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Abstract: InGaN-based long-wavelength light-emitting diodes (LEDs) are indispensable compo-
nents for the next-generation solid-state lighting industry. In this work, we introduce additional
InGaN/GaN pre-wells in LED structure and investigate the influence on optoelectronic properties
of yellow (~575 nm) LEDs. It is found that yellow LED with pre-wells exhibits a smaller blue shift,
and a 2.2-fold increase in light output power and stronger photoluminescence (PL) intensity com-
pared to yellow LED without pre-wells. The underlying mechanism is revealed by using Raman
spectra, temperature-dependent PL, and X-ray diffraction. Benefiting from the pre-well structure,
in-plane compressive stress is reduced, which effectively suppresses the quantum confined stark
effect. Furthermore, the increased quantum efficiency is also related to deeper localized states with
reduced non-radiative centers forming in multiple quantum wells grown on pre-wells. Our work
demonstrates a comprehensive understanding of a pre-well structure for obtaining efficient LEDs
towards long wavelengths.

Keywords: gallium nitride; yellow LED; pre-well structure; optoelectronic device

1. Introduction

III-nitride emitters have attracted a lot of attention due to their advantages of energy
savings, high brightness, and long lifetime. With the wide and tunable band gap, InGaN-
based light emitting diodes (LEDs) find widespread applications in the solid-state lighting
and full-color display [1–7]. In recent years, the increasing need of flexible lighting devices
motivates the manufacturing techniques development for deformable micro-LEDs [8] and
the progress of flexible micro-LEDs applications in the optogenetic biomedical field [9].
Though blue LEDs achieving a high external quantum efficiency [10], the emission effi-
ciency is still limited in the long-wavelength region, which is commonly known as “green-
yellow gap” phenomenon [2]. One of the main reasons arises from the strong piezoelectric
field along the (0001) direction induced by the large lattice mismatch between sapphire
substrate and epilayers. This built-in piezoelectric field gives rise to quantum-confined
stark effect (QCSE) [11], which separates electron-hole wavefunctions and further degrades
the radiative recombination efficiency. When the In content increases, QCSE becomes more
severe, hindering the pursuit for efficient LEDs with long wavelengths.

Numerous efforts have been dedicated to improving the InGaN-based LED perfor-
mance in the long-wavelength region, such as introducing semipolar/nonpolar substrate [12],
inserting strain engineering layers [13,14], and adopting bandgap engineering quantum
wells [15,16]. Among them, the strain engineering strategy, which utilizes low In content
layers prior to the growth of active region, is an effective and low-cost method, also known
as the “pre-layer structure”. Huang et al. found that a green LED structure with pre-
strained growth showed enhanced efficiency and reduced spectral shifts, which could be
attributed to decreased defect density and the reduced QCSE [17]. Niu et al. reported that
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insertion of an InGaN layer increased photoluminescence (PL) intensity more than twice as
much, and improved crystal quality [18]. The inclusion of InGaN/GaN superlattice pre-
layers could facilitate more In incorporation and extend emission wavelength, as Hu et al.
demonstrated [19]. The pre-layer structure could act as the buffer layer to relax in-plane
strain in multiple quantum wells (MQWs). Until now, while various pre-layers have been
extensively discussed in blue and green region [14,17–21], their epitaxial structures differ
much from corresponding MQWs. Besides, the influence of pre-layer structure on yellow
LEDs performance remains insufficient [13,22], especially in terms of some related physic
issues, including the effect of carrier localization.

In this work, we adopt an InGaN/GaN pre-well structure between superlattices and
active region, and study its influence on optoelectronic characteristics of yellow (~575 nm)
LEDs. At the same injection current, LED with pre-wells achieves a smaller blue shift
and a higher light output power (LOP) than those of LED without pre-wells. Raman
spectra show that relaxation of compressive strain is achieved inside MQWs grown on
InGaN/GaN pre-wells, which alleviates the negative influence of QCSE. Additionally,
through time-dependent photoluminescence (TDPL) and X-ray diffraction (XRD) analysis,
localized states are found to be more pronounced in MQWs grown on pre-well structure,
owing to the decreased dislocation density. Due to these advantages, yellow LED with
pre-wells exhibits improved optical and electrical properties, enabling the development for
efficient III-nitride emitters.

2. Experiments

The LED samples were grown on the patterned sapphire substrate (PSS) via metal
organic chemical vapor deposition (MOCVD). The schematic diagram of two types of
yellow LED structure is presented in Figure 1a. The reference LED (LED I) started from
a 3.0-µm-thick undoped GaN layer. Subsequently, a 2.0-µm-thick Si-doped n-GaN layer
was deposited, followed by three pairs of In0.01Ga0.99N (7 nm)/GaN (50 nm) superlat-
tices (SLs). The active region consists of nine pairs of In0.1Ga0.9N (0.6 nm)/In0.35Ga0.65N
(1.3 nm)/In0.1Ga0.9N (0.6 nm)/GaN (13 nm). Then, a 25-nm-thick low-temperature p-GaN
layer was capped on MQWs. Then, a 20-nm-thick AlGaN electron-blocking layer and a
50-nm-thick Mg-doped p-GaN layer were grown, ending with a 5-nm-thick heavily Mg-
doped p+-GaN. For the optimized LED (LED II), prior to the growth of MQWs, five pairs
of In0.05Ga0.95N (2 nm)/GaN (10 nm) SLs, named as pre-wells, were deposited on three
pairs of SLs. Notably, different from aforementioned pre-layer structures, the thicknesses
of pre-wells in this work was intentionally designed to be similar to MQWs, with an aim to
further reduce the lattice mismatch between underlayers and MQWs. Figure 1b shows the
temperature profile during the growth of two LED structures, in which the only difference
is the additional growth of pre-wells. A detailed description of fabrication of LED chips
has been provided in our previous work [23]. The LED chips were fabricated with areas of
239 µm × 356 µm.
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To characterize the epitaxial structure of LED samples, we carried out the cross-
sectional transmission electron microscopy (TEM), atom probe tomography (APT), Raman
spectroscopy, and X-ray diffraction (XRD) measurements. The light output power–current–
voltage (L-I-V) characteristics of the yellow LEDs were measured by an integrating sphere
together with a semiconductor parameter analyzer at room temperature. TDPL measure-
ments were performed using a 325-nm He–Cd laser with an excitation power of 5 mW.

3. Results and Discussion

Figure 2a,b show the cross-sectional bright-field TEM images of epilayer structure with
pre-wells. Each layer in LED II exhibits uniform thickness and clear interface, albeit the
difference in brightness contrasts among SLs, pre-wells, and MQWs, as seen in Figure 2a,b.
Besides, from Figure 2a, we observe that V-shaped pits form in SLs and extend to MQWs.
Our previous work found that optimizing the density and size of V-pits could contribute
to the increased emission efficiency by suppressing non-radiative recombination [23].
Figure 2c shows the reconstructed atom map of MQWs of LED II via APT measurement,
showing the distribution of In and Ga elements.
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Figure 3a,b show the current–voltage (I-V) and light output power–current (L-I)
characteristics of the yellow LEDs, respectively. In Figure 3a, the forward voltages for
LED I and LED II are 2.39 V and 2.36 V at 20 mA, respectively. This indicates that the
pre-well structure has a negligible impact on the electrical properties. Note that LED II
has an enhanced LOP in compared with LED I. At 20 mA, the LOP for LED I is 5.9 mW,
while that for LED II is 13 mW. Room-temperature electroluminescence (EL) measurements
were performed and shown in Figure 3c,d. As the injection current increases, the peak
wavelengths for two samples are observed in the blue shift, which arises from the charge
screening of polarization field and band-filling effect [24]. It could be observed that LED II
shows a much smaller blue shift (~14 nm) than LED I (~23 nm) when the injection current
increases from 1 mA to 50 mA. For most InGaN MQWs grown on c-plane sapphire, they
undergo QCSE which causes strong band tilting and wavelength shifting. As the carriers
are injected, the built-in electric field are screened, leading to a decreased wavelength shift.
Thus, we believe that, with the inclusion of a pre-well structure, a negative impact of QCSE
is alleviated, and the LED with pre-wells achieves a smaller blue shift. Besides, from the
EL spectra, there is no additional peak induced by the emission in In0.05Ga0.95N/GaN
pre-wells, implying that a recombination in MQWs dominates the recombination process
in our designed structure.
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forward currents, respectively.

In order to reveal the underlying mechanism of improved performance, we carried
out the confocal micro-Raman measurement, as shown in Figure 4. As the E2 (H) mode
is sensitive to the strain [25], it is widely utilized to assess the residual stress in epitaxial
structure. However, considering the pre-well structure located between the thick GaN layer
and MQWs, the InGaN E2 (H) mode is suitable for evaluating the residual stress in MQWs.
In the Raman spectra, there are two peaks positioned at ~569 cm−1 and ~560 cm−1, which
originate from the GaN E2 (H) and InGaN E2 (H) mode, respectively [26]. In particular,
the InGaN E2 (H) mode decreases from 562.7 cm−1 (LED I) to 559.9 cm−1 (LED II). It
indicates that the adoption of pre-wells contributes to stress relaxation [26], which could
be attributed to the similar structure between pre-wells and MQWs. It is well known that
QCSE separates the electron and the hole wavefunctions towards the opposite direction
and reduces the electron-hole wavefunction overlap, thereby deteriorating the radiative
recombination rate [15]. By adopting pre-well, the negative impact of stress-induced QCSE
is suppressed and, more so, the quantum efficiency is enhanced. As a result, LED II
achieves improved LOP as well as the smaller blue shift (Figure 3).
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The room-temperature PL spectra are shown in Figure 5a. LED II possesses a higher
PL peak intensity than that of LED I, which means enhanced radiative recombination by
introducing pre-well structure. Figure 5b shows the TDPL spectra. The PL intensity of
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LEDs dramatically decreases with increasing temperature. Such thermal quenching of PL
intensity results from the pho-non-assisted non-radiative recombination and the integrated
PL intensity versus temperature can be fitted by using the Arrhenius formula [27]:

I(T) = I0/

[
1 + ∑

i
Ci exp(−EAi/kBT)

]
(1)

where I (T) represents the normalized integrated PL intensity, Ci represents the constants,
and EAi represents the activation energies correlated with nonradiative recombination
process. In particular, EA1 and EA2 can be attributed to (1) localized exciton binding energy,
and (2) the potential barrier between the localized potential minima and nonradiative
centers located within MQWs, respectively [28]. Through the curve fitting, the yielding
activation energies are 3.04 meV (E1) and 53.68 meV (E2) for LED I, while those for LED II
are 6.89 meV (E1) and 85.64 meV (E2), respectively. Since the obtained activation energies
are much lower than the band offsets between wells and barriers, thermal quenching of
PL intensity results from the delocalization of excitons [29]. The activation energies often
reflect the localization energy of localized states [30], in which carriers could be trapped
and have less possibility to meet other non-radiative recombination centers. Accordingly,
we suppose pronounced localized states existing in the pre-well structure, which provides
strong confinement for carriers and preventing them from being captured by non-radiative
recombination centers.
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To elucidate our finding, XRD measurements were performed to assess the non-
radiative centers density existing in the two samples. It is acknowledged that the full width
at half maximum (FWHM) of XRDω-rocking curves for different planes could reflect the
specific threading dislocation, including screw dislocation and the edge dislocation in the
epitaxial structure. Figure 6a,b shows the XRD ω-rocking curves for (002) and (102) planes
of two samples, respectively. We find that, in LED II, FWHMs ofω-rocking curves for both
(002) and (102) planes are 147.50 and 243.18 arcsec, respectively, while they are 176.77 and
363.93 arcsec, respectively, in LED I. Threading dislocation density (TDD) in two samples
is roughly estimated through the formula [31]:

N =
β2

4× |b|2
(2)

where N represents the TDD, β represents the FWHM of the rocking curve, and b represents
the Burgers vector of the corresponding dislocations. The total TDDs in LED I and LED II
are estimated to be 8.34× 108 and 3.89× 108 cm−2, respectively. This implies that threading
dislocations, acting as non-radiative centers, are reduced by adopting pre-wells. Carrier
localization has been reported to occur in the direct vicinity of the dislocation through
the formation of In–N chains and atomic condensates [32]. In particular, the clustered
dislocations tend to screen the effects of carrier localization, and thus the LED I with more
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TDD, displays the weakened carrier localization compared to LED II, leading to the inferior
quantum efficiency.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 7 
 

 

 

Figure 6. XRD rocking curves of (a) (002) and (b) (102) planes for LED I and LED II. 

4. Conclusions 

In summary, we make comprehensive analysis of InGaN-based yellow (~575 nm) 

LED performance by adopting the InGaN/GaN pre-well structure. LED with pre-wells 

exhibits better optoelectronic properties, especially an increase in LOP of 13 mW, which 

is 2.2 times higher than that for LED without pre-wells at 20 mA. Experiment results reveal 

that this structure plays a vital role for stress relaxation. The performance enhancement is 

attributed to alleviated detrimental influence of QCSE and strengthened carrier localiza-

tion in MQWs grown on pre-wells. Our work gains insight into the influence of pre-well 

structure on InGaN-based long-wavelength LEDs, by presenting their advantages for the 

future solid-state lighting. 

Author Contributions: Methodology, X.Z. and S.Z.; formal analysis, X.Z., Z.W. and S.Z.; investiga-

tion, X.Z., Z.W. and S.Z.; data curation, Z.W., L.G. and G.T.; resources, S.Z.; writing—original draft 

preparation, X.Z. and S.Z.; writing—review and editing, X.Z., Z.W., L.G., G.T. and S.Z; supervision, 

S.Z.; project administration, S.Z.; funding acquisition, S.Z. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (Grant 

Nos. 52075394, 51675386 and 51775387) and the National Youth Talent Support Program. 

Data Availability Statement: Data are contained within the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Pimputkar, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182. 

2. Crawford, M.H. LEDs for solid-state lighting: Performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 

2009, 15, 1028–1040. 

3. Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted ultraviolet electroluminescence of 

InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy 2020, 69, 

104427. 

4. Zhou, S.; Liu, X.; Yan, H.; Chen, Z.; Liu, Y.; Liu, S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. 

Express 2019, 27, A669–A692. 

5. Mun, S.H.; Kang, C.M.; Min, J.H.; Choi, S.Y.; Jeong, W.L.; Kim, G.G.; Lee, J.S.; Kim, K.P.; Ko, H.C.; Lee, D.S. Highly Efficient 

Full-Color Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding. Adv. Mater. Interfaces 2021, 8, 1–7. 

6. Tao, G.; Zhao, X.; Zhou, S. Stacked GaN/AlN last quantum barrier for high-efficiency InGaN-based green light-emitting diodes. 

Opt. Lett. 2021, 46, 4593–4596. 

7. Tang, B.; Gong, L.; Hu, H.; Sun, H.; Zhou, S. Toward efficient long-wavelength III-nitride emitters using a hybrid nucleation 

layer. Opt. Express 2021, 29, 27404. 

8. Jeong, J.; Wang, Q.; Cha, J.; Jin, D.K.; Shin, D.H.; Kwon, S.; Kang, B.K.; Jang, J.H.; Yang, W.S.; Choi, Y.S.; et al. Remote heteroep-

itaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 2020, 6, z5180. 

9. Lee, H.E.; Park, J.H.; Jang, D.; Shin, J.H.; Im, T.H.; Lee, J.H.; Hong, S.K.; Wang, H.S.; Kwak, M.S.; Peddigari, M.; et al. Optogenetic 

brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 

2020, 75, 104951. 

10. Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. 

Phys. D Appl. Phys. 2010, 43, 354002. 

Figure 6. XRD rocking curves of (a) (002) and (b) (102) planes for LED I and LED II.

4. Conclusions

In summary, we make comprehensive analysis of InGaN-based yellow (~575 nm)
LED performance by adopting the InGaN/GaN pre-well structure. LED with pre-wells
exhibits better optoelectronic properties, especially an increase in LOP of 13 mW, which is
2.2 times higher than that for LED without pre-wells at 20 mA. Experiment results reveal
that this structure plays a vital role for stress relaxation. The performance enhancement is
attributed to alleviated detrimental influence of QCSE and strengthened carrier localization
in MQWs grown on pre-wells. Our work gains insight into the influence of pre-well
structure on InGaN-based long-wavelength LEDs, by presenting their advantages for the
future solid-state lighting.
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