
RESEARCH Open Access

Orthology and paralogy constraints: satisfiability
and consistency
Manuel Lafond*, Nadia El-Mabrouk

From Twelfth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Cold Spring Harbor, NY, USA. 19-22 October 2014

Abstract

Background: A variety of methods based on sequence similarity, reconciliation, synteny or functional characteristics,
can be used to infer orthology and paralogy relations between genes of a given gene family G. But is a given set C of
orthology/paralogy constraints possible, i.e., can they simultaneously co-exist in an evolutionary history for G? While
previous studies have focused on full sets of constraints, here we consider the general case where C does not
necessarily involve a constraint for each pair of genes. The problem is subdivided in two parts: (1) Is C satisfiable, i.e. can
we find an event-labeled gene tree G inducing C? (2) Is there such a G which is consistent, i.e., such that all displayed
triplet phylogenies are included in a species tree?

Results: Previous results on the Graph sandwich problem can be used to answer to (1), and we provide
polynomial-time algorithms for satisfiability and consistency with a given species tree. We also describe a new
polynomial-time algorithm for the case of consistency with an unknown species tree and full knowledge of
pairwise orthology/paralogy relationships, as well as a branch-and-bound algorithm in the case when unknown
relations are present. We show that our algorithms can be used in combination with ProteinOrtho, a sequence
similarity-based orthology detection tool, to extract a set of robust orthology/paralogy relationships.

Introduction
Gene families, usually constructed from sequence simi-
larity, group homologous genes, i.e., genes sharing a com-
mon ancestry: starting from a single gene copy, a history
of speciations, duplications and losses is assumed to be at
the origin of the observed set of extant genes. Decipher-
ing the orthology (divergence following a speciation) and
paralogy (divergence following a duplication) relations
between pairs of genes inside a gene family is important
and lies at the heart of many genomics studies. The
reconstruction of species trees for example is usually
based on the selection and alignment of orthologous
gene copies. From a functional point of view, orthologs
are believed to be more likely similar in function than
paralogs [1]. Orthology/paralogy information is often
derived from a reconciliation approach (first introduced

by Goodman in 1979 [2]). A gene tree that best reflects
the evolution of the sequences is first constructed for the
gene family. Assuming a known phylogeny for the set of
taxa, the non-agreement between the two trees is then
explained by a set of duplication and loss events (other
events such as horizontal gene transfer might also be
inferred by reconciliation, although we will ignore them
here). Reconciliation leads to a labeling of internal nodes
of the gene tree as duplication/speciation nodes, yielding
a full orthology/paralogy interpretation for each pair of
genes (cf. e.g. TreeFam [3,4] used for constructing the
Ensembl Compara gene trees [5], PHOG [6], MetaPHOrs
[7]). This approach assumes that an accurate gene tree
can be constructed for the gene family. Although infer-
ring phylogenies is a field with a very long history, due to
various limitations constructing good gene trees is still
challenging. A variety of other methods have been devel-
oped for the purpose of orthology/paralogy detection. A
well-known class of algorithms is based on clustering

* Correspondence: lafonman@iro.umontreal.ca
Department of Computer Science and Operational Research, University of
Montreal, Chemin de la Tour, H3C3J7 Montreal, Canada

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

© 2014 Lafond and El-Mabrouk; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:lafonman@iro.umontreal.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

genes according to their sequence similarity (cf. e.g. the
COG database [8], OrthoMCL [9], InParanoid [10], Pro-
teinortho [11], orthoDB [12], eggNOG [13]). Recently, we
investigated another way of detecting orthology/paralogy
based on conserved synteny (conservation in gene order)
[14,15]. Other initiatives, such as the Gene Ontology pro-
ject [16], provide functional annotation that can be used
as another source of orthology relations. In contrast to
the reconciliation approach, only partial relations can be
expected from such tree-free methods.
The orthology/paralogy information suggested by gene

tree reconciliation may be contradictory with that sug-
gested by an external source. As gene trees are known to
be error-prone, more confidence can be given to such
homology information when it is well-supported by var-
ious genomic observations. This raises the problem of
gene tree editing based on a known set C of pairwise
orthology/paralogy constraints. But prior to any algorith-
mic consideration, one should be able to state whether
the set C is possible, i.e. whether all constraints can
simultaneously co-exist in an evolutionary history of the
gene family. In a recent work [14], we showed that a set
of orthlogy constraints is always possible and we gave a
polynomial-time algorithm for correcting a gene tree in a
minimal way according to the Robinson-Foulds distance.
Recent studies have considered the connection of trees

and orthology from the angle of reconstructing phyloge-
nies from orthology relations [17-19]: How much informa-
tion about the gene tree, the species tree and their
reconciliation is already contained in the orthology rela-
tion between genes? In other words, having a set C of full
pairwise orthology/paralogy relations (each pair of genes is
constrained), can one reconstruct the gene and species
trees? Similarly to gene tree editing, the first question to
be asked is whether the orthology/paralogy constraints
can simultaneously co-exist in a history of the gene family.
Interestingly, by making the link with symbolic ultra-
metrics and co-graphs, a simple characterization of
satisfiability (symbolic ultrametric) for full paralogy/
orthology relations is given in [17], where satisfiability
relates to the existence of an event-labeled gene tree G
(symbolic representation) leading to C. Notice that satisfia-
bility does not mean the possibility for orthology/paralogy
relations to co-exist in a true history, as the triplet phylo-
genies contained in G are not necessarily consistent
(included in a species tree). The derivation of a species
tree from an event-labeled gene tree is considered in [18].
Finally, the outline of a computational framework for the
construction of a least resolved species tree S from a set of
orthology/paralogy relations, involving the extraction of
maximum satisfiable relations and maximum consistent
triple set is given in [19].
Here, we consider the general case for C: in contrast

with [17,18], we do not require C to be full, i.e., to involve

a constraint for each pair of genes. We introduce the
notations and problems in the following section. We
then show how previous results on the Graph sandwich
problem can be used to solve the problem of satisfiability.
The developed algorithm for satisfiability is then adapted
to the problem of consistency with a given species tree.
In the case of an unknown species tree, we then study
the problem of finding a gene tree that is consistent with
some species tree. Finally we show in the result section
how our methodology can be used, in combination with
PROTEINORTHO[11], a sequence similarity-based
orthology detection tool, to extract a set of robust orthol-
ogy/paralogy relationships.

Notations and problem statement
In the rest of this paper, we consider a set Σ of species
and a gene family G where each gene x belongs to a spe-
cies s(x) of Σ. We generalize the notation s to subsets of
genes: if U ⊂ G, s(U) = {s(x) : x ∈ U}.
As we only consider rooted trees, we will sometimes

omit the word “rooted”. Let T be a tree. We denote by r
(T) its root and by L(T) its set of leaves. For any internal
node x of T, we denote by Tx the subtree of T rooted
at x. We say that a node y is an ancestor of x if the two
nodes belong to the same path from a leaf to the root
of T, and y is closer to the root. Two nodes x and y are
unrelated if x ≠ y and none is the ancestor of the other.
For a set of leaves U ⊆ L(T), we denote by lcaT (U) the
least common ancestral node of U in T, i.e. the common
ancestral node of the elements of U which is the farthest
from the root.
Let L′ be a subset of L(T). The restriction T |L′ of T to

L′ is the tree with leaf set L′ obtained from TlcaT (L′) by
removing all leaves that are not in L′, and all internal
nodes of degree 2, except the root. Let T′ be a tree such
that L(T′) = L′ ⊂ L(T). We say that T displays T′ iff T |L′
is label-isomorphic to T′.
A triplet is a binary tree on a set L with |L| = 3. For

L = {x, y, z}, we denote by xy|z the unique triplet t on L
with root r(t) for which lcat(x, y) ≠ r(t) holds. We

denote by tr(T) = {T|L : L ∈
(

L(T)
3

)
and T|L is binary}

the set of all rooted triplets of a tree T.
Evolution of species and genes: A species tree S for Σ is a

rooted tree whose leaves are in bijection with Σ, represent-
ing the evolutionary relationships between the species: an
internal node is an ancestral species at the moment of a
speciation event, and its children are the descendants.
Although species trees are generally binary, we do not
make this assumption here. Genes of G undergo speciation
when the species to which they belong do. Within a spe-
cies, genes can be duplicated or lost. A history H for G is a
tree representing the evolution of the gene family through
speciations and duplications: each leaf of H is labeled by a

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 2 of 10

gene of G, and each internal node refers to an ancestral
gene at the moment of an event (speciation or duplica-
tion). Therefore each internal node of H can be labeled as
a speciation (Spec) or duplication (Dup) event.
As H is a history “embedded” in the species tree S of

Σ, it must reflect a speciation history consistent with S:
any speciation node of H should reflect a clustering of
species in agreement with S. To formally define consis-
tency, let first introduce a more general set of labeled
trees. We call a DS-tree for G a pair (G, ℓ), where G is
a tree with L(G) = G, and ℓ is a function ℓ : V (G) \ L
(G) ® {Dup, Spec} labeling each internal node of G as
a duplication or a speciation node. For simplicity, we
often refer to G as the DS-tree for G without explicitly
stating ℓ, and assume the internal nodes of G are
labeled Dup or Spec. For some X ⊆ L(G), we implicitly
assume that the internal nodes of G|X share the same
label as in G.
Definition 1 Let G be a DS-tree for G and S be a species

tree for Σ. We say that G is consistent with S if and only if,
for any speciation node x of G and any two children y, z of
x, lcaS (s(Ly)) and lcaS (s(Lz)) are unrelated in S, where Ly
and Lz are the leaf-sets of Gy and Gz respectively.
Now a history H for G is simply a DS-tree for G con-

sistent with the species tree S for Σ. Denote
trS (G) = {s(x)s(y)|s(z) : xy|z ∈ tr(G) is rooted at a spe-

ciation and s(x) ≠ s(y)}
The triplets of trS (G) are called speciation triplets.

The following theorem, which is a reformulation of
Theorem 6 in [18], relates consistency to speciation
triplets.
Theorem 1 Let G be a DS-tree for G and S be a spe-

cies tree for Σ. Then G is consistent with S if and only if
S displays all triplets of trS (G).
From the Fitch [20] terminology, two leaves x and y of

a history are orthologous if lcaH (x, y) is a speciation
node, and paralogous otherwise. We extend this termi-
nology to a more general DS-tree.
Definition 2 Let G be a DS-tree for G. Then two genes

x, y of G are orthologous with respect to (w.r.t.) G if lcaG
(x, y) is a speciation node, and paralogous w.r.t. G if
lcaG(x, y) is a duplication node.
Therefore a DS-tree induces a set of orthology/paral-

ogy relationships between genes.
Constraint graph: A constraint is simply an unordered

pair of genes
{
x, y

} ∈
(G

2

)
. A set of orthology/paralogy

constraints on G (or simply a constraint set) is a pair C =

(CO, CP) of subsets CO, CP ⊂
(G

2

)
such that CO ∩ CP =� 0.

CO represents the orthology constraints and CP the paral-
ogy constraints. We say that C is a full constraint set if

G. For example, a history H for G induces a full constraint
set.
We represent a constraint set C = (CO, CP)by an edge-

bicoloured undirected graph R = (V, E, U), called a con-
straint graph, with vertex set V = G, and two edge sets

E = CO and U =
(G

2

)
\(CO ∪ CP). Said differently, two

genes are linked by an edge of E if they are constrained
by orthology, unlinked if they are constrained by paral-
ogy, and linked by a “special” edge of U if the relation
between the two genes is unknown. We refer to the
edges of E as the orthology edges, to those in U as the
unknown edges and we refer to the unlinked pairs of
genes as the paralogy non-edges. An example of a partial
constraint graph is given in Figure 1.
If C is a full constraint set then U = � 0. R is called a full

constraint graph in this case. The complement of R is the
graph R̄ obtained by the alternative choice of linking para-
logs instead of orthologs. Formally, R̄ = (V, Ē\U, U),
where Ē is the complement of E defined by e ∈ Ē iff e ∉ E.
Notice that R and R̄ share the same set U of unknown
edges. We denote by R[X] the graph R induced by X ⊆ V,
i.e. R[X] = (X, E(X), U (X)) where E(X) (resp. U (X)) are
the edges of E (resp. U) having both endpoints in X. Note
that if U = � 0, R[X] corresponds to the usual definition of
the graph induced by X.
Satisfiability and consistency Given a constraint set C

(or similarly a constraint graph R), is C possible, i.e. can
we find a history for G inducing the orthology and
paralogy constraints of C? As an orthology constraint
for two genes belonging to the same genome cannot be
induced by a history for G, we assume in the rest of this

paper that the set C̃P = {{x, y} ∈
(G

2

)
: s(x) = s(y)} is

included in CP. A trivial set of paralogy constraints is a
set CP restricted to C̃P.
The question whether C is possible is in two parts: (1)

is C satisfiable, i.e. can we find a DS-tree G inducing C
and (2) is there such a G which is consistent with a spe-
cies tree? Formal definitions follow.
Definition 3 Let R = (V, E, U) be a constraint graph

and G be a DS-tree with L(G) = V. We say that G satis-
fies R if for two genes x, y ∈ L(G), if xy ∈ E then they are
orthologous w.r.t. G, and if xy ∈ E \ U then they are
paralogous w.r.t. G. We say that R is satisfiable if there
exist a DS-tree G that satisfies R.
If U = � 0, then R being satisfiable means that we can

make a choice for the unknown edges as orthology edges
and paralogy non-edges to obtain a full constraint graph
that is satisfiable. For F ⊂ U, the realization of R by F
corresponds to choosing F as orthology edges, and U \ F
as paralogy non-edges, leading to the full constraint

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 3 of 10

graph R(F) = (V, E ∪ F, � 0). We call R(� 0) and R(U) the
empty and full realizations, respectively.
As a history is a DS-tree, a set of constraints that is

not satisfiable is clearly not possible, i.e. there is no his-
tory that depicts the orthology/paralogy relationships
given by the constraints. Moreover, satisfiability is not
sufficient to ensure the possibility of such an history, as
a DS-tree is not always consistent with a species tree.
Figure 1 shows an example of a constraint graph R
along with two satisfying realizations R1 and R2. How-
ever, R1 cannot be made consistent with a given species
S whereas R2 can.
Definition 4 Let R be a constraint graph for G. We say

that R is consistent with a species tree S if and only if
there is a realization of R which is satisfiable by a DS-
tree G which is consistent with S. More generally, we say
that R is consistent if and only if there is a species tree S
such that R is consistent with S.
The three following sections are respectively dedicated

to the three following questions: (1) Given a constraint
graph R = (V, E, U), is R satisfiable? (2) Given a satisfi-
able constraint graph R = (V, E, U), and a species tree S,
is R consistent with S? (3) Given a satisfiable constraint
graph R = (V, E, U), is R consistent, i.e. can we find a
species tree S such that R is consistent with S?

Satisfiability of a constraint graph
The problem of constraint graph satisfiability has been
addressed in [17] in the restricted case of a full set of
constraints. The following theorem is a reformulation of
one of the main results of this paper.

Theorem 2 ([17]) A full constraint graph R is satisfi-
able if and only if R is P4- free (or equivalently, iff R̄ is
P4-free since P4 is self-complementary), meaning that no
four vertices of R induce a path of length 4.
Consider now the general case of a constraint graph

R = (V, E, U) with U = � 0. Then the problem is to find a
realization R(F) that is itself satisfiable, i.e. P4- free. It
turns out that this problem is a reformulation of the
well-known Graph sandwich problem for P4-free graphs.
It can be stated as follows : given two graphs G1 = (V, E1)
and G2 = (V, E2), with E1 ⊆ E2, does there exist a P4-free
graph G = (V, E) such that E1 ⊆ E ⊆ E2. That is, G must
contain every edge of G1 and every non-edge of G2. It
is then clear that this is equivalent to finding a P4-free
realization of R = (V, E1, U = E2 \ E1). A O(|V |3) algo-
rithm was proposed in [21] to solve this problem. In
this section, we restate under our formalism some of
the useful results of this paper, and give a modified
version of the proposed algorithm that outputs a DS-
tree that satisfies R whenever there is one. We will
make use of the following well-known characterization
of P4-free graphs.
Lemma 1 A graph Γ is P4-free if and only if, for any

subset X of vertices of Γ with |X| ≥ 2, either Γ[X] or
� [X] is disconnected.
The next lemmata establish an important heritability

property on satisfiable graphs: every restriction R[X] of
R must be satisfiable for R to be satisfiable.
Lemma 2 Let G be a DS-tree that satisfies a realiza-

tion R(F), for some F ⊆ U. Let X ⊆ V and let FX = {ab ∈
F : a, b ∈ X}. Then G|X is a realization of R[X](FX).

Figure 1 Constraint graph, satisfiability and consistency. A constraint graph R = (V, E, U) with E and U depicted by solid and dotted edges,
along with with two satisfiable realizations R1 = R({d1e1}) and R2 = R({d1c2}). The gene names correspond to their respective species in the
species tree S. The tree G1 is a DS-tree that satisfies R1 while G2 is a DS-tree that satisfies R2. Duplication nodes in G1 and G2 are indicated by a
green square. G1 is not consistent with S because for instance, G1 has the speciation triplet s(a1)s(d1)|s(e1) = ad|e while S has the de|a triplet. The
tree G2 is consistent with S.

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 4 of 10

Proof: Let a, b ∈ X. First observe that a and b have the
same orthology/paralogy relationship in R(F) and R[X]
(FX). Let c = lcaG(a, b). Now, c is also an internal node
of G|X, and moreover c = lcaG|X(a, b). As c has the same
Dup or Spec label as in G, c correctly displays the rela-
tionship between a and b. Thus G|X satisfies every rela-
tionship in R[X](FX).
The heritability property is then immediate.
Lemma 3 [21]A constraint graph R = (V, E, U) is

satisfiable if and only if for any X ⊆ V, R[X] is
satisfiable.
Theorem 3 [21]A constraint graph R is satisfiable if

and only if at least one of the two following holds :
1 R(� 0) is disconnected, and all of its connected com-

ponents are satisfiable;
2 R (U) is disconnected, and all of its connected com-

ponents are satisfiable.
Proof: ⇐ For 1.: Suppose R(� 0) is disconnected. Let

{R1,..., Rk} be the connected components of R(� 0) with
k >1, all being satisfiable. As each Ri is satisfiable, there
is a DS-tree Gi that satisfies a realization Ri(Fi) of Ri. Let
F = ∪1≤i≤k Fi. Then the realization R(F) of R is a full
constraint graph with k full constraint components Ri

(Fi) in which no two components share an edge. In
other words, there is a paralogy non-edge between each
pair of genes from two different components. Therefore,
joining the roots of G1,..., Gk under a common duplica-
tion node yields a DS-tree for R(F), which shows that R
is satisfiable. The proof when 2. holds is the same,
except that we root G at a speciation node since the
components of R (U) are pairwise-complete in R(U).
⇒ Suppose that both conditions do not hold. If R(� 0) or

R (U) has a component that is not satisfiable, then by
Lemma 3, R is not satisfiable. So instead suppose that
each of R(� 0) and R (U) has a single connected compo-
nent. Let F ⊆ U. The realization R(F) of R must be con-
nected as R(� 0) is already connected and
R(F). R(F) must also be connected, as choosing all edges
of U leaves R (U) connected and ER (U) ⊆ E(R(E)).
Since both R(F) and R(F) are connected, by Lemma 1 R
(F) is not P4-free, and thus not satisfiable by Theorem 2.
As this is true for any realization R(F) of R, i.e. for any
F ⊆ U, it follows that R is not satisfiable.
Theorem 3 suggests the recursive algorithm BuildD-

STree that begins by finding out if one of R(� 0) or R (U)

is disconnected. If so, it creates a node of the appropri-
ate type with children being the identified components,
and repeats the process on each such component.
Algorithm BuildDSTree (R = (V, E, U), v)
where R is a (possibly induced) constraint graph and v

is the current node of G we are creating

IF |V | = 1; RETURN;R(� 0) = (V, E, � 0)

Find the connected components CC of R(� 0)
through a depth-first search
IF |CC| > 1;

type ¬ Dup
ELSE
R(U) = (V, Ē, � 0)

type ¬ Spec
Find the connected components CC of R (U)

through a depth-first search IF |CC| = 1; output
“Unsatisfiable”, and halt the recursion

END IF
v.type ¬ type
FOR C ∈ CC;

Add child node vCto v
BuildDST ree(R[C], vC)

END FOR
RETURN

If n is the number of genes in G, the algorithm creates
a DS-tree G with at most n − 1 internal nodes (or stops
before if R is unsatisfiable). For each such internal node
v, the time taken to go through the algorithm is domi-
nated by (at most) two depth-first searches that are
performed on L(Gv), and the rest of the work is handled
by children nodes. So the time taken to handle v is
bounded by the number of edges/non-edges in R[L(Gv)],
which is O(|L(Gv)|

2) ⊆ O(n2). Therefore the time-
complexity of BuildDSTree is in O(n3).

Consistency with a given species tree
Let R = (V, E, U) be a constraint graph for G and S be a
species tree for Σ. We want to know whether the orthol-
ogy/paralogy constraints represented by R can be
induced by a history for G consistent with S. More pre-
cisely, is there a realization R(F) of R that is satisfiable
and such that the DS-tree satisfying R(F) is consistent
with S? If R is not satisfiable, then the answer is clearly
no. Therefore hereafter we assume that R is satisfiable.
We first show that the problem at hand still has the
heritability property.
Lemma 4 R is consistent with S if and only if for any

X ⊆ V, R[X] is consistent with S.
Proof: The ‘⇐’ part is trivial since we can choose X =

V to show that R is consistent with S. Conversely,
assume R is consistent with S. Let G be a DS-tree for
some realization of R such that G is consistent with S,
and let X ⊆ V. By Lemma 2, G|X is a DS-tree for R[X].
Let ab|c ∈ trS (G|X). Since going from G|X to G only
involves adding subtrees on branches of G|X, it follows
that ab|c ∈ trS (G). Therefore, trS (G|X) ⊆ trS (G). Now,
since S displays trS (G), G|X is a realization of R[X] that
is consistent with S.
We need to introduce one last notation before stating

the main theorem for characterizing consistency of a

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 5 of 10

constraint graph R with a species tree S. Let R(F) be a
realization of R, and let CC = {R1,..., Rk} be the con-
nected components of R(F). Notice that the components
of CC are pairwise complete in R(F). A speciation parti-
tion P = {P1,..., P|P|} is a non-trivial partition of CC (i.e. |
P | >1) such that lcaS (s(Pi)) is unrelated to lcaS (s(Pj))
whenever i ≠ j.
Theorem 4 R is consistent with S if and only if at

least one of the following conditions holds:
1 R(� 0) is disconnected and each connected component

is consistent with S;
2 R (U) is disconnected, its components admit a spe-

ciation partition and each component in this partition is
consistent with S.
Proof: ⇐ For 1., Let {R1,..., Rk} be the connected com-

ponents of R(� 0), each Ri having a DS-tree Gi consistent
with S. We can then join the roots of G1,..., Gk under a
common duplication parent. This yields a DS-tree G
that satisfies R as each pair of components of R(� 0) are
related by paralogy. Furthermore, all rooted triplets of G
that were not in any Gi are rooted at r(G), a Dup node.
Therefore, trS (G) = ∪1≤i≤k trS (Gi), which S displays.
⇐ 2.: Let P = {P1,..., Pk} be a non-trivial speciation par-

tition of the connected components of R (U). By
assumption every Pi ∈ P has a DS-tree Gi that is consis-
tent with S, implying that S displays ∪1≤i≤k trS (Gi). Here
all elements of P are components of R that are pairwise-
complete, and we obtain a DS-tree G for R by joining
G1,..., Gk under a common speciation parent. Let T = trS
(G) \ ∪1≤i≤k trS (Gi). Every triplet of T is rooted at r(G).
Thus if three genes a, b, c of L(G) form a speciation triplet
s(a)s(b)|s(c) ∈ T, then a and b are in some part Pi while c
is in another part Pj. But by the definition of speciation
partitions, lcaS (s(Pi)) is unrelated to lcaS (s(Pj)), implying
that s(a)s(b)|s(c) ∈ tr(S). It follows that S displays T.
⇒ : suppose both conditions are not met, but that R is

consistent with S. If R(� 0) is disconnected but has an
inconsistent component, then R is inconsistent by
Lemma 4. So we assume R(� 0) is connected. If R (U) is
also connected, then we saw in Theorem 3 that R is not
even satisfiable. If R (U) is disconnected and admits a
speciation partition, but a member of this partition is
not consistent, then again by Lemma 4, R is not consis-
tent. So we assume that R(� 0) is connected, and R (U) is
disconnected but admits no speciation partition. Let G
be a DS-tree for R consistent with S. Suppose r(G) is a
duplication node and let r1, r2 be two children of r(G).
We have that every gene in L(Gr1) is paralogous with
every gene in L(Gr2) and vice-versa. This implies that L
(Gr1) and L(Gr2) are two components of R(� 0) that share
no edge, a contradiction since we assume R(� 0) is con-
nected. So r(G) is a speciation node. Let r1,..., rk be the
children of r(G). The sets L(Gr1),..., L(Grk) form a parti-
tion P of the connected components of R (U). Since S

displays trS (G), it follows that for two distinct Pi, Pj ∈
P, lcaS (s(Pi)) and lcaS (s(Pj)) are unrelated.
Hence P is a speciation partition, a contradiction.
This theorem suggests a small modification to algo-

rithm BuildDSTree. Connected components of R(� 0)
are handled in the same manner, but in the case of a
disconnected R (U), we need to find a speciation parti-
tion P after having found its connected components
CC. To accomplish this, it suffices to observe that
some C1, C2 ∈ CC must be in the same part of P when
lcaS (s(C1)) is on the path from lcaS (s(C2)) to the root
of S (or vice-versa). Thus for each Pi ∈ P, we can find
the member of C ∈ Pi that has lcaS (s(C)) the closest
to the root of S, then any other component C′ having
lcaS (s(C′)) in the subtree rooted at lcaS (s(C)) will be
in Pi.
FINDSPECIATIONPARTITION uses that fact to find

P through a pre-order traversal of S.
Algorithm FindSpeciationPartition(CC, s, P, Pi)
where CC is the set of components to partition, s ∈ V

(S) is the current node of S in the pre-order traversal, P is
the partition of CC, and Pi is the current part of P we are
adding components to

FOR C ∈ CC such that lcaS(C) = s;
IF Pi is not set; let Pi be a new empty set and
add Pi to P
Add C to Pi

END FOR
FOR s′ ∈ children(s);

FindSpeciationPartition(CC, s′, P, Pi)
END FOR

Assuming constant time for each lca lookup, we can
precompute lcaS (s(C)) in time |C| for each C ∈ CC. If CC
has a total of k nodes, by mapping each s ∈ S to the list of
C ∈ CC with lcaS (s(C)) = s, the whole algorithm takes
time O(k + |S|). We need up to n − 1 calls of BuildDSTree.
We argued that one call on a node v of G in BUILDD-
STREE takes time O(|L(Gv)|

2), so adding this step makes it
O(|L(Gv)|

2 + |S| + k). Noting that k = |L(Gv)|, and assum-
ing that |L(Gv)| ≥ |S|, this modified algorithm still runs in
time O(n3), where n = |G|.

Consistency of a satisfiable constraint graph
Now let R = (V, E, U) be a constraint graph for G and sup-
pose the species tree for Σ is unknown. The question is to
know whether the graph R is consistent, and if so to out-
put a species tree S such that R is consistent with S. As
above, we assume that R is satisfiable. Note that unlike the
two previous problems, we cannot treat each connected
component of R(� 0) or R (U) independently, as two (or
more) components might give gene histories consistent by
themselves but not together.

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 6 of 10

We hereafer begin with two classes of constraint
graphs for which consistency always holds.
Orthology constraints only: Suppose R = (V = G, E, U)

represents a constraint set restricted to orthology con-
straints, i.e. C = (CO, CP), where CP = C̃ is the trivial
set of paralogy constraints. For each si ∈ Σ, let
Lsi = {x ∈ V : s(x) = si} and let Fsi be the star-tree joining
all the leaves of Lsi under a single duplication node.
Now let G be the star-tree joining all the Fsi trees, for
all si ∈ Σ, under a single speciation node. Then G
satisfies the full realization R(U) of R and it is consis-
tent with the star-tree for Σ. Therefore any set of
orthology constraints is consistent.
Paralogy constraints only: Suppose R = (V = G, E, U)

represents a constraint set restricted to paralogy con-
straints, i.e. C = (CO =� 0, CP). If G is the star-tree join-
ing all the genes of G under a single duplication node,
then G satisfies the empty realization R(� 0) of R and it
is consistent with the star-tree for Σ. Therefore any set
of paralogy constraints is consistent.
Consider now a full constraint graph R. The results in

[17,18] suggest a polynomial-time algorithm for solving
the consistency problem that consists in building a DS-
tree G satisfying R, extracting all speciation triplets of G
and checking their consistency with a species tree. Here
we propose an alternative polynomial time algorithm for
the same problem, avoiding the first step of a DS-tree
construction. We first introduce the following subset P3

(R) of triplets of
(

V
3

)
inducing a path of size 3 in R:

P3(R) = {s(x)s(y)|s(z) : {x, y, z} ∈
(

V
3

)
, zx, zy ∈ E and xy /∈ E ∪ U and s(x) /∈ s(y)}

Notice that s(x)s(y)|s(z) ∈ P3(R) implies that any DS-tree
G satisfying R has s(x)s(y)|s(z) ∈ trS (G). Indeed, since xy ∉ E
∪ U, lcaG(x, y) is a duplication node. And since both x and y
are related to z by speciation, lcaG(x, z) = lcaG(y, z) and xy|z
must be a speciation triplet of G.
For example, consider the vertices b1, c2, e1 of the R

graph in Figure 1, which form a path of length 3 with e1 in
the center. In the DS-tree G1, lcaG1 (b1, c2) is a duplication,
and lcaG1 (b1, c2) ({b1, c2, e1}) is a speciation. Restricting G1

to the three vertices yields the triplet b1c2|e1 rooted at a
speciation, and therefore, s(b1)s(c2)|s(e1) ∈ trS (G1).
The same holds for the s(c1)s(c2)|s(e1) triplet implied by

the P3 induced by c1, c2, e1. Notice however that in both
DS-trees, s(b1)s(c1)|s(e1) is a speciation triplet, though b1,
c1, e1 do not induce a P3. We show that this kind of spe-
ciation triplet is implied by the other two aforementioned
P3, and that the P3 subgraphs actually imply every manda-
tory speciation triplet.
Theorem 5 Let R = (V, E, U =� 0) be a satisfiable full

constraint graph. Then R is consistent if and only if there
exists a species tree S displaying all the triplets of P3(R).

Proof: ⇒ : since s(x)s(y)|s(z) ∈ P3(R) implies that s(x)s
(y)|s(z) ∈ trS (G), it follows that any species tree S con-
sistent with R must display every triplet of P3(R).
⇐ : we first obtain a least-resolved DS-tree G for R in

terms of speciation. Let G′ be a consistent DS-tree
satisfying R, and let S be a species tree displaying P3

(R). If G′ has any speciation node v that has a specia-
tion child w, we obtain G″ by contracting v and w
(delete w and give its children to v). Since v and w are
both speciations, this operation does not change the
label of lcaG(x, y) for any two leaves x and y and G″

still satisfies R. Moreover, trS (G″) ⊂ trS (G′), so there
is no risk of breaking consistency. We obtain a DS-tree
G by repeating this operation until we cannot find
such a v and w.
Let xy|z be a triplet of G rooted at a speciation node.

We have that lcaG(z, x) = lcaG(z, y) is a speciation, and
that zx, zy ∈ E. If lcaG(x, y) is a duplication node, then
xy ∉ E. So {x, y, z} induces a P3 in R, and S displays s(x)
s(y)|s(z). Suppose instead that lcaG(x, y) is a speciation
node. Because G is a least resolved DS-tree, there must
be a duplication node u on the path between lcaG(x, y)
and lcaG(x, z). This implies there is a leaf d in Gu such
that x and y are related to d by duplication, but with d
and z related by speciation. In R, we then have zd ∈ E,
and xd, yd ∉ E. Thus both {x, d, z} and {y, d, z} induce a
P3 in R with z being the middle vertex, and s(x)s(d)|s(z),
s(y)s(d)|s(z) ∈ P3(R) are both displayed by S. This is only
possible if there is a node in S that has all of s(x), s(y), s
(d) in one child subtree and s(z) in another. Therefore, S
must display s(x)s(y)|s(z). Having taken care of both
types of speciation triplets, we deduce that displaying P3
(R) is sufficient to display trS (G).
Therefore the consistency problem for a satisfiable full

constraint graph reduces to the problem of verifying
whether the set P3(R) of triples can be displayed in a
species tree for Σ. This is in fact a well know problem
with a solution presented in [22]: given a triplet set R,
there is a polynomial-time algorithm, called BUILD [23],
that, when applied to R either outputs a species tree
that displays R or recognizes that R is inconsistent.
Therefore, in the case of a full constraint graph, the
consistency problem is resolved in polynomial time by
first constructing the set P3(R), and then applying the
BUILD algorithm.
Consider now the general case of a constraint graph

R = (V, E, U) with U �=� 0. The branch-and-bound algo-
rithm CHECKCONS iterates over the edges of U, tries
to make them edges and non-edges but stops as soon as
one decision creates a set of P4 with no unknowns or a
set of P3 that is inconsistent. Since at worst, every possi-
bility is tested, it follows that this algorithm is exact,
though exponential in the worst case.

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 7 of 10

ALGORITHM CHECKCONS (R = (V, E, U))

Obtain a species tree S by running BUILD on P3 (R)
IF S is not set (i.e. BUILD failed), RETURN FALSE
IF R is not satisfiable, RETURN FALSE
IF U = � 0, return (R, S)
Let e ∈ U and let Re = (V, E ∪ {e}, U \ {e})
(R′, S) ¬ CHECKCON S(Re)
IF (R′, S) is set (i.e. CHECKCONS succeeded),
RETURN (R′, S) Otherwise let Rē = (V, E, U\{e})
(R′, S) ¬ CHECKCONS(Rē)
IF (R′, S) is set (i.e. CHECKCONS succeeded),
RETURN (R′, S)
Otherwise RETURN FALSE

Possible improvements of this algorthm include
removing as many edges from U as possible, and choos-
ing an ordering of the edges that may speed up the
branch-and- bound process. For instance, it may be
worthwhile to first identify every induced P4 of R(� 0).
The P4 subgraphs that admit only one possibility for
removal, i.e. the P4 can only be removed by making a
unique edge e ∈ U an orthology edge, can be corrected
before entering the algorithm. Note that the same
applies for the edges of U that must be edges of R (U).
We may then prioritize the handling of the other P4 by
considering the edges that resolve them first. Similarly,
it would also be possible to identify edges of U that are
mandatory in E by finding the P3 subgraphs of R(� 0) that
are not in P3(R), but that disagree with a triplet of P3(R).
For instance, R(� 0) might have a P3 with edges xz, zy, but
this P3 is not in P3(R) because xy ∈ U. If say s(y)s(z)|s(x)
is in P3(R), then xy is forced in E as otherwise the contra-
dictory s(x)s(y)|s(z) triplet would be present.

Experiments
We show how the developed algorithms for checking
satisfiability and consistency can be used, in combina-
tion with an orthology detection tool such as Protei-
nOrtho [11], to infer a robust set of orthology and
paralogy constraints. Given a set of protein sequences,
Proteinortho infers homologous gene families as well as
orthology relationships within these families, based on
various similarity scores. Proteinortho does not infer
paralogy relationships. However, if we choose a set of
parameters leading to a loose characterization of ortho-
logs, then we can assume that unpredicted constraints
should represent paralogy. Different combinations of
parameters therefore lead to different constraint sets
that can be analyzed for sat-isfiability and consistency.
ProteinOrtho has been run on 265 gene families of

vertebrates, each representing the leaf-set of an Ensembl
[5] gene tree. Trees were chosen randomly among the
Ensembl gene trees containing at least 20 leaves. For

each family, five different parameter settings, numbered
from −2 to +2, were tested, 0 representing the default
parameter choice of ProteinOrtho, and the smaller the
number, the looser is the induced characterization of
orthology. For each parameter setting i, we define the
full constraint graph Ri where all gene pairs not pre-
dicted as orthologs are interpreted as paralogs. Typically,
a graph R− for a negative number (−1 or −2) contains
more orthology (and thus less paralogy) constraints than
R0, while the converse is true for a graph R+. Combining
two constraint graphs R− and R+ consists in keeping
only orthology and paralogy edges that are common to
both, and completing the graph with unknown edges.
Table 1 summarizes the results on satisfiability and

consistency with the Ensembl species tree S, obtained
for each gene family and each parameter setting or com-
bination. Among the 265 gene families, only 112 (42%)
produced at least one satisfiable full constraint graph
and only 44 (15%) produced such a graph which is also
consistent with the Ensembl species tree. However, com-
bining loose and strict parameter settings lead to much
better results with at least 95% satisfiability and 56%
consistency with S. The partial orthology/paralogy con-
straints obtained from combinations correspond to
about half of the constraints of a full graph, as illu-
strated by the last column of the table.
In order to get a rough idea of the accuracy of the

obtained partial orthology/paralogy predictions for each
gene family G, we compared them with those resulting
from the labeling of the Ensembl gene tree nodes as
duplication and speciation nodes. An orthology disagree-
ment refers to orthology predictions on the four com-
bined graphs depicted in Table 1, that are rather
inferred as paralogs from the Ensembl gene tree labeling.

Table 1 The results over 265 gene families from Ensembl.

satisfiable
families

consistent
families

% constraints when
consistent

−2 82 (30.9%) 30 (11.3%)

−1 44 (16.6%) 13 (4.91%)

0 26 (9.81%) 9 (3.40%)

+1 48 (18.1%) 14 (5.28%)

+2 55 (20.8%) 18 (6.79%)

−2/+2 260 (98.1%) 172 (64.9%) 42.0%

−2/+1 258 (97.4%) 172 (64.9%) 44.8%

−1/+1 254 (95.8%) 149 (56.2%) 50.6%

−1/+2 255 (95.9%) 157 (59.2%) 47.5%

The first five rows correspond to the full constraint sets obtained from
PROTEINORTHO for the five classes of parameters. The last four rows
correspond to the partial constraint sets obtained after combining two graphs
over two types of parameters. The first column is the number of families for
which the settings of PROTEINORTHO yielded a satisfiable graph, the second
that number consistent with the Ensembl species tree. The last column shows
the percentage of constraints that were not unknown when a consistent
solution was found (which is 100% for the first five rows).

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 8 of 10

A paralogy disagreement refers to the reverse situation.
Overall, the orthology disagreement percentage is
between 15.1% and 15.9% depending on the two classes
of parameters combined. For paralogy disagreement, it
varies between 11% and 17%, depending on the 2 para-
meters combined (−2/+1 and −2/+2 were around 11.2%
while −1/+1 and −1/+2 were around 17.4%).
Notice that Ensembl annotates many duplication

nodes as “dubious”. If we ignore orthology disagree-
ments caused by a dubious duplication node, the orthol-
ogy disagreement percentage drops to an average of
5.0%, strengthening the doubts on those duplication
nodes.

Conclusion
In this work we have developed methods to assess the
plausibility of a partial set of orthology and paralogy
relationships between pairs of homologous genes. In
particular, we showed how extending algorithms for the
Graph sandwich problem can solve, in cubic time, the
problems of satisfiability and consistency with a given
species tree. In case of an unknown species tree, the
complexity of the problem of verifying consistency with
some species tree remains open. We have elaborated on
the P3 property of the constraint graph, which leads to
an exponential branch-and- bound algorithm. It remains
possible that this property could be used to create a
more efficient method. While previous work consisted
in verifying whether a full set of relationships was satis-
fiable or consistent, admitting uncertainty within these
relationships makes it possible to bring the theory from
[18] into practice, as current orthology (or paralogy)
inference methods based on sequences cannot guarantee
100% accuracy in their predictions. We show how a
confidence set of such predictions can be inferred using
our methods and Proteinortho. A promising direction is
to use such robust predictions to correct gene trees in
case of disagreement.

Availability
Software is available at http://www-ens.iro.umontreal.ca/
~lafonman/software.php.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ML, NE devised the proofs and algorithms and wrote the paper. ML
implemented the software.

Declarations
Publication charges for this work was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery Grant and Fonds
de Recherche Nature et Technologies of Quebec (FQRNT) B2 Grant.
This article has been published as part of BMC Genomics Volume 15
Supplement 6, 2014: Proceedings of the Twelfth Annual Research in

Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/15/S6.

Published: 17 October 2014

References
1. Ohno S: Evolution by gene duplication Berlin: Springer; 1970.
2. Goodman M, Czelusniak J, Moore G, Romero-Herrera A, Matsuda G: Fitting

the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. Systematic
Zoology 1979, 28:132-163.

3. Coghlan A, Coin JRL, Heriche J, Osmotherly L, Li R, T TL, Zhang Z, Bolund L,
Wong G, Zheng W, Dehal P, J JW, Durbin R: TreeFam: a curated database
of phylogenetic trees of animal gene families. Nucleic Acids Research 2006,
34:D572-580.

4. Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A: TreeFam v9: a
new website, more species and orthology-on-the-fly. Nucleic Acids Res
2013, 42:D922-D925.

5. Flicek P, Amode M, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P,
Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T,
Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Komorowska M,
Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M,
Overduin B, Pignatelli M, Pritchard B, Riat H, Ritchie G, Ruffier M, Schuster M,
Sobral D, Tang Y, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M,
Wilder S, Aken B, Birney E, Cunningham F, Dunham I, Durbin R, FernA˜ ¡ndez-
Suarez X, Harrow J, Herrero J, Hubbard T, Parker A, Proctor G, Spudich G,
Vogel J, Yates A, Zadissa A, Searle S: Ensembl 2012. Nucleic Acids Res. 2012,
40:D84-D90.

6. Datta R, Meacham C, Samad B, Neyer C, Sjölander K: Berkeley PHOG:
PhyloFacts orthology group prediction web server. Nucleic Acids Res.
2009, 37:W84-W89.

7. Pryszcz L, Huerta-Cepas J, Gabaldón T: MetaPhOrs: orthology nd paralogy
predictions from multiple phylogenetic evidence using a consistency-
based confidence score. Nucleic Acids Research 2011, 39:e32.

8. Tatusov R, Galperin M, Natale D, Koonin E: The COG database: a tool for
genome-scale analysis of protein functions and evolution. Nucleic Acids
Research 2000, 28:33-36.

9. Li L, Stoeckert CJ, Roos D: OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Research 2003, 13:2178-2189.

10. Berglund A, Sjolund E, Ostlund G, Sonnhammer E: InParanoid 6: eukaryotic
ortholog clusters with inparalogs. Nucleic Acids Research 2008, 36:D263-D266.

11. Lechner M, Findeib S, Steiner L, Marz1 M, Stadler P, Prohaska S:
Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinformatics 2011, 12:124.

12. Waterhouse R, Zdobnov E, Tegenfeldt F, Li J, Kriventseva E: OrthoDB: the
hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids
Research 2011, 39(Database):D283-D288.

13. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J,
Rattei T, Creevey C, Kuhn M, Jensen L, von Mering C, Bork P: eggNOG v4.0:
nested orthology inference across 3686 organisms. Nucleic Acids Research
2013, 42:D231-D39.

14. Lafond M, Semeria M, Swenson K, Tannier E, El-Mabrouk N: Gene tree
correction guided by orthology. BMC Bioinformatics 2013, 14(supp 15):S5.

15. Lafond M, Swenson K, El-Mabrouk N: Models and algorithms for genome
evolution Springer; 2013, Chap. Error detection and correction of gene trees.

16. Consortium TGO: Gene ontology: tool for the unification of biology. Nat
Genet 2000, 25:25-29.

17. Hellmuth M, Hernandez-Rosales M, Huber K, Moulton V, Stadler P,
Wieseke N: Orthology relations, symbolic ultrametrics, and cographs.
J Math Biol 2013, 66(1-2):399-420.

18. Hernandez-Rosales M, Hellmuth M, Wieseke N, Huber K, Moulton V,
Stadler P: From event-labeled gene trees to species trees. BMC
Bioinformatics 2012, 13(Suppl. 19):56.

19. Hellmuth M, Wieseke N, Lechner M, Lenhof H, Middledorf M: Phylogenetics
from paralogs 2014, [Unpublished manuscript].

20. Fitch WM: Homology. A personal view on some of the problems. TIG
2000, 16(5):227-231.

21. Golumbic M, Kaplan H, Shamir R: Graph Sandwich Problems. J Algorithms
1995, 19(3):449-473[http://dx.doi.org/10.1006/jagm.1995.1047].

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 9 of 10

http://www-ens.iro.umontreal.ca/~lafonman/software.php
http://www-ens.iro.umontreal.ca/~lafonman/software.php
http://www.biomedcentral.com/bmcgenomics/supplements/15/S6
http://www.ncbi.nlm.nih.gov/pubmed/16381935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24194607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24194607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22086963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19435885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19435885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21526987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20972218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20972218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24297252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24297252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24564227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24564227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22456957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22507266?dopt=Abstract
http://dx.doi.org/10.1006/jagm.1995.1047

22. Semple C, Steel M: Phylogenetics. In Oxford Lecture Series in Mathematics
and in Applications. Volume 24. [Oxford, UK: Oxford University Press];
2003:119-120.

23. Aho A, Sagiv Y, Szymanski T, Ullman J: Inferring a tree from lowest
common ancestors with an application to the optimization of relational
expressions. SIAM J Comput 1981, 10:405-421.

doi:10.1186/1471-2164-15-S6-S12
Cite this article as: Lafond and El-Mabrouk: Orthology and paralogy
constraints: satisfiability and consistency. BMC Genomics 2014
15(Suppl 6):S12.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Lafond and El-Mabrouk BMC Genomics 2014, 15(Suppl 6):S12
http://www.biomedcentral.com/1471-2164/15/S6/S12

Page 10 of 10

	Abstract
	Background
	Results

	Introduction
	Notations and problem statement
	Satisfiability of a constraint graph
	Consistency with a given species tree
	Consistency of a satisfiable constraint graph
	Experiments
	Conclusion
	Availability
	Competing interests
	Authors’ contributions
	Declarations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

