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ABSTRACT

BACKGROUND/OBJECTIVES: This study evaluated the beneficial effects of an ethanol extract 
of Boswellia serrata gum resin (FJH-UBS) in osteoporosis.
MATERIALS/METHODS: MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were 
treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen 
synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix 
expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant 
acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 
(NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally 
administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels 
of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b 
were analyzed.
RESULTS: FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and 
RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the 
TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. 
In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in 
the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) 
caused by the ovariectomy.
CONCLUSION: FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity 
and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential 
functional food ingredient for osteoporosis.
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INTRODUCTION

Osteoporosis is a systemic disease of the skeleton characterized by low bone mass and 
microarchitectural deterioration of bone tissue, leading to increased bone fragility and 
fracture risk with serious complications. Osteoporosis significantly reduces morbidity, 
mortality, and the quality of life [1].
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The leading cause of primary osteoporosis is an estrogen deficiency in menopause or aging. 
A balance between bone formation by osteoblasts and bone resorption by osteoclasts is 
crucial for maintaining bone mass. On the other hand, osteoporosis occurs when the rate 
of bone resorption exceeds bone formation. Therefore, anti-resorptive and pro-formative 
drugs can be used to treat osteoporosis. Most osteoporosis drugs currently available interfere 
with bone resorption. While bone-forming drugs have only been studied recently [2], issues 
of cost-effectiveness, practical function in cortical bone, and possible side effects must 
be considered [3]. Anti-resorptive drugs, which interfere with the function of osteoclasts, 
include bisphosphonates, estrogens, selective estrogen receptor modulators (SERMs), and 
antibodies against receptor activator of nuclear factor κB ligand (RANKL) [4,5]. Long-term 
osteoporosis medications are necessary because osteoporosis cannot be cured quickly. 
Nevertheless, these drugs can cause severe side effects. Hormone therapy increases the 
risk of breast cancer, epithelial cell carcinoma, myocardial infarction, blood clots, and 
stroke. Bisphosphonates increase the risk of atrial fibrillation, atypical femur fractures, and 
osteonecrosis of the jaw, and SERMs increase the risk of thrombosis. In addition, parathyroid 
hormone drugs increase the risk of vomiting, headache, dizziness, hypercalcemia, and 
hypercalciuria, and calcitonin drugs increase the risk of cancer [6,7]. Currently, there is no 
safe and effective method to restore lost bone mass. Therefore, a safe therapeutic agent with 
fewer side effects is needed for treating or preventing osteoporosis.

Boswellia serrata is a tree in the Burseraceae family that grows wild in the alpine regions of 
India and Africa. When the trunk of the Boswellia tree is wounded, the sap exudes and 
hardens into a gum resin called Indian frankincense. This resin has long been used in 
traditional medicine to treat chronic inflammatory diseases, including osteoarthritis [8-11]. 
Therefore, it is used as a functional health material to improve joint and cartilage health. B. 
serrata gum resin contains terpene, tetracyclic triterpenic acid, and triterpenic acid (boswellic 
acid). There are six major boswellic acids: keto-β-boswellic acid (KBA), 3-O-acetyl-11-keto-
β-boswellic acid (AKBA), α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 
and 3-O-acetyl-β-boswellic acid [10]. All six boswellic acids have anti-inflammatory effects 
[12,13]. Among them, KBA and AKBA have the strongest antioxidant and anti-inflammatory 
effects [14]. In addition to their efficacy in arthritis, KBA and AKBA were reported to 
play important roles in the bone metabolism, such as reducing bone loss, strengthening 
bone, and increasing bone formation, as well as in arthritis [15]. Boswellic acid inhibits 
osteoclastogenesis [16,17]. In particular, AKBA has beneficial effects in treating and 
preventing periprosthetic osteolysis [18]. Despite this, few studies have examined the anti-
osteoporotic effects of B. serrata gum resin extract and its mechanism.

A previous study reported the beneficial effects of a B. serrata gum resin extract (FJH-UBS)  
enriched with KBA and AKBA in an in vitro osteoarthritis-like model [19] and in a 
monosodium iodoacetate-induced osteoarthritis animal model [20]. This study examined the 
anti-osteoporotic activity and underlying mechanisms of FJH-UBS in vitro and in vivo.

MATERIALS AND METHODS

Preparation of extracts
The B. serrata gum resin extract (FJH-UBS) was supplied by Frombio Co. Ltd. (Yongin, Korea). 
FJH-UBS was prepared using a previously described method [19]. Briefly, B. serrata gum resin 
originating from India was extracted with 95% ethanol at 50–60°C for 6 h under reflux. 
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The extract was filtered and concentrated. The concentrate was added to the same volume 
of 100% hexane, mixed, allowed to stand for 10 min at room temperature, and filtered to 
remove lipids. The filtrate was dried at 70°C to a moisture content of 5% or less and then 
mixed with maltodextrin (10%, w/w). The resulting powder was used as FJH-UBS. The KBA 
and AKBA content in FJH-UBS analyzed by high-performance liquid chromatography was 
81.96 ± 0.77 mg/g FJH-UBS.

Cell culture and differentiation induction
MC3T3-E1 murine osteoblastic cells and RAW 264.7 murine macrophages were obtained 
from the American Type Culture Collection (Manassas, VA, USA). The MC3T3-E1 cells were 
cultured in α-minimal essential medium (α-MEM), and RAW 264.7 cells were cultured 
in Dulbecco’s modified eagle’s medium (DMEM), supplemented with 10% fetal bovine 
serum (FBS), 100,000 U/L penicillin, and 100 mg/L streptomycin at 37°C in a humidified 
atmosphere containing 5% CO2/95% air.

MC3T3-E1 cells at 90% confluence were incubated in osteoblast differentiation-inducing 
medium (ObDIM; α-MEM with 10% FBS, 10 mmol/L β-glycerophosphate, and 50 mg/L 
ascorbic acid) to induce osteoblast differentiation. The medium was replaced with fresh 
ObDIM every three days.

RAW 264.7 cells were incubated in an osteoclast differentiation-inducing medium (OcDIM; 
DMEM with 10% FBS, 50 µg/L RANKL, and 10 µmol/L PD98059) for five days to induce the 
differentiation of RAW 264.7 cells into osteoclasts. The medium was replaced with fresh 
OcDIM every two days.

Cell viability assay
The MC3T3-E1 cells and RAW 264.7 cells were seeded in 24-well plates at a density of 5 × 104 
cells per well. After 24 h of incubation, the cells were treated with FJH-UBS at concentrations 
ranging from 0 to 200 µg/mL. The cells were then incubated for 72 h, and the cell viability 
was assessed using an MTT assay, as described elsewhere [21,22].

Measurement of alkaline phosphatase activity in osteoblasts
MC3T3-E1 cells were seeded in 96-well plates at a density of 1 × 104 cells per well and 
incubated for 24 h. After incubation for 24 h, the cells were incubated in ObDIM containing 
FJH-UBS at different concentrations for five days. After five days of incubation, the alkaline 
phosphatase (ALP) activity of the cells treated with different FJH-UBS concentrations 
was assayed using an ALP Assay Kit (Takara Bio Inc., Kusatsu, Japan) according to the 
manufacturer’s instructions.

Determination of collagen synthesis in osteoblasts
Collagen synthesis was determined by staining cells with Sirius Red, an anionic dye with a 
selective and strong affinity for collagen. MC3T3-E1 cells were seeded in 24-well plates at a 
density of 5 × 104 cells per well and treated with FJH-UBS for eight days, as described above. 
Collagen synthesis was determined using a Sirius Red Collagen Detection Kit (Chondrex Inc., 
Redmond, WA, USA) according to the manufacturer’s instructions.

Determination of mineralization in osteoblasts
Mineralization was determined by staining the cells with Alizarin Red S, an anthraquinonoid 
derivative dye with a high affinity for calcium. The MC3T3-E1 cells were seeded in 24-well 
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plates at a density of 5 × 104 cells per well and treated with FJH-UBS for 18 days, as described 
above. The calcium deposition levels were measured using an Alizarin Red S Staining 
Quantification Assay Kit (ScienCell Research Laboratories, Carlsbad, CA, USA) according to 
the manufacturer’s instructions.

Measurement of osteoblast-secreted osteocalcin production in osteoblasts
MC3T3-E1 cells were seeded in 24-well plates at a density of 5 × 104 cells per well and treated 
with FJH-UBS for 18 days, as described above. The 24 h-conditioned cell culture media was 
collected on day 18. Osteoblast-secreted osteocalcin in the 24 h-conditioned cell culture 
media was quantified using an osteocalcin enzyme-linked immunosorbent assay (ELISA) kit 
according to the manufacturer’s instructions.

Measurement of tartrate-resistant acid phosphatase activity in osteoclasts
The RAW 264.7 cells were seeded in 96-well plates at a density of 5 × 103 cells per well and 
incubated for 24 h. After 24 h incubation, the cells were incubated in OcDIM containing 
FJH-UBS at different concentrations for five days. After five days of incubation, the tartrate-
resistant acid phosphatase (TRAP) activity in the cells treated with different FJH-UBS 
concentrations was assayed using a TRAP assay Kit (Takara Bio Inc.) according to the 
manufacturer’s instructions.

Morphological observation of actin ring in osteoclasts
The RAW 264.7 cells were seeded on cover glasses in 24-well plates at a density of 1.5 × 104 
cells per well and treated with FJH-UBS as described above. After five days of incubation, the 
cells were rinsed with phosphate-buffered saline and fixed using a 4% paraformaldehyde 
solution containing 0.1% Triton X-100. The cells were then stained with Alexa Fluor 594 
Phalloidin (Thermo Fisher Scientific Inc., Waltham, MA, USA) and 2-(4-amidinophenyl)-6-
indolecarbamidine dihydrochloride (DAPI; Sigma-Aldrich Co., St. Louis, MO, USA) for actin 
and nuclei staining, respectively. The morphological changes in the actin ring of the cells 
were observed under a microscope (AxioImager, Carl Zeiss, Jena, Germany).

Real-time reverse transcription-polymerase chain reaction
MC3T3-E1 cells and RAW 264.7 cells were plated in multi-well plates and treated with FJH-UBS  
for three days, as described above. The total RNA was extracted from the cells using the 
RNeasy® Plus Mini Kit (Qiagen, Valencia, CA, USA). A real-time reverse transcription-
polymerase chain reaction (RT-PCR) was performed using a HyperScriptTM RT Master Mix Kit 
(GeneAll Biotechnology, Seoul, Korea), a QuantiNova SYBR Green PCR Kit (Qiagen), and a 
Rotor-Gene 3000 PCR Cycler (Corbett Research, Mortlake, Australia), as described elsewhere 
[23]. Table 1 lists the primer sequences used in this study. The relative mRNA expression of the 
target genes was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (Gapdh).
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Table 1. Primer sequences used in this study
Target gene Forward primer (5′-3′) Reverse primer (5′-3′)
Nfatc1 CAGTGTGACCGAAGATACCTGG TCGAGACTTGATAGGGACCCC
Osterix CGCTTTGTGCCTTTGAAAT CCGTCAACGACGTTATGC
Runx2 AGGGACTATGGCGTCAAACA GGCTCACGTCGCTCATCTT
Gapdh TGGGTGTGAACCATGAGAAG GCTAAGCAGTTGGTGGTGC
Nfatc1, the nuclear factor of activator T-cells, cytoplasm 1; Runx2, Runt-related transcription factor 2; Gapdh, 
glyceraldehyde 3-phosphate dehydrogenase.



Ethical statements and animal
The Institutional Animal Care and Use Committee of Hallym University (Hallym 2022-31) 
approved all animal experimental protocols. Animal care and experimentation followed the 
institutional guidelines for the care and use of laboratory animals to ensure their welfare and 
minimize distress.

Five-week-old female ICR mice were purchased from Doo Yeol Biotech Co., Ltd. (Seoul, 
Korea) and housed at the animal research facility at Hallym University. The mice were 
maintained under specific pathogen-free conditions with a temperature of 23 ± 3°C, relative 
humidity of 50 ± 10% and a 12-h light/dark cycle. The mice were given access to a commercial 
rodent chow and tap water ad libitum.

Induction of ovariectomy-induced osteoporosis and treatment in mice
After one week of acclimation, each mouse underwent either a sham operation (n = 10) or 
ovariectomy (n = 30), according to the method described by Souza et al. [24]. The mice in 
the OVX group underwent a bilateral ovariectomy. A sham operation was conducted on the 
Sham group mice, in which the ovaries were only exteriorized but not resected. The mice 
were maintained for six weeks without administering FJH-UBS to induce osteoporosis. After 
six weeks, the mice were assigned randomly to four experimental groups (n = 10 per group): 
(i) sham-operated group (Sham), (ii) ovariectomized group (OVX), (iii) ovariectomized and 
80 mg/kg body weight (BW) FJH-UBS treated group (OVX+FU), and (iv) ovariectomized and 5 
mg/kg BW soy isoflavones (a positive control)-treated group (OVX+SI) group. Soy isoflavones 
were selected as the positive control for the study owing to their established effectiveness 
in osteoporosis. This choice enables a pertinent comparison with FJH-USB because the 
recognized role of soy isoflavones in osteoporosis research is a valuable benchmark for 
evaluating the therapeutic potential of FJH-USB. The mice in the OVX+FU and OVX+SI 
groups were given FJH-UBS or soy isoflavones dissolved in sterile water orally once a day 
for eight weeks. The mice in the Sham and OVX groups received an equal volume of sterile 
water as the vehicle by gavage. The mice were weighed once a week during the FJH-UBS 
treatment period. At the end of the experimental period, the mice were anesthetized using 
tribromoethanol diluted in tertiary amyl alcohol. Blood was then collected from the orbital 
vein to prepare serum. The mice were euthanized by cervical dislocation, after which the 
livers, uteri, and femurs were excised.

Measurement of femoral weight and bone mineral density
The femurs were excised, dissected to remove soft tissue, and weighed. The femoral bone 
mineral density (BMD) was measured by dual-energy X-ray absorptiometry (PIXImusTM, GE 
Lunar, Madison, WI, USA).

Measurement of bone metabolism-related indicator levels in serum
The serum levels of osteocalcin (MyBiosource, SanDiego, CA, USA), procollagen 1 N-terminal 
propeptide (P1NP, MyBiosource), osteoprotegerin (R&D Systems, Minneapolis, MN, USA), 
and TRAP5b (MyBiosource) were measured using the relevant ELISA kits.

Statistical analysis
Statistical analyses were performed using the Statistical Analysis System for Windows version 
9.4 (SAS Institute, Cary, NC, USA). The data are presented as the mean ± standard errors (SEM). 
A student’s t-test was used to analyze the differences between the Sham and OVX groups. 
The means of the three groups (OVX, OVX+FU, and OVX+SI groups) were compared using an 
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analysis of the variance followed by Duncan’s multiple comparison test. A P-value < 0.05 was 
considered significant.

RESULTS

Effects of FJH-UBS on the viability of MC3T3-E1 and RAW 264.7 cells
The cells were incubated for 72 h in a culture media containing 0–200 μg/mL FJH-UBS and 
assayed using the MTT assay to determine the FJH-UBS concentration that could affect the 
viability of MC3T3-E1 and RAW 264.7 cells. No significant cytotoxicity was observed when the 
MC3T3-E1 cells were treated with FJH-UBS at up to 20 μg/mL for 72 h. In RAW 264.7 cells, no 
significant cytotoxicity was observed after the FJH-UBS treatment at concentrations ranging 
from 0 to 50 μg/mL (Fig. 1). Therefore, FJH-UBS concentrations below 20 μg/mL were used in 
the following experiments to exclude cytotoxic effects.

FJH-UBS enhances osteoblast activity in MC3T3-E1 cells
The ALP activity, an early-stage marker of osteoblast differentiation, in MC3T3-E1 cells was 
first measured. ObDIM significantly increased the ALP activity. The ALP activity in cells treated 
with 5 μg/mL FJH-UBS was similar to that of ObDIM-induced cells, but a treatment with 10 or 
20 μg/mL FJH-UBS increased the ALP activity in a dose-dependent manner (Fig. 2A).

Collagen is another early-stage marker of osteoblast differentiation. Therefore, the effects of 
the FJH-UBS treatment on collagen synthesis were measured. ObDIM increased the collagen 
levels significantly. On the other hand, treatment with 5–20 μg/mL FJH-UBS increased the 
collagen level more dose-dependent than ObDIM (Fig. 2B).

The degree of mineralization and osteocalcin production were measured to determine if 
FJH-UBS affected the late-stage differentiation of osteoblasts. The levels of mineralization 
and osteocalcin were increased significantly by ObDIM in MC3T3-E1 cells and were increased 
further by the FJH-UBS treatment in a dose-dependent manner (Fig. 2C and D).

The MC3T3-E1 cells were then cultured at FJH-UBS concentrations ranging from 0 to 20 
μg/mL and analyzed by RT-PCR to determine if FJH-UBS affects the expression of key 
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Fig. 1. Effects of FJH-UBS on the viability of MC3T3-E1 cells and RAW 264.7 cells. 
MC3T3-E1 cells (A) and RAW 264.7 cells (B) were plated in 24-well plates. After incubation for 24 h, the cells were incubated for 72 h in media containing 
0–200 µg/mL of FJH-UBS. The cell viability was measured using the MTT assay. Each bar represents the mean ± SE (n = 4). Means without a common letter are 
significantly different at P < 0.05.



transcription factors involved in osteoblast differentiation. The levels of Runt-related 
transcription factor 2 (Runx2) and osterix mRNA expression were significantly higher in the 
ObDIM-treated (differentiated) cells than in the non-ObDIM-treated (undifferentiated) cells. 
They were significantly higher after the FJH-UBS treatment. Compared to the ObDIM group, 
the mRNA expression of Runx2 was increased significantly by a treatment with 20 μg/mL 
FJH-UBS. Finally, osterix mRNA expression was increased dose-dependently by the FJH-UBS 
treatment (Fig. 3).

FJH-UBS suppresses osteoclast activity in RAW 264.7 cells
RAW 264.7 cells were cultured with OcDIM and different FJH-UBS concentrations, and the 
TRAP activity was measured to determine the effect of FJH-UBS on osteoclast differentiation. 
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Fig. 2. Effects of FJH-UBS on the ALP activity, collagen synthesis, mineralization, and osteocalcin production in 
MC3T3-E1 cells. 
MC3T3-E1 cells were plated in multi-well plates. After incubation for 24 h, the cells were incubated in ObDIM 
containing various concentrations of FJH-UBS for five days (ALP activity), eight days (collagen synthesis), or 18 
days (mineralization and osteocalcin production). (A) ALP activity was measured using TRACP and ALP assay 
kits. (B) Collagen synthesis was measured by Sirius Red staining. (C) Mineralization was measured by Alizarin 
Red S staining. (D) Twenty-four hour-conditioned media were collected. The contents of osteocalcin in the 24 
h-conditioned media were measured using an osteocalcin enzyme-linked immunosorbent assay kit. Each bar 
represents the mean ± SE (n = 6). 
ObDIM, osteoblast differentiation-inducing medium; ALP, alkaline phosphatase. 
***P < 0.001 significantly different from the ObDIM-untreated group. Means without a common letter are 
significantly different at P < 0.05.



The TRAP activity was increased significantly in RAW 264.7 cells by OcDIM, which was 
decreased dose-dependently by the FJH-UBS treatment (Fig. 4A).

Experiments were then performed to determine the role of FJH-UBS in actin ring formation. 
The ability of cells to resorb bone can be indicated by the formation of actin rings in 
osteoclasts [25]. In the FJH-UBS untreated control group, the actin rings were the most vivid, 
and the cells were dense. These actin rings decreased significantly as the concentration of 
the FJH-UBS treatment increased (Fig. 4B). Hence, treatment with FJH-UBS could inhibit the 
differentiation of osteoclasts to a stage where bone resorption is possible.

The mRNA expression of the nuclear factor of activator T-cells, cytoplasm 1 (Nfatc1), was 
measured to determine if FJH-UBS affected transcription factors involved in osteoclast 
differentiation. Nfatc1 mRNA expression was increased significantly by OcDIM and 
decreased in proportion to the FJH-UBS treatment concentration (Fig. 5). Hence, the 
FJH-UBS treatment reduced the expression of transcription factors related to osteoclast 
differentiation, suppressing osteoclast differentiation.

FJH-UBS promotes bone metabolism in ovariectomized mice
The mice in the Sham (normal control group), OVX, OVX+FU (FJH-UBS treatment), and 
OVX+SI (soy isoflavone treatment, positive control) groups after inducing osteoporosis in ICR 
mice by an ovariectomy were compared to determine if FJH-UBS has anti-osteoporotic activity 
in an in vivo system. As shown in Table 2, the body weight gain was significantly higher in the 
OVX group than in the Sham group. This effect was reduced significantly by the FJH-UBS or 
soy isoflavone treatment to a level similar to that in the Sham group. The weight gain in the 
OVX+FU and OVX+SI groups was similar. The liver weight was significantly higher in the OVX 
group than in the Sham group and was reduced by the FJH-UBS or soy isoflavone treatment. 
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Fig. 3. Effects of FJH-UBS on mRNA expression of Runx2 and Osterix in MC3T3-E1 cells. 
MC3T3-E1 cells were plated in multi-well plates. After incubation for 24 h, the cells were incubated in ObDIM 
containing various concentrations of FJH-UBS for three days. The total RNA in cells was extracted, reverse 
transcribed, and real-time PCR was performed. The relative mRNA expression of Runx2 (A) and Osterix (B) were 
analyzed. Targeted mRNA expression was normalized to that of Gapdh and is represented relative to the ObDIM-
treated group. Each bar represents the mean ± SE (n = 6). 
ObDIM, osteoblast differentiation-inducing medium; Runx2, Runt-related transcription factor 2; Gapdh, 
glyceraldehyde 3-phosphate dehydrogenase. 
***P < 0.001 significantly different from the ObDIM-untreated group. Means without a common letter are 
significantly different at P < 0.05.



The uterus weight was significantly lower in the OVX group than in the Sham group. The 
uterine weight reduced by the ovariectomy was unaffected by the FJH-UBS or soy isoflavone 
treatment (Table 2). The food intake was similar in the experimental groups (data not shown).

The femur bone weight and BMD were significantly lower in the OVX group than in the Sham 
group, whereas they were increased to the same level as the Sham group by the FJH-UBS or 
soy isoflavone treatment. These results suggest that the FJH-UBS treatment restored the bone 
weight and bone density decreased by OVX (Table 3).
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Fig. 4. Effects of FJH-UBS on TRAP activity and actin ring formation in RAW 264.7 cells. 
RAW 264.7 cells were plated in multi-well plates. After incubation for 24 h, the cells were incubated in OcDIM 
containing various concentrations of FJH-UBS for five days. (A) TRAP activity was measured using TRACP and 
ALP assay kits. Each bar represents the mean ± SE (n = 6). (B) The cells were fixed with 4% paraformaldehyde 
containing 0.1% Triton X-100 and stained with Alexa Fluor 594 Phalloidin and DAPI to stain actin and nuclei, 
respectively. Morphological changes of actin ring in cells were observed under a microscope, Magnification, 200 x. 
Representative staining images are shown (n = 3). 
OcDIM, osteoclast differentiation-inducing medium; TRAP, tartrate-resistant acid phosphatase;  
DAPI, 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride. 
***P < 0.001 significantly different from the OcDIM-untreated group. Means without a common letter are 
significantly different at P < 0.05.

Table 2. Effect of FJH-UBS administration on the body weight, liver weight, and uterus weight in ovariectomized mice.
Variables Sham OVX OVX+FU OVX+SI
Initial body weight (g) 31.2 ± 1.0 39.7 ± 0.9*** 39.8 ± 1.1 39.5 ± 0.5
Final body weight (g) 36.5 ± 1.9 48.1 ± 1.2*** 44.3 ± 1.5 44.8 ± 0.9
Body weight gain (g) 5.3 ± 1.1 8.4 ± 0.4***,a 4.5 ± 0.4b 5.3 ± 0.6b

Liver weight (g) 1.50 ± 0.07 1.95 ± 0.08***,a 1.75 ± 0.06b 1.65 ± 0.06b

Uterus weight (g) 0.248 ± 0.021 0.062 ± 0.016*** 0.087 ± 0.017 0.084 ± 0.016
Values are expressed as the mean ± SE (n = 10).
Sham, sham-operated group; OVX, ovariectomized group; OVX+FU, ovariectomized and 80 mg/kg body weight 
FJH-UBS-treated group; OVX+SI, ovariectomized and 5 mg/kg body weight soy isoflavones (a positive control)-
treated group.
***P < 0.001 significantly different from the Sham group. Mean without a common letter differs among the OVX, 
OVX+FU, and OVX+SI groups at P < 0.05.



Fig. 6 shows the serum levels of bone turnover markers in the experimental groups. 
Osteocalcin, P1NP, and osteoprotegerin were measured as the markers of bone formation, 
and TRAP 5b was measured as a marker of bone resorption. The serum osteocalcin levels 
in the OVX group were significantly lower than in the Sham group. On the other hand, the 
levels recovered after the FJH-UBS treatment and were similar to those in the Sham group 
(Fig. 6A). The serum P1NP levels in the OVX group were significantly lower than those in 
the Sham group. These levels were increased significantly by the FJH-UBS treatment. The 
FJH-UBS treatment produced a more significant increase in the serum P1NP levels in the 
ovariectomized mice than the soy isoflavone treatment (Fig. 6B). The serum osteoprotegerin 
levels were significantly lower in the OVX group than the Sham group, but the levels in the 
FJH-UBS and soy isoflavone-treated groups were similar to those in the Sham group (Fig. 
6C). As shown in Fig. 6D, the serum level of TRAP 5b was 400.6% higher in the OVX group 
than in the Sham group. This was reduced significantly in mice treated with FJH-UBS or 
soy isoflavone. These results confirm that the FJH-UBS treatment had a comparable or even 
superior effect on the bone formation and resorption markers in osteoporosis-induced 
animal models than soy isoflavones.
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Table 3. Effect of FJH-UBS administration on weight and bone mineral density of femurs in ovariectomized mice
Variables Sham OVX OVX+FU OVX+SI
Femur weight (left + right, mg) 194.7 ± 6.8 184.9 ± 4.6b 203.3 ± 5.1a 198.4 ± 4.8a

BMD (g/m2) 0.093 ± 0.002 0.085 ± 0.002*,b 0.091 ± 0.001a 0.090 ± 0.001a

Values are expressed as the mean ± SE (n = 10).
BMD, bone mineral density; Sham, sham-operated group; OVX, ovariectomized group; OVX+FU, ovariectomized 
and 80 mg/kg body weight FJH-UBS-treated group; OVX+SI, ovariectomized and 5 mg/kg body weight soy 
isoflavones (a positive control)-treated group.
*P < 0.01 significantly different from the Sham group. Mean without a common letter differs among the OVX, 
OVX+FU, and OVX+SI groups at P < 0.05.
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Fig. 5. Effects of FJH-UBS on Nfatc1 mRNA expression in RAW 264.7 cells. 
RAW 264.7 cells were plated in multi-well plates. After incubation for 24 h, the cells were incubated in OcDIM 
containing various concentrations of FJH-UBS for three days. The total RNA in cells was extracted, reverse 
transcribed, and real-time polymerase chain reaction was performed. The relative mRNA expression of Nfatc1 
was analyzed. Targeted mRNA expression was normalized to that of Gapdh and is represented relative to the 
OcDIM-treated group. Each bar represents the mean ± SE (n = 6). 
OcDIM, osteoclast differentiation-inducing medium; Nfatc1, the nuclear factor of activator T-cells, cytoplasm 1; 
Gapdh, glyceraldehyde 3-phosphate dehydrogenase. 
***P < 0.001 significantly different from the OcDIM-untreated group. Means without a common letter are 
significantly different at P < 0.05.



DISCUSSION

Bone is a dynamic tissue in which continuous bone replacement occurs throughout life, 
and approximately 10% of bone is renewed each year [26]. The process involves osteocytes, 
osteoclasts, and osteoblasts. In normal bone remodeling, the balance between bone 
resorption and formation is controlled by cooperative cell signaling [26]. Thus, the bone 
mass is maintained when bone formation and bone resorption by osteoblasts and osteoclasts 
are balanced. Osteoporosis is a common disorder of bone remodeling characterized by 
the loss of bone microarchitecture, decreased bone strength, and decreased BMD, and is 
associated with an increased fracture risk. Primary osteoporosis is caused by an estrogen 
deficiency or postmenopausal aging. An estrogen deficiency causes a decrease in blood 
calcium, which increases bone resorption [26]. Hormone or estrogen replacement therapy 
has been used as an important measure to prevent and treat postmenopausal osteoporosis. 
On the other hand, it has been associated with side effects such as breast cancer, uterine 
cancer, and thromboembolic disease [27]. Therefore, efforts are being made to find 
inexpensive and safe natural products with anti-osteoporotic activity.
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Fig. 6. Effect of FJH-UBS administration on the serum levels of bone turnover markers in ovariectomized mice. 
Ovariectomized mice were orally administered either FJH-UBS (80 mg/kg body weight (BW)/day) or soy 
isoflavones (5 mg/kg BW/day) for eight weeks. Serum levels of osteocalcin (A), P1NP (B), osteoprotegerin (C), and 
TRAP 5b (D) were measured with the relevant ELISA kit. Each bar represents the mean ± SE (n = 10). 
P1NP, procollagen 1 N-terminal propeptide; TRAP 5b, tartrate-resistant acid phosphatase 5b; Sham, sham-operated 
group; OVX, ovariectomized group; OVX+FU, ovariectomized and 80 mg/kg body weight FJH-UBS-treated group; 
OVX+SI, ovariectomized and 5 mg/kg body weight soy isoflavones (a positive control)-treated group. 
*P < 0.01, **P < 0.05, ***P < 0.001 significantly different from the Sham group. Mean without a common letter differs 
among OVX, OVX + FU, and OVX + SI groups at P < 0.05.



B. serrata gum resin, or Indian frankincense, has long been used as a traditional medicine 
for various inflammatory diseases, including arthritis [9,11]. Recently, boswellic acid, a 
major pharmacological component of B. serrata gum resin extract, particularly AKBA, has 
been reported to have anti-osteoporotic activity. In ovariectomized Sprague-Dawley rats, 
supplementation with 35 mg/kg of AKBA for 42 days exhibited good anti-osteoporotic activity 
because the osteoclast activity was reduced by suppressing the nuclear factor (NF)-kB-
induced tumor necrosis factor (TNF)-a signaling pathway [16]. Boswellic acid and B. serrata 
gum resin extract appeared safe because boswellic acid did not cause pathological changes in 
the animals up to 1,000 mg/kg BW [28]. Another study evaluating the safety of a novel water-
soluble extract of B. serrata gum resin found no adverse effects in male and female Sprague-
Dawley rats administered up to 500 mg/kg/day orally for 90 days [29]. On the other hand, just 
as other pentacyclic triterpenic acids have limited aqueous solubility and lipophilicity and 
reduced bioavailability and pharmacological activity, KBA and AKBA are extremely limited 
because of their low oral bioavailability [30]. In this study, the anti-osteoporotic effects of 
FJH-UBS were confirmed using in vitro and in vivo systems. FJH-UBS increased osteoblast 
differentiation and decreased osteoclast differentiation in vitro. The oral administration of 
80 mg/kg/day of FJH-UBS to ovariectomized mice had significant osteoprotective effects 
on the blood-bone turnover markers and femur BMD. These results suggest that FJH-UBS 
has a beneficial effect in preventing and treating osteoporosis by directly increasing bone 
formation and inhibiting bone resorption.

The ALP activity, osteocalcin, collagen, and mineralization in MC3T3-E1 cells treated with 
FJH-UBS were increased significantly in a dose-dependent manner (Fig. 2). RUNX2 and 
Osterix are master transcription factors in osteoblast differentiation [31,32]. They are 
expressed in osteoblasts and play an essential role in osteoblast differentiation by regulating 
the expression of numerous osteoblastic genes, such as osteocalcin, bone sialoprotein, 
osteopontin, and collagen [32,33]. Osterix and Runx2 mRNA expression was increased 
significantly after the FJH-UBS treatment. In particular, the FJH-UBS treatment increased 
Osterix mRNA expression in a dose-dependent manner (Fig. 3). Osterix is an essential 
transcription factor for osteoblast differentiation and bone mineralization that is also 
expected to play an important role in the treatment of osteolytic diseases [32]. These results 
show that FJH-UBS increases bone formation by promoting osteoblast differentiation in 
MC3T3-E1 cells.

The TRAP activity and actin ring formation were analyzed in RAW 264,7 osteoclasts. TRAP 
is secreted from osteoclasts and reflects the number and activity of osteoclasts. Hence, 
the TRAP activity is used as a marker to confirm osteoclast differentiation [34]. The TRAP 
activity decreased dose-dependently after the FJH-UBS treatment (Fig. 4A). Bone resorption 
by osteoclasts occurs through a complex process involving bone attachment, cytoskeletal 
reorganization, and ruffled border formation. The actin ring is essential for bone resorption 
of osteoclasts. When osteoclasts attach to bone, actin rings are formed through multi-step 
cell signaling pathways by activating αγβ3 integrin. As osteoclasts differentiate, they form an 
actin ring structure in the bone, through which the bone matrix can be degraded and resorbed 
[25]. In this study, treating RAW 264.7 cells with FJH-UBS decreased the number of actin rings 
and induced their disorganization (Fig. 4B). Nfatc1 mRNA was analyzed as a transcription 
factor for osteoclast differentiation. NFATc1 promotes osteoclast fusion and activation by 
upregulating several genes involved in osteoclast adhesion, migration, acidification, and 
degradation in organic and inorganic bone matrices [35]. Osteoclasts can be inhibited by 
suppressing NFATc1. Hence, NFATc1 is expected to be a promising therapeutic target for 
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treating osteoclast-related diseases [35]. FJH-UBS decreased Nfatc1 mRNA expression in RAW 
264.7 cells in a dose-dependent manner (Fig. 5). Hence, FJH-UBS is effective in reducing bone 
resorption by inhibiting osteoclast differentiation in RAW 264.7 cells.

FJH-UBS affected osteoclasts and osteoblasts. FJH-UBS could promote bone formation by 
enhancing osteoblast differentiation because the treatment for osteoporosis is still biased 
towards anti-resorptive drugs, and there is no straightforward treatment to improve bone 
formation.

The bone turnover markers were measured after treating OVX-induced osteoporotic mice 
with FJH-UBS to determine if FJH-UBS has an anti-osteoporotic effect in the in vivo system. 
An ovariectomy is associated with weight gain and decreased bone formation [36]. In this 
study, the ovariectomized group gained 58.5% body weight, and their femur weight and 
BMD decreased by 5.3% and 9.4%, respectively, compared to the Sham group, despite no 
difference in food intake (Tables 2 and 3). Soy isoflavones were also administered to mice 
in the positive control group because soy isoflavones have been reported to have estrogen-
like effects in estrogen-deficient animal models and postmenopausal women [37,38]. 
Furthermore, a previous study reported that supplementing ovariectomized mice with 
isoflavone-enriched whole soy milk inhibited BMD reductions [39]. In the present study, 
isoflavone supplementation suppressed OVX-induced weight gain and increased the femur 
weight and BMD to the level of the Sham group. Furthermore, the FJH-UBS treatment was as 
effective as isoflavone supplementation.

Bone loss due to an ovariectomy is determined by decreases in the length, weight, and 
thickness of the femur and lumbar vertebrae [40]. Because the bone turnover markers change 
faster than BMD or fracture risk, they are useful for an early assessment of the effectiveness of 
osteoporosis treatment [41], and the serum ALP, osteocalcin, and P1NP levels are biomarkers 
that reflect the osteoblast activity, including bone formation [42]. First, osteocalcin is 
produced by osteoblasts and is involved in bone mineralization. When the bone matrix is 
calcified by the deposition of newly formed osteocalcin, some is released into the blood. 
Therefore, the blood osteocalcin concentration indicates the osteoblast function related to 
bone formation [43]. Second, P1NP is a peptide produced by the post-translational cleavage 
of type I procollagen molecules by proteases during collagen accumulation by osteoblasts 
[43]. The Blood P1NP concentration is considered the most representative biomarker for 
measuring bone formation [44] and is used as an index to determine the effectiveness of 
an osteoporosis treatment [45]. Finally, osteoprotegerin is a type of osteoclastogenesis 
inhibitory factor. It is produced in osteoblasts and binds to and blocks the RANK receptor, 
inhibiting the osteoclast function and promoting bone formation. Therefore, a decrease 
in osteoprotegerin leads to osteoporosis [46]. The osteocalcin, P1NP, and osteoprotegerin 
levels were measured as markers of bone formation and TRAP 5b as a bone resorption marker 
in the blood of OVX mice. The serum osteocalcin, P1NP, and osteoprotegerin levels were 
significantly lower in the OVX group than in the Sham group (P < 0.05, P < 0.01, and P < 0.05, 
respectively), and the serum TRAP 5b levels were significantly higher (P < 0.001). With FJH-
UBS treatment, however, osteocalcin, and osteoprotegerin recovered to the same level as in 
the Sham group, and P1NP and TRAP 5b also increased significantly, albeit less than in the 
Sham group. In addition, the effects of FJH-UBS on P1NP exceeded that of the soy isoflavone 
treatment (Fig. 6). Thus, the FJH-UBS treatment is effective in the OVX-induced osteoporosis 
model by preventing bone resorption and promoting bone formation.
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This study investigated the effects of FJH-UBS on bone metabolism in osteoblast and 
osteoclast cell lines and ovariectomized mice. The FJH-UBS treatment increased the 
osteoblast differentiation markers (ALP activity, collagen synthesis, mineralization, 
osteocalcin, Runx2 mRNA, and osterix mRNA) in MC3T3-E1 osteoblastic cells and decreased 
the osteoclast differentiation markers (TRAP activity, actin ring formation, and Nfatc1 
mRNA) in RAW 264.7 osteoclastic cells. The FJH-UBS treatment increased the BMD and 
blood markers of bone formation (osteocalcin, P1NP, and osteoprotegerin) and decreased the 
bone resorption marker (TRAP 5b) in OVX mice. The anti-osteoporotic effects of FJH-UBS 
were equal to or better than that in the soy isoflavone treatment group.

In conclusion, this study confirmed the anti-osteoporotic effects of FJH-UBS. These results 
show that FJH-UBS suppresses bone resorption and promotes bone formation. This is a 
very promising result, especially when there is a high demand for drugs that can activate the 
differentiation and function of osteoblasts for the treatment of osteoporosis. Nevertheless, 
a follow-up study on the bone formation-related functionality of FJH-UBS will be needed. In 
addition, further research on the appropriate concentration, availability, and mechanism of 
action for the clinical application of FJH-UBS is warranted.
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