all but one dataset (n-1) for models training and the left-out

dataset was used for testing. This process was repeated n times so that each dataset was used for testing

once (see Figure 1).

Training and evaluating the performance of mechanistic versus agnostic models

In each classification case, we used four different algorithms: k-TSPs, RF, SVM, and XGB. Each algorithm

was trained using three different model types: 1. mechanistic: using a manually curated biological mech-

anism in the form of pairwise comparisons (see below), 2. agnostic: using the top 2*k differentially ex-

pressed genes (DEGs) (agnostic-genes) where k is the number of pairs used in the mechanistic models

or their corresponding k pairwise comparisons (agnostic-pairs), 3. random genes: using a set of 2*k

randomly selected genes.

It should be noted that a pairwise comparison is based on the relative ordering of the expression of two

genes. For example, in a particular sample, a given gene pair consisting of gX and gY would be assigned

a value of ‘‘1’’ if gX is more expressed than gY in that sample, and a value of ‘‘0’’ if the opposite is true. Such
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pairwise comparisons were then used as features in the training process of mechanistic and agnostic-pairs

models.

Importantly, all model types were trained and tested on the corresponding training and testing data,

respectively. In the bootstrap approach, the AUC of each model was computed in both the training and

testing data. The distribution of the AUC values of the mechanistic was plotted against those of the

agnostic and random genes models to compare their average performance. In the cross-study validation,

the average performance across all n iterations of training and testing was computed. Different metrics

were used including: the AUC, accuracy, balanced accuracy, sensitivity, specificity, and Matthews correla-

tion coefficient (MCC).

The k-TSPs classifier

The k-TSPs is a rank-based classification method that selects gene pairs (k) whose expression levels switch

their ranking between the two classes of interest.9,11 More specifically, in the training process, if gene X is

consistently more expressed relative to gene Y in samples belonging to a particular class compared to the

other, it will be selected as a top scoring pair (TSP) and used for classification. In this sense, the output of

this algorithm is a number of gene pairs with each voting for a specific class based on the relative ordering

of expression values and the final class prediction is determined by the sum of votes. This rank assessment

process used by the algorithm during the training can be applied to all genes or can be restricted to the top

DEGs (agnostic) or to certain predetermined pairs chosen based on prior knowledge (mechanistic). The

agnostic k-TSPs models were trained on the top DEGs by Wilcoxon rank sum test using different number

of top features: the top 74, 100, 200, and 500 DEGs in the bladder and the top 25, 50, 100, 200, and 500

DEGs in both the TNBC and prostate cancer cases. The training of the mechanistic k-TSPs models was

restricted to the mechanism of choice. In all cases, we restricted the number of output pairs (the final signa-

ture) to a range between 3 and 25 pairs. Finally, for each clinical problem, we obtained a matrix of binary

values (i.e., 0,1) representing the relative order of expression between genes pairs across individual sam-

ples (i.e., samples by gene pairs), which we subsequently used for training purposes with the other three

prediction algorithms besides k-TSP. Such matrices of pairwise gene comparisons were generated to

match the maximum number of unique starting pairs used as input to train the mechanistic k-TSPs models

(37 in the bladder, 241 in the TNBC, and 50 in the prostate), selecting an appropriate number of differen-

tially expressed genes via Wilcoxon rank sum test for the agnostic case.

Support vector machine

SVM is an algorithm that aims at identifying a hyper-plane separating data points distinctively.78 We trained

the agnostic and mechanistic SVMmodels using polynomial kernel and used a repeated 10-fold cross-vali-

dation (CV) of the training data to identify the best parameter (degree, scale, and cost) values for each

model. The final models were trained on the entire training data using the best parameters resulting

from the repeated CV process.

Random forest

RF is an ensemble ML algorithm that consists of a large number of decision trees.79 Each tree in the forest

votes for a specific class and the final predicted class is the one with the majority of votes. To determine the

best number of variables randomly selected by the algorithm at each split (mtry), each model was tuned by

the tuneRF function using the following parameters: mtryStart = 1, ntreeTry = 500, stepFactor = 1, and

improve = 0.05. To deal with class imbalance, the final model was instructed to draw an equal number

of samples from both classes for each tree. This number was set to be equal to the number of samples

in the minority class of each of the training data re-samples (in the bootstrap approach) or the training

data as a whole (in the cross-study validation approach).

Extreme gradient boosting

Similar to RF, XGB is another ensemble ML algorithm but unlike RF in which each tree is built on a random

subset of predictors, XGB sub-models (sub-trees) sequentially add weight or more focus on instances with

high error rates.80 We divided the training data itself into 70% "actual training" and 30% "internal valida-

tion". We set the number of iterations to 500 with an early stopping threshold of 50 meaning that the

training process will stop if the AUC in the internal validation set did not improve over 50 iterations. This

step was necessary to minimize overfitting. Hyperparameters including gamma, lambda, alpha, and
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subsamplewere tuned using grid search process on the training data while stabilizing the learning rate and

maximumdepth. In the bootstrap analysis, this process was done on the training data before resampling. In

the cross-study validation analysis, the hyperparameters were tuned on each training data partition.

Gene set enrichment analyses

To characterize the functional roles associated with the agnostic andmechanistic signatures, we performed

GSEA to compute the overlap between the genes derived from the k-TSPs signatures and gene sets from

the gene ontology (GO) biological processes database. In each prediction task, all unique mechanistic

TSPs from the bootstrap processes were identified together with an equal number of agnostic TSPs. The

GSEA analysis was performed on the genes associated with bad prognosis (positioned as gene1 in the

TSPs) and those associated with good prognosis (positioned as gene2 in the TSPs), separately. P-values

were calculated using Fisher’s exact test81,82 and were corrected using the Benjamini-Hochberg (BH)

method for multiple hypotheses testing.83 Finally, gene sets with an adjusted p-value greater than 0.05

were considered insignificant and removed.

QUANTIFICATION AND STATISTICAL ANALYSIS

All steps of this analysis were performed using R version 4.0.3 (2020-10-10). The integrative correlation anal-

ysis was performed using theMergeMaid package.84 The k-TSPs models were trained using the SwitchBox

R package.85 The SVM models were trained using both the Caret86 and Kernlab87 packages. The RF and

XGBmodels were trained using the RandomForest88 and xgboost80 packages, respectively. Bootstrapping

(resampling with replacement) was performed using the Boot package.89 The values plotted in Figures 2, 4,

and 6 (Figures S2 and S7) represent the training and testing AUC values of themodels trained on 1000 boot-

straps of the training data and tested on the untouched testing data (not resampled). The values reported

in Tables S2, S4, and S6 represent the average performance across all iterations of the cross-study valida-

tion process. The AUC values were computed using the prediction probabilities (RF, SVM, and XGB) or the

votes (k-TSPs) returned by the classifier. The prediction probabilities were converted to predicted class la-

bels using the optimal threshold which was determined from the training data using the ROC curve. The

accuracy, balanced accuracy, sensitivity, specificity and MCC were computed by comparing the predicted

class labels to the ground truth labels. The k-TSPs pairs returned from each bootstrap were ranked based

on their frequency and individual genes were ranked based on their frequency in unique pairs. In the BLCA

case, all mechanistic (n = 93) and an equal number of agnostic pairs were used to plot the networks shown in

Figures 3C and 3D while in the TNBC and PCa cases, the top 100 pairs were used to plot the networks

shown in Figures 5, 7C, and 7D. All networks were built using the igraph R software package.90 The size

of the network vertices corresponds to twice the log2 of the gene frequency in unique pairs while the

edge thickness corresponds to the log2 of frequency of the gene pair across the 1000 bootstraps. Enrich-

ment analyses were performed using the enrichR package91,92 by computing the overlap between our gene

lists and gene sets from the ‘‘GO_Biological_Process_2021’’ database with Benjamini-Hochberg (BH)

method for multiple hypotheses testing.83
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