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ABSTRACT The appearance, size, and weight of
poultry meat and eggs are essential for production eco-
nomics and vital in the poultry sector. These external
characteristics influence their market price and con-
sumers’ preference and choice. With technological de-
velopments, there is an increase in the application and
importance of vision systems in the agricultural sector.
Computer vision has become a promising tool in the real-
time automation of poultry weighing and processing
systems. Owing to its noninvasive and nonintrusive na-
ture and its capacity to present a wide range of infor-
mation, computer vision systems can be applied in the

size, mass, volume determination, and sorting and
grading of poultry products. This review article gives a
detailed summary of the current advances in measuring
poultry products’ external characteristics based on
computer vision systems. An overview of computer
vision systems is discussed and summarized. A compre-
hensive presentation of the application of computer
vision-based systems for assessing poultry meat and eggs
was provided, that is, weight and volume estimation,
sorting, and classification. Finally, the challenges and
potential future trends in size, weight, and volume esti-
mation of poultry products are reported.
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INTRODUCTION

Owing to an ever-growing world population (Gerland
et al., 2014), as well as the rising demand for animal-
based food proteins (FAO, 2018), future global meat
consumption is projected to increase (Berckmans,
2014). The poultry industry has been the fastest-
growing industry (Mallick et al., 2020), particularly in
developing countries, owing to growth in urbanization,
population, and income (Liu et al., 2010). Over the
year, white meat has been steadily favored globally,
growing the intake of poultry products with broiler
chicken meat becoming the most desired (Henchion
et al., 2014; Okinda et al., 2019). This mushrooming de-
mand is attributed to the high nutritional values of
poultry meat and eggs from its protein source, quality,
and reasonable pricing compared with other kinds of
meats (Mallick et al., 2020). With accelerated poultry
production and increased understanding of acceptable
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conditions for animal welfare, animal health, perfor-
mance, and sustainable environmental conditions
(Berckmans, 2014), human observation is no longer
feasible for livestock management (Okinda et al., 2018a).

The chicken is the most common poultry species
widely raised worldwide. About 5 billion chickens are
reared yearly as a food source for their meat and eggs
(Mallick et al., 2020). Broilers are the most favored
type of poultry and are reared for business purposes,
meat production, and consumption. The poultry indus-
try is generally categorized into meat and egg production
sections (Ren et al., 2020). In 2018, the USDA reported
an average intake of 277.7 eggs per person in the United
States. Worldwide production of eggs was around 80.1
million metric tons in 2016; this was twice the produc-
tion in 1990 (Conway, 2018). With nearly 529 billion
eggs, China is the leading egg-producing country, fol-
lowed by the United States, Mexico, India, and Brazil.
Global production of poultry meat reached 120.5 million
tons in 2017 and was expected to increase to 123 million
tons in 2018. The largest producers China, the United
States, and Brazil are predicted to lead poultry meat
production to 2028. As indicated by the latest Food
and Agriculture Organization and Organization for Eco-
nomic Cooperation and Development estimates, poultry
meat production is projected to rise by 141 million tons
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Table 1. Characteristics of type of camera and data set by different studies.

Poultry product Camera type Number of images ~ Samples Size(pixels) Author(s)
Broiler chickens 120 X 120 De Wet et al. (2003)
Sony Cyber-shot, Sony., Japan 1,200 — — Mollah et al. (2010)
Microsoft Kinect camera 44,952 640 X 480 Mortensen et al. (2016)
SM-N9005, Samsung., Korea 2,520 — — Amraei et al. (2017a)
SM-N9005, Samsung., Korea 2,440 — — Amraei et al. (2017b)
SM-N9005, Samsung., Korea 2,440 — — (Ab Nasir et al., 2018); Amraei et al. (2018)
Microsoft Kinect — — 640 X 480 Wang et al. (2017)
Chicken carcass CCD grayscale camera — — — Lotufo et al. (1999)
— 95 — — Chen et al. (2017)
Acel300-200uc, Basler, Germany — n = 100 1,280 X 1,024 Teimouri et al. (2018)
ScanBright Archeo 2, Poland — n =25 2,560 X 1,920 Adamczak et al. (2018)
EOS 5D, Canon Inc, China n = 250 Qi et al. (2019)
Jai BB-141 GE, England 136,472 n =45 — Jorgensen et al. (2019)
Egg TMC-7DSP (PULNIX) — n =110 — Cen et al. (2006)
UI-2210RE-C-HQ, IDS, Germany 640 X 480 Duan et al. (2016)
PROLINE UK, Model 565 s — n =125 Soltani et al. (2015)
Microsoft Kinect camera — n=38 424 X 512 Chan et al. (2018)
Microsoft Kinect camera 7,500 n = 1,500 512 X 424 Okinda et al. (2020b)
SDN-550, Samsung — n = 200 768 X 576 Javadikia et al. (2011)
Canon IXUS 960IS — — 1,200 X 1,600 Asadi et al. (2012)
HD Webcam ¢270 h — — 640 X 480 Siswantoro et al. (2017)
Logitech Webcam C170 640 X 480 Widiasri et al. (2019)
FUJIFILM camera n =120 Ab Nasir et al. (2018)
Canon IXUS 960IS — n = 90 1,200 X 1,600 Raoufat and Asadi (2010)
SRC-500HP CCD camera — n = 100 — Zhou et al. (2008)
Nikon D90 camera 4,288 X 2,848 Zhang et al. (2016)

by 2028, from 121 million tons over the 2016-2018
average base period (Conway, 2019).

Poultry size and BW are critical physical growth attri-
butes used to assess poultry production’s efficacy by
comparing the measured weight with the feed consumed
(Mortensen et al., 2016). Tt is also vital for the flock man-
agers to estimate the average poultry weight in advance
and weight spread at slaughter (Lott et al., 1982; Turner
et al.,, 1983, 1984). An accurate estimation of weight
dispensation throughout the flock and average weight
helps index broiler chicken pickup and slaughter (Ross
and Davis, 1990; Chedad et al., 2003). The most widely
known procedure for weight measurement is a manual

process, where the broiler is caught and placed on the
electronic scale. This approach increases labor and re-
duces animal welfare; it also affects the quality and yield
and can lead to broiler deaths (Wang et al., 2017). Tradi-
tionally, poultry farmers and human experts have been
measuring these metrics by visual approximation or by
manual weighing, which is tedious and can be very
exhausting to the birds (Turner et al., 1983; Doyle and
Leeson, 1989; Mortensen et al., 2016). In modern poultry
houses, automatic weighing systems weigh the birds
where they are expected to visit voluntarily. Four
methods exist that can be used to estimate livestock
weights automatically: 1) foreleg and platform scales,

Table 2. Summary of segmentation techniques by different studies.

Segmentation technique Product

Image type

Author(s)

Threshold based Broiler chicken

Watershed based
Threshold based

RGB — Grayscale

Chicken portions
Chicken carcass
Chicken legs
Eggs

Depth

RGB - Grayscale

RGB - Grayscale-Binary

RGB

Depth

RGB

Binary

De Wet et al. (2003)
Mollah et al. (2010)
Amraei et al. (2017a)
Amraei et al. (2017b)
Amraei et al. (2018)
Mortensen et al. (2016)
Wang et al. (2017)
Lotufo et al. (1999)
Teimouri et al. (2018)
Qi et al. (2019)
Koodtalang and Sangsuwan (2019)
Cen et al. (2006)

Duan et al. (2016)
Soltani et al. (2015)
Asadi et al. (2012)
Chan et al. (2018)
Okinda et al. (2020b)
Thipakorn et al. (2017)
Siswantoro et al. (2017)
Widiasri et al. (2019)
Ab Nasir et al. (2018)
Alikhanov et al. (2019)
Alikhanov et al. (2018)
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Table 3. Comparison of different types of features used by different studies.

Product Parameters

Feature space

Feature type Author(s)

Broiler chickens Live weight prediction
Mass estimation model
Weight estimation 2D
Weight estimation

Weight grading

Weight-based classification

Poultry weight estimation

On-line separation and sorting —

Broiler carcass
Chicken portions

Chicken’s legs Size classification 2D
Broilers carcass Weight estimation 2D + 3D
Egg Weight detection 2D

Shape and size grading

Volume prediction 1D + 2D
Mass and volume measurement 2D
Mass estimation

Size Classification

Weight prediction and size classification
Volume measurement

Volume estimation

Weight measurement

Weight estimation

Weight estimation

Weight- and shape-based grading

Weight measurement,

Automatic Sorting

Weight sorting

Egg weight estimation

Volume and surface area determination

1D + 2D + 3D  Morphologic

Mortensen et al., 2016)
Wang et al., 9017)
Amraei et al., 2017a)
Amraei et al., 2017b)
Chen et 1] 2017)

Qi et al., 2019)

Area Lotufo et al., 1999)
Geometrical, color, and texture  (Teimouri et al., 2018)
Geometric Koodtalang and Sangsuwan, 2019)
Morphological Jorgensen et al., 2019)
Cen et al., 2006)
Duan et al., 2016)
Siswantoro et al., 2017)
Widiasri et al., ZUIJ)
Geometric Waranusast et al., 2016)

Thipakorn et al., 2017)
Chan et al., 2018)
Okinda et al., 2020b)
Javadikia et al., 2011)
Aragua and Mabayo, 2018)
Asadi and Raoufat, 2010)
Ab Nasir et al., 2018)
Alikhanov et al., 2015)
Alikhanov et al., 2019)
Alikhanov et al., 2018)
Raoufat and Asadi, 2010)
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(Zhou et al., 2008)

Abbreviations: 1D, 1-dimensional; 2D, 2-dimensional; 3D, 3-dimensional.

2) walk-through scales, 3) automated cage scales, and 4)
vision-based scales (Tscharke and Banhazi, 2013).

The application of these automated weighing platform
systems to poultry was reported in numerous studies
(Lott et al., 1982; Turner et al., 1983, 1984; Newberry
et al., 1985; Doyle and Leeson, 1989; Kettlewell, 1989;
Lokhorst, 1996; Chedad et al., 2000, 2003; Wang et al.,
2018) The major downside of such automated platform
systems is that individual birds are likely to visit the
platform less frequently than others, notably heavier
birds, resulting in a challenge in determining the actual
weight of these birds (Newberry et al., 1985; Chedad
et al., 2000, 2003; Mortensen et al., 2016).

In addition, researchers reported unconvincing confor-
mity between manual and automatic mean measure-
ments (Chedad et al.. 2003). For instance, Klein
Wolterink and Meijerhof (1989) noted that during the
finishing phase of young broilers, weighing platforms
are less frequently visited, even though the systems
work well with broilers when they are young. Moreover,
Newberry et al. (1985) and Blokhuis et al. (1988) ascer-
tained that the average BW predicted by manual weigh-
ing were higher than the average weights predicted by
automatic weighing systems. Despite the automated sys-
tems exhibiting a relative path of the flock’s develop-
ment, body measurements are doubtful toward
maturing period completion (Blokhuis et al., 1988). A
novel technique is necessary to overcome such chal-
lenges, which is accurate and fast, and noninvasive to
make poultry processing increasingly economical and
efficient. Machine vision technology has proven
adequate in achieving this goal.

In the poultry production industry, computer vision
(CV) techniques have been used for poultry and its prod-
ucts (Okinda et al., 2020a). For instance, in safety in-
spection (Park et al., 2003), identification, detection,
monitoring, and classification of contamination
(Lawrence et al., 2001a,b; Nakariyakul and Casasent,
2007; Park et al., 2007), monitoring, evaluation, and pre-
diction of freshness (Grau et al., 2011; Salinas et al.,
2012; Xiong et al., 2015), quality inspection (Chao
et al., 2002; Barbin et al., 2015, 2016) tenderness classi-
fication (Jiang et al., 2018), carcass and live BW estima-
tion (Lotufo et al., 1999; Amraei et al., 2017b; Chen
et al., 2017), wholesomeness and unwholesomeness char-
acterization and inspection (Chao et al., 2008, 2010).
Likewise, CV was used for crack, defects, dirt detection,
and grading in eggs (Patel et al., 1998a; Mertens et al.,
2005; Leiqing et al., 2007; Dehrouyeh et al., 2010;
Wang, 2014), egg weight, and volume estimation
(Hoyt, 1979; Okinda et al., 2020b), egg freshness estima-
tion (Dutta et al., 2003; Abdel-Nour et al., 2011; Sun
et al., 2015), egg grading and sorting (Omid et al.,
2013; Nasiri et al., 2020).

Classification of size, volume, and weight is an essen-
tial step in grading and sorting most food, agricultural,
and meat products. Owing to its nondestructive capa-
bility and high efficiency, CV has been applied for assess-
ing weight (mass), volume, and size. The technique was
used to measure the volume and mass of fruits and veg-
etables in agriculture and food industries (Koc, 2007;
Khojastehnazhand et al., 2009, 2010; Rashidi et al.,
2009; Omid et al., 2010; Fellegari and Navid, 2011; Lee
et al., 2014; Concha-Meyer et al., 2018; Nyalala et al.,
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2019), pig weight (Du and Sun, 2006; Yan et al., 2006;
Yang and Teng, 2007; Kongsro, 2014; Fernandes et al.,
2019), and cow weight (Tasdemir et al., 2011; Hansen
et al., 2018)

The primary aim of this article is to present a detailed
review of the recent publications on image processing ap-
plications and CV approaches in the measurement and
classification of poultry products. The articles were
selected considering an exhaustive search in the primary
scientific databases, given that they should use image
processing and analysis to solve some problems with
poultry products. This review discusses the measure-
ment methods of physical parameters used by computer
vision systems (CVS) in the poultry industry. The article
further explains the various imaging approaches related
to the specific criteria being analyzed and their relevant
elements, estimation techniques, and data analysis. This
article will benefit consumers, poultry production and
processing plants, and researchers interested and
involved with the recent progressions and advancements
in nonintrusive measurement determination, primarily
implemented in poultry production poultry products.

OVERVIEW OF CV SYSTEMS

A CV system’s main component is the camera sensor,
lighting (illumination), image processing board, soft-
ware, and hardware. The photons are converted to elec-
tric signals by the camera sensor. Visual light-based
(charge-coupled devices and complementary metal oxide
semiconductor), thermal and infrared depth-based sen-
sors have been applied in mass and volume estimation
systems to acquire images in various environments. Ul-
trasound, magnetic resonance imaging, and computed
tomography are other imaging devices and technologies
used for vision systems (Yu et al., 2020). Lighting de-
vices produce light illuminating the target object being
inspected; thus, image quality is significantly affected
by the lighting system functionality and the system’s ef-
ficiency and precision in general (Liu et al., 2015). Suit-
able illumination significantly improves image
processing and analysis by refining image contrast,
reducing shadow, noise, and reflection (Zhang et al.,
2014); thus, consistent illumination should be provided
through all-scene lighting to assess exterior quality using
a CV system.

In a process referred to as digitization, the image pro-
cessing board, also known as the digitizer or frame
grabber, transforms the pictorial image into numerical
form (pixels). The software is the underlying code of im-
age analysis that manipulates images to achieve the
desired performance. To perform the underlying tasks
based on a specific programming framework such as
MATLAB, ImageJ, and OpenCV, to name a few,
various processing algorithms have been developed and
applied to the acquired images. All the connected com-
ponents that make up the CV system are regarded as
the hardware, that is, a camera sensor, connecting ca-
bles, a computer.

APPLICATION OF IMAGING TECHNIQUES
TO POULTRY PRODUCTS

Computer vision systems provide numerous benefits,
such as accuracy and reliability in grading and sorting
speed compared with manual processes. Furthermore,
they also have stable performance levels and nondestruc-
tive practices (Okinda et al., 2018b, 2020a; Nyalala
et al., 2019; Korohou et al., 2020; Raghavendra et al.,
2020; Tan and Xu, 2020; Tian et al., 2020; Xu et al.,
2020; Yu et al., 2020). Size is a critical parameter in
food and agricultural product production. Features
such as length, width, area, and perimeter define an ob-
ject’s size. Size measurements can be applied individu-
ally or combined with shape features (Du and Sun,
2004). The size of a product usually matches its volume,
weight (mass), and surface area. Weight has been used
to monitor the growth of fruits, vegetables, and livestock
(Omid et al., 2010; Kongsro, 2014; Lee et al., 2014;
Amraei et al., 2017a). Weight also determines the
grading, packaging, and cost of the products. Calcula-
tion of volume is critical for the density-based sorting
of food and agricultural products and volume-based
packaging space optimization. Volume can also be used
to aid in determining the weight of a product (Moreda
et al., 2009; Nyalala et al., 2019; Okinda et al., 2020Db).
The following subsections will cover image analysis tech-
niques used for size classification, volume, and weight
prediction in the poultry industry.

Image Preprocessing

Image processing is vital for improving the measure-
ment accuracy and validity of the analysis (Amraei
et al., 2017a). In chicken live weight estimation tech-
niques, both red, green blue (RGB) and infrared depth
images have been used. Red, green, blue is the commonly
used color space, but it is not suitable for object segmen-
tation owing to the high correlation between R, G, and B
color spaces (Cheng et al., 2001). Several studies have
thus explored various transformation techniques aimed
at achieving accurate segmentation of image objects.
All studies of poultry live weight estimation are based
on RGB and infrared depth images. In all the experi-
ments on 2-dimensional (2D) weight estimation systems
discussed, image analysis was conducted in RGB color
space with no transformation to other color space
models. However, color space transformation was per-
formed in a sick broiler detection system by (Zhuang
et al., 2018), whereby RGB color space was converted
to hue, saturation, value and Lab (CIE L*a*b) color
spaces. Based on the presentation (Zhuang et al.,
2018), because the resulting picture intensities were uni-
formly spaced and divergent, the S and V color spaces
are not conducive to chicken segmentation. However,
H space produces a precise, clear broiler body segmenta-
tion; the accuracy was somehow lower than the a-b map.
Therefore Zhuang et al (2018) applied the a-b map to
define the color space while L-a broiler body segmenta-
tion as an auxiliary definition. During the image



Table 4. Summary of classification techniques by different poultry studies.

Input image

Preprocessing

Feature extraction

Classifier /data analysis

Accuracy

Author(s)

Broiler chicken

Broiler chicken

Chicken carcass
Chicken portions
Chicken carcass
Chicken carcass

Broiler carcass

Egg

Egg

Threshold-based segmentation

Watershed segmentation,
Smoothening, morphologic opening
Threshold-based segmentation

Threshold-based segmentation

Threshold-based segmentation

Threshold-based segmentation

Threshold-based segmentation

Threshold-based segmentation

Threshold-based segmentation

3D + Morphologic features

Morphological features

Morphologic + 3D features

Morphologic features

Geometrical, Color, and texture

Morphologic features

2D + 3D

Morphologic features

Geometrical features

Morphologic features
Diameter

Geometric features

Morphologic features

Geometric features

Nonlinear regression
Linear regression models
Linear regression ANNs

BPNN, ¢ test
SVR

TF model
BPNN

Simple linear &
Multiple linear regression
PLSR, LDA, and ANNs

Correlation coefficients
Regression equations

ML Classification and regression tree models

Regression models
Regression model
Statistical analysis

SVM classifier

Linear regression and equations
SVM classifier

Statistical analysis

Statistical analysis

ANN

Regression analysis
Regression models

Statistical analysis
t test

ANFIS model

Statistical analysis
Neural Network

BPNN

Statistical analysis
Linear regression
ANOVA
Regression models
K-NN classifier

Statistical and regression analysis

RE = 11%, 16%

RE = 0.04%, 16.47%
MRE = 7.8%,

RSD = 6.6%
R?=0.98

R? =098

RMSE = 67.88
MAPE = 8.63%
R?=0.98

RMSE = 0.048 kg
MRE = 3.3%

R? = 0.827

R? = 0.880
Accuracy = 93%
2,800 samples p/h
SEP = 36.99, 33.19 g

R? = 0.996

RMSE = 0.039

R? = (0.755-0.808)

R? = (0.833-0.855)

r=0.9781

AE=<=*3g

Size grading = 90.5%

Shape grading = 89.3%

80.4%, Measurement error = 3.1%
r = 0.9915

87.58%

Accuracy = >96%

R? = 0.99, Mean AE = 0.59 cm?,
Maximum AE = 1.69 cm®

R? = 0.992, RMSE = 0.66 cm®
Accuracy = 93.3%

R? = 0.984, RMSE = 1.175 cm®,
1.294 cm® and 1.080 cm?®

MSE = 0.2955, MAE = 0.3285,
SSE = 35.4649, r = 0.9942 and
P=0

Accuracy = 96.31%

Error = 3.69%

R® = 96%

Absolute Error = <23 g
Absolute RE = 2.2078%

R” = 0.9738

Absolute RE = < 5%, CV= < 1%

r=95%

Accuracy = 94.16%
Accuracy = 44.17%
R? = 0.9439

R* = 0.9235

De Wet et al. (2003)
Mollah et al. (2010)
Mortensen et al. (2016)
Amraei et al. (2017a)
Amraei et al. (2017b)
Amraei et al. (2018)
Wang et al. (2017)
Chen et al. (2017)
Teimouri et al. (2018)
Adamczak et al. (2018)
Qi et al. (2019)
Jorgensen et al. (2019)
Cen et al. (2006)

Duan et al. (2016)

Waranusast et al. (2016)
Thipakorn et al. (2017)

Zalhan et al. (2016)
Soltani et al. (2015)

Chan et al. (2018)
Okinda et al. (2020b)

Javadikia et al. (2011)

Aragua and Mabayo (2018)
Asadi and Raoufat (2010)
Siswantoro et al. (2017)
Widiasri et al. (2019)

Asadi et al. (2012)
Ab Nasir et al. (2018)

Alikhanov et al. (2015)

(continued on next page)
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Table 4. (continued)

Author(s)

Accuracy

Classifier/data analysis

Feature extraction

Preprocessing

Input image

Alikhanov et al. (2019)

Sorting accuracy = 94.6% and

90.3%

Regression analysis

Threshold-based segmentation

Alikhanov et al. (2018)

r = 0.989, R? = 0.978

Regression analysis

Error = 2.5% and 12.5%

R? = 0.96

Raoufat and Asadi (2010)

Neural network algorithms

AE =<23¢g
R?=0.95

Shanmugasundaram (2016)

Regression analysis

Accuracy = 99%

Statistical analysis

—
<
B
)
-
=
o]
N

0.88 and 0.86

R =

Linear regression Statistical analysis

Geometric features

Egg

Abbreviations: AE, average error; ANFIS, adaptive neuro fuzzy inference system; MAE, mean absolute error; MAPE, mean absolute percentage error; MRE, mean relative error; MSE, mean square error; P,
probability; r, correlation coefficient; R?, coefficient of determination; RE, relative error; RMSE, root mean square error; RSD, relative SD; SEP, standard error of prediction; SSE, Sum square error, TF, transfer

function.
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acquisition phase or as a preprocessing procedure,
contrast adjustments may be made. To obtain a simple
outline of the birds, a contrasting background (dark floor
for white birds) can be manually placed (Amraei et al.,
2017a). Furthermore, image filtering in intensity-based
images (depth images) may be performed as a precaution
against oversegmentation (Mortensen et al., 2016).
Table 1 shows the different camera characteristics and
data sets by various studies in the application of com-
puter vision to poultry products.

Segmentation

Segmentation is performed after image processing to
separate a digital image into distinct areas. The primary
function is to separate the background during object
evaluation for the processing of the significant area.
The meaningful segments, also known as ROI, are the
initial step in transforming a color or a grayscale image
from low-level image processing to high-level image
description (features). Significant discriminating fea-
tures are fundamental in separating the background
from the birds. The main segmentation approaches
based on color can be grouped into 3 techniques: back-
ground subtraction, threshold-based, and learning-
based techniques.

The threshold-based technique is the most widely used
technique for foreground detection in chicken weight
estimation systems. The adaptive threshold technique,
based on the study by Otsu (1979), is the most classical
technique based on an image’s global intensity histo-
grams to determine the threshold value. The model-
based segmentation approach has not been applied to
chicken weight estimation systems based on the
reviewed articles. Adaptive threshold technique based
on (Otsu, 1979) has been used by De Wet et al. (2003);
Mollah et al. (2010); Wang et al. (2017); Amraei et al.
(2017a); Amraei et al. (2017b); Amraei et al. (2018);
Teimouri et al. (2018); Qi et al. (2019); and
Koodtalang and Sangsuwan (2019). Mortensen et al.
(2016) used the range-based watershed segmentation
technique to partition the broiler image into several par-
titions. To avoid oversegmentation of the broilers, the
depth images were smoothed using a Gaussian kernel,
followed by a morphologic opening with a circular struc-
turing element.

Cen et al. (2006) used threshold-based image seg-
mentation and an indicator to enhance the egg’s dif-
ference and background. Duan et al. (2016) also
used threshold-based segmentation to binarize the
egg image after removing the light leakage. Likewise,
a simple threshold operation was applied to segment
the egg region from its background (Thipakorn
et al., 2017). In the studies by Soltani et al.
(2015), Siswantoro et al. (2017), and Widiasri
et al. (2019), to separate eggs from the background,
the segmentation was carried out on the images us-
ing automatic thresholding. In this method, the pro-
gram finds the best threshold for each image
separately. Chan et al. (2018) used the Otsu
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Table 5. Overall summary of all studies by application category.

Category Poultry product Parameters Methods No. of studies Citations
Weight Broiler chickens ~ BW estimation Regression equations 7 De Wet et al. (2003)
Live weight estimation Linear equation, Mollah et al. (2010)
regression model
Weight prediction ANN, multivariate Mortensen et al. (2016)
linear regression
model
SVR Amraei et al. (2017b)
Transfer function Amraei et al. (2018)
model
Weight estimation ANN, ¢ test Amraei et al. (2017a)
Weight determination BPNN Wang et al. (2017)
Carcass Carcass weight estimation Linear regression and Lotufo et al. (1999)
equation
Regression models Jorgensen et al. (2019)
Carcass weight classification ML classification, Qi et al. (2019)
regression tree
models
Carcass weight grading Simple linear 5 Chen et al. (2017)
regression
Multiple linear
regression
Adjusted multiple
linear
Breast weight determination Regression analysis Adamczak et al. (2018)
Egg Weight detection Regression models Cen et al. (2006)
Weight prediction Linear regression and Thipakorn et al. (2017)
equations
Weight measurement ANFIS model Javadikia et al. (2011)
Statistical, Alikhanov et al. (2015)
regression analysis
ANOVA, Linear Widiasri et al. (2019)
regression
Weight estimation Statistical analysis 11 Aragua and Mabayo (2018)
Neural network Asadi and Raoufat (2010)
Regression models Asadi et al. (2012)
Neural network Raoufat and Asadi (2010)
algorithms
Weight grading K-NN classifier Ab Nasir et al. (2018)
Weight sorting Regression analysis Alikhanov et al. (2018)
Volume Egg Volume prediction Statistical analysis, Soltani et al. (2015)
ANN
BPNN, statistical Siswantoro et al. (2017)
analysis
Volume measurement Regression analysis Chan et al. (2018)
Linear regression, Widiasri et al. (2019)
ANOVA
Statistical analysis 8 Zhang et al. (2016)
Volume estimation SVR, GPR, ANN, Okinda et al. (2020b)
statistical, T-test
analysis
Volume determination Regression analysis Shanmugasundaram (2016)
Volume calculation Linear regression, Zhou et al. (2008)
statistical
Surface area Egg Surface area determination Regression analysis Shanmugasundaram (2016)
Surface area measurement Statistical analysis 3 Zhang et al. (2016)
Surface area calculation Linear regression, Zhou et al. (2008)
statistical
Shape and size Chicken Leg size classification DNN models Koodtalang and Sangsuwan (2019)
Egg Shape and size grading Statistical analysis Duan et al. (2016)

Sorting and grading

Chicken portions

Egg

Size classification

Shape-based grading
On-line separation and sorting

Grade classifier
Automatic sorting

SVM classifier 5
Linear regression,

equations, and SVM

classifier

K-NN classifier

ANN, PLSR, and

LDA analysis

Statistical analysis 3
Regression analysis

Waranusast et al. (2016)
Thipakorn et al. (2017)

Ab Nasir et al. (2018)
Teimouri et al. (2018)

Zalhan et al. (2016)
Alikhanov et al. (2019)

Abbreviations: ANFIS, adaptive neuro fuzzy inference system; ANN, artificial neural networks; BPNN, backpropagation neural network; GPR,
Gaussian Process Regression; LDA, linear discriminant analysis; PLSR, partial least squares regression; SVM, support vector machines; SVR, support

vector regression.
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(1979) method to separate the egg from the stage
based on the assigned infrared intensity values. A
summary of different segmentation techniques
applied in poultry studies is presented in Table 2.

Features Extraction

The morphologic features (shape and size) are
frequently used for weight estimation, automatic sort-
ing, and poultry product classification. Quantifying the
feature size is measured using 2D features (projected
area, perimeter, length, width, radial distance, major
and minor axis). The area (a scalar quantity) calculates
the actual number of pixels in the region. The distance of
2 neighboring pixels results in feature extraction. Perim-
eter (a scalar quantity) is the distance between the re-
gion’s boundaries (Korohou et al., 2020). Eccentricity
is the ratio of the major and minor axis when an ellipse
is fitted on an image. The radial distance is the average
distance between the boundary points and the center of
an image’s gravity. Major axis length is the pixel dis-
tance between an ellipse’s major axis end points, and mi-
nor axis length is the pixel distance between an ellipse’s
and minor axis endpoints. Three-dimensional (3D) fea-
tures (volume, surface area) have also been used to quan-
tify feature size.

Mortensen et al. (2016) used 1-dimensional, 2D, and
3D features for broiler weight prediction. The age was
the 1D feature, while 2D features included; projected
area, width, perimeter, radius, and eccentricity. Three-
dimensional features extracted were volume, convex vol-
ume, surface area, convex surface area, back width, and
back height from the depth images. Amraei et al.
(2017a); Amraei et al. (2017b); and Amraei et al.
(2018) extracted 2D feature parameters using the Image
Processing Toolbox. Wang et al. (2017) extracted 9 fea-
tures using a mathematical geometry method for back-
propagation neural network model construction.
Lotufo et al. (1999) used the area of 3 carcass parts as
a feature for weight prediction. Chen et al. (2017)
extracted 6 parameters (projection area, contour length,
length, breast width, breast length, and fitting ellipse)
from 95 processed images. Similarly, Qi et al. (2019) ob-
tained the same set of features for automatic chicken
carcass classification based on weight. Teimouri et al.
(2018) obtained 12 geometrical features, color features,
and texture features from chicken portions images.
Koodtalang and Sangsuwan (2019) extracted width,
length, and contour’s area features from chicken’s leg im-
ages as inputs for the deep neural network model.
Finally, Jorgensen et al. (2019) extracted a total of
thirty-five 2D and 3D features for the model
development.

Cen et al. (2006) extracted 4 egg size features of verti-
cal diameter, maximal horizontal diameter, upper hori-
zontal diameter, and nether horizontal diameter to
correlate to egg’s weight. Duan et al. (2016) extracted
the major and minor axis feature parameters represent-
ing size and egg shape index. Waranusast et al. (2016)
used the following 6 features: major axis, minor axis,

egg circumference, egg area, axis ratio, and compactness
from the best ellipse’s geometric properties. Thipakorn
et al. (2017) extracted 13 geometric features from the ac-
quired images of eggs for weight prediction. Okinda et al.
(2020b) extracted 2D geometric features from depth im-
ages and used them to develop 13 regression models. Ab
Nasir et al. (2018) extracted 7 geometric features using
image processing techniques and the principal compo-
nent analysis. Table 3 summarizes feature and space
and feature types extracted by different studies.

Modeling Techniques

Using image processing techniques, poultry product
images can be described by a set of features such as
size and shape. These features are used to form a training
set; then, classification algorithms are applied to extract
the knowledge base, which decides the unknown case.
Different modeling methods have been used in CVS to
classify poultry products by weight, volume, and size.
These have included artificial neural networks (ANN),
regression, support vector regression (SVR), support
vector machines (SVM), and convolutional neural
network/deep learning (Tan and Xu, 2020). Either sin-
gle independent or multiple variables are used in the
development of these models. Lotufo et al. (1999) used
a multidimensional linear regression least square curve
fitting to predict the weight from the 3 area parameters
(breast, legs, and wings regions). They achieved a
R? = 0.92 and a SD error of 78 g for the system.
Mendesg and Akkartal (2009) used the regression trees
to predict slaughter weight, and Tyasi et al. (2020)
used classification and regression trees to predict the
BW of laying hens. Mendes et al. (2005); Yakubu et al.
(2009); Mendes (2009); Yakubu and Salako (2009);
and Egena et al. (2014b) used principal component
scores and analysis for weight prediction of poultry. Mul-
tiple regression models were developed to predict male
chicken’s weight (Mendes, 2009; Jesuyon and Oyelola,
2016).

In addition, Chen et al. (2017) constructed a simple
linear regression model and a multiple linear regression
model for carcass grading. Based on the carcass projec-
tion area, the simple linear regression model had the
highest accuracy of R* = 0.827. The multiple linear
regression model had the highest accuracy of
R? = 0.8880 based on the projection area, breast width,
and breast length. The adjusted multiple linear regres-
sion model accuracy was R?* = 0.933 after removing
the detected 8 outliers. Similarly, De Wet et al. (2003)
used regression equations to determine broiler chickens’
daily BW. The study estimated chicken weight by a 10%
relative error (SD of the residuals from the image surface
pixels) and 15% for image periphery data. Mollah et al.
(2010) developed a linear equation to estimate the
broiler’s weights from its body surface area pixels. The
relative error in weight estimation of broiler chicken by
image analysis, expressed in terms of percent error of
the residuals from surface area pixels, was between
0.04 and 16.47. Adamczak et al. (2018) used regression
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equations to correlate the breast and muscle weight with
cross-section areas. The observed results reported stan-
dard prediction errors of 36.99 g for the breast and
33.19 g for the m—pectoralis major. Qi et al. (2019)
used 3 machine learning methods (RF, AB, and GB)
to establish a nonlinear regression model. Results
showed that for carcass weight prediction with a root
mean square error (RMSE) of 0.039, the gradient boost-
ing prediction model had the highest accuracy of
R? = 0.996. The model was also successful at 96% accu-
racy in weight grading. Jorgensen et al. (2019) used
linear regression models in the weight estimation of
broilers. The results showed that using a 2D model
only, the mean absolute error was 47.22 g with a 3.53%
MAPE and 63.49 g for the 3D model using only 3D fea-
tures with a 4.72%. MAPE. The 2D-3D model had a
46.47 g MAE and 3.47%. MAPE. Compared with 2D fea-
tures alone, there is a 1.80% reduction in MAPE between
2D and 3D features.

In the study by Cen et al. (2006), a regression model
between an egg’s weight and its size was established
and used to detect its weight. The results indicated the
system’s egg weight detection capability with a correla-
tion coefficient of 0.9781 and an absolute error of less
than =3 g. Chan et al. (2018) calculated egg volume
directly from the egg shape parameters estimated from
the least squares technique, where the captured egg
point clouds are fitted in a 3D space to unique geometric
models of an egg. Consequently, the egg shape parame-
ters were estimated alongside the eggs’ orientation and
position. The results showed an estimated volume accu-
racy of 93.3% when approximated with reference vol-
umes. In the study by Okinda et al. (2020b), to
estimate the volume of an egg, 13 regression models
were explored: SVR (linear, quadratic, cubic, fine
Gaussian, medium Gaussian, and coarse Gaussian),
Gaussian Process Regression (rational quadratic,
squared exponential, Matern 5/2, and 182 exponential)
and ANN (Levenberg-Marquardt, Bayesian regulariza-
tion, and scaled conjugate gradient training algorithms).
Regression models for egg volume and surface area mea-
surement were developed in studies on eggs (Zhou et al.,
2008). Javadikia et al. (2011) used backpropagation and
hybrid learning methods in an ANFIS model to measure
eggs’ weight. The results showed a precited correlation
coefficient of 0.9942 from the ANFIS model, thus a prac-
tical and cheap methodology for measuring egg weight.

Amraei et al. (2017b) used the SVR algorithm for
weight prediction of live broiler chicken. The SVR algo-
rithms’ R?, the MAPE, and RMSE results values were
0.98., 8.63%, and 67.88, respectively. Amraei et al.
(2018) used a transfer function model to estimate broiler
chicken weight. The MAPE, RMSE, SRE, and RAV
were calculated as 21.465, 102.97, 0.240, and 0.0578,
respectively. The transfer function model is one of the
dynamic data-based modeling approaches used to
describe systems’ dynamic responses related to the sys-
tem’s output(s) to the input(s) (Amraei et al., 2018).

Artificial neural networks were used to estimate
broiler chickens’ weight (Mortensen et al., 2016;

Amraei et al., 2017a; Wang et al., 2017). In addition,
ANN, partial least squares regression, and linear
discriminant analysis were used in the separation and
sorting of on-line chicken portions for carcass and cuts
applications (Teimouri et al., 2018). The ANN classifier
outperformed the linear models with an overall 93% ac-
curacy and a maximum conveyor speed of 0.2 m s L
They reported a total processing rate of 2,800 samples
per hour. Koodtalang and Sangsuwan (2019) developed
deep neural network models for the classification of the
leg size. In egg products, neural networks have been
widely used. For instance, ANN was used to predict
egg volume (Soltani et al., 2015), neural network tech-
niques and algorithms were used to estimate egg weight
(Asadi and Raoufat, 2010; Raoufat and Asadi, 2010),
and backpropagation neural network was used for the
prediction of egg volume (Siswantoro et al., 2017). The
SVM classifier was applied in the classification of egg
size (Waranusast et al., 2016; Thipakorn et al., 2017)
and the prediction and classification of egg weight
(Zalhan et al., 2016). A summary of classification tech-
niques applied by different poultry studies are shown
in Table 4.

DISCUSSION
Applications to Poultry Live Weight

As with other livestock, the correlation between pre-
slaughter and postslaughter measurements is essential
in poultry production. BW is the primary indicator of
development in poultry production. The measurement
of poultry’s BW using machine vision (MV) techniques
is an excellent option than using weighing scales. This
vision-based method ensures that poultry is weighed
regularly and will not cause stress or the need for sizeable
human labor. Continuing developments in CV technol-
ogy currently dispense interestingly new combinations
of image processing and analysis and implementation
of machine learning techniques and electronic hardware
in poultry BW determination, especially broilers. There-
fore, it is a worthy asset to large-scale poultry processing
plants. Within the poultry industry, BW is valuable
because it provides relevant information on feed conver-
sion efficiency, vitality, disease occurrence, weight uni-
formity, and growth rate (Flood et al., 1992). BW also
indicates management quality (Lott et al., 1982;
Turner et al., 1983; De Wet et al., 2003). Measurement
of BW is used for body development evaluation in
poultry production and livestock, but it is hardly
measured in the field (De Brito Ferreira et al., 2020).
Subsequently, the existence of the correlation between
the BW or body conformation and physical measure-
ments, for example, keel length, body length, thigh
length, shank length, breast girth, and thigh length,
have been the primary focus for poultry producers owing
to the effect of such characters on the broiler efficiency
and feed productivity. These interrelationships between
body measurements could, therefore, lead to faster
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selection (Mustafa, 2016). They also determine the mar-
ket value for poultry by their weight.

For this reason, poultry breeders have sought to attain
a higher BW of chickens in earlier ages in production to
achieve better marketing prices for their birds (Malik
et al., 1997). General development and body mass are
the primary measurements used to determine the appro-
priate age slaughter time. It is worth noting that, apart
from MV, researchers have used different methods for
evaluating the live weight of the poultry. The article
will also highlight specific approaches, but they are not
a critical aspect of this review. Live poultry BW has
also been predicted from linear and zoometrical body
measurements (Raji et al., 2009; Semakula et al., 2011;
Ojedapo et al., 2012). Ahmed (2018) studied the interre-
lationships between linear body measurements and com-
mercial Marshall’s BW broilers in Nigeria’s semiarid
region. Malomane et al. (2014) performed a factor score
analysis for BW estimation from 3 indigenous southern
African chicken breeds’ linear body measurements.
Research by Teguia et al. (2008) used 1-wk-old duck-
lings’ body measurements for the African Muscovy
duck’s evaluation of live BW and body characteristics.
Al-Nedawi (2019) has researched body measurement’s
role as predictors of commercial broilers’ final weight, us-
ing reasonable regression procedures. Likewise, Bachev
and Lalev (1990) studied the relationship between
corporal dimensions and live turkey weight. Tyasi
et al. (2017) performed assessment research on the rela-
tion between body measuring traits and indigenous Chi-
nese Dagu chickens’ BW using path analysis.

Mendes and Akkartal (2009) used the regression tree
analysis to predict slaughter weight in broilers. Like-
wise, Tyasi et al. (2020) have used classification and
regression tree analysis for BW prediction of Potchefst-
room Koekoek laying hens. Researchers have often
implemented multiple linear regression, principal
component scores, and analysis in broiler weight pre-
diction. Mendes (2009) predicted male chickens’
slaughter weight using principal component scores
and developed multiple regression models. Principal
components scores were also used to measure indige-
nous chickens’ shape and size and predict BW in
Nigeria by Yakubu et al. (2009). The results showed
a highly significant and positive correlation between
the biometric traits and BW. Jesuyon and Oyelola
(2016) compared the BW and live weight measure-
ments of broiler strains using multiple regression.
Ogah (2011) conducted principal components analysis
of Nigerian indigenous turkey body measurements to
use both orthogonal and original traits to predict the
live weight. In another work, Egena et al. (2014b)
applied principal component analysis for Nigerian
indigenous chickens’ body measurement relationships.
Path coefficient analysis has also been used in the esti-
mation of BW in poultry. Yakubu and Salako (2009)
analyzed Nigerian indigenous chickens’ BW and
morphologic attributes using path coefficient analysis.

Path analysis was conducted by Mendes et al. (2005)
on the correlation between the live weight and various
body measures of American bronze turkeys. Egena
et al. (2014a) performed a related analysis on indige-
nous chickens from Nigeria to establish the association
between BW and body measurements. Latshaw and
Bishop (2001) estimated chickens’ body composition
and BW by using noninvasive measurements. Cangar
et al. (2006) used models of input-output and a single
output to forecast slaughter end weight of broiler
chickens.

De Wet et al. (2003) used image analysis to investigate
the possibility of detecting broiler chickens’ daily growth
rates. Fifty broiler chickens reared under commercial
conditions were used. Ten of 50 chickens were randomly
selected and video recorded (upper view) 18 times during
the 42-d growing period. The number of surfaces and pe-
riphery pixels from the images was used to derive a rela-
tionship between body dimension and live weight.
Likewise, Mollah et al. (2010) used digital image analysis
for broilers’ live weight estimation. Using a linear equa-
tion from image analysis on the broiler body surface
area, they estimated broiler weights from body surface
area pixels. The degree of fit of the linear equation was
0.999, and on the other hand, the estimated BW were
not significantly (P > 0.05) different from manually
measured BW up to 35 d of age. This research showed
a clear implicit relation between broiler surface area
and BW. Mortensen et al. (2016) used 3D CV to predict
broiler chicken weight. They tested the system in a com-
mercial broiler house with 48,000 broilers (Ross 308)
during the last 20 d of the breeding period. Relative
mean errors of 7.8% and a relative SD of 6.6% for all
ages and broilers used for the study were achieved.
They concluded that a better segmentation method
could significantly improve prediction because of the
broilers in the image overlap.

A comparative study conducted by Amraei et al.
(2017b) found that the use of MV with SVR is promising
for estimating the weight of live broiler chickens. Amraei
et al. (2018) developed a transfer function model and
predicted broiler chicken weight using MV. The reported
accuracy was R? = 0.98 for predicting BW transfer func-
tion from the correlation between absolute and predicted
weight. Amraei et al. (2017a) used MV and ANN tech-
niques to estimate broiler chickens’ weight. For weight
prediction, they used several ANN techniques. The
study showed that the approach suggested was practical
and useful in estimating broiler chickens’ weight using
ANN models. Wang et al. (2017) developed a broiler
quality estimation model based on depth images and
backpropagation neural network. The results showed
an 11% maximum relative error and a 0.5% minimum
relative error. It also reported an optimal fitness of
0.994, a mean relative error of 3.3%, and an RMSE of
0.048 kg. This study concluded that estimating broiler
weight using the broiler weight estimation models and
CV was indeed practical and feasible.
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Applications to Carcass and Cuts

Carcass weight is an essential parameter for produc-
tion economics and cutting equipment adjustment at
any poultry slaughtering plant (Jorgensen et al., 2019).
In the poultry industry, nonstandard raw material in
terms of size and weight of slaughtered chickens is crit-
ical (Adamczak et al., 2018). The carcass size and weight
determine the appropriate cutup station’s cutting speci-
fications for a given specific broiler carcass. If a carcass is
gigantic than the cutting line settings, parts of meat will
either be left in the body or overlapped into other cut-
tings. Besides, if a carcass is smaller than the cutting
line settings, it may be possible to cut bones and ribs
together with the fillet (Adamczak et al., 2018). Correct
measures of carcass weight and size thus reduce waste,
increase cut quality, and maximize profits (Adamczak
et al., 2018; Jorgensen et al., 2019). In addition, each car-
cass’s cutting line settings are not manually adjustable
(Adameczak et al., 2018). The automation of these cut-
ting lines is thus a fundamental factor in the processing
of chicken carcasses.

The conventional broiler carcass weighing technique
uses a conveyor weighing scale installed as part of the
processing line (Jorgensen et al., 2019). However, this
method suffers from some shortcomings, that is, it re-
quires a carcass transfer off and back between the pro-
duction line and the conveyor weighing scale
(Jorgensen et al., 2019). The conveyor weighing scales
are often quite large, and the entire production line needs
to be halted during their maintenance, or the weighing
scale is entirely bypassed. A study by Hudspeth et al.
(1973) sought to establish the relationship between
broiler parts weight, carcass weights, and type of cut.
Several studies have reported several approaches based
on several techniques for estimating broiler carcass
weight. Scollan et al. (1998) introduced nuclear mag-
netic resonance imaging for evaluating the pectoralis
muscle mass in broilers. Silva et al. (2006) and Oviedo-
Rondon et al. (2007) developed a nondestructive real-
time ultrasound system to measure broiler carcass and
breast muscle mass. Studies by Yakubu and Idahor
(2009), Raji et al. (2010), and Tyasi et al. (2018) corre-
lated measurement traits of the body and age to the
weight of the broiler carcass.

Despite the nondestructive nature of these mentioned
methods, they were invasive and required contact with a
live chicken before slaughter, and they were time-
consuming. Celik et al. (2018) performed a study of the
analysis of variables that affect the weight of the white
turkeys’ carcass weight using regression analysis focused
on factor analysis scores and ridge regression. Another
study by Hidayat and Iskandar (2018) aimed to estimate
carcass weight and carcass cuts based on female SenSi-1
Agrinak chickens’ live weight and age. They reported a
definite relation to live weight between carcass cuts
weight and carcass weight.

Lotufo et al. (1999) used MV for bird weight estima-
tion. Digitized silhouettes images of the carcass were ac-
quired and divided into 6 regions: wings, neck, breast,

and legs. The study used algorithms of mathematical
morphology for region-based carcass segmentation.
The areas of those regions were used as parameters for
fitting the polynomial curve. Chen et al. (2017) used
MV to grade the weight of the chicken carcass. The
study also achieved a carcass weight grading rate of
89% on average. In another study, Teimouri et al.
(2018) used MV with linear and nonlinear classifiers to
automatically sort chicken portions. This study showed
that a combination of machine vision and ANN classifier
might be applied to the effective sorting of chicken por-
tions automatically and accurately into 5 categories
(breast, leg, fillet, wing, and drumstick). Adamczak
et al. (2018) used 3D scanning for weight determination
of whole chicken breast. In the study, 3D images from 9
scans were obtained from 25 chicken carcasses and split
into cross sections across various planes. The study
concluded that the reported results were significantly
lower compared with the industrial classification
method, which is usually based on the entire carcass
weight.

Qi et al. (2019) used machine vision and machine
learning technology to classify and grade chicken car-
casses by weight automatically. Koodtalang and
Sangsuwan (2019) used digital image processing and a
deep neural network to classify chicken’s leg size. The
findings revealed that the object dimension measure-
ment error was smaller than =0.2 cm and *0.4 cm? for
length and area, respectively, and the trained model
yielded 100% accuracy for the chicken leg size classifica-
tion. Jorgensen et al. (2019) recently used 3D prior
knowledge for broiler carcass weight estimation in im-
ages using 3D prior knowledge. An unpaired ¢ test was
carried out to ensure the results were significant. Also
correlated were 5 top 2D and 3D features, and the results
indicated R? between 0.755 and 0.808 for 2D features
and between 0.833 and 0.855 for 3D features. The study
concluded that using 3D prior features, weight from im-
ages can be adequately estimated.

In most countries, the process of cutting poultry is car-
ried out manually, where human operators are tasked
with cutting up poultry into 5 main classifications:
drumstick, wing, breast, leg, and fillet. Afterward, the
chicken parts are manually sorted into separate con-
tainers and finally packaged. However, this manual pro-
cess of sorting poultry cuts is obsolete, invasive, and has
multiple drawbacks in the poultry industry (Teimouri
et al., 2018). A challenge in the poultry industry has
been the nonstandard weight and size of slaughtered
poultry, which leads to heterogeneity in the carcasses ob-
tained (Adamczak et al., 2018). Such disparity in raw
materials leads to various operational and technical dif-
ficulties in cutting lines and critically imparts the plant’s
economic indicators (Brosnan and Sun, 2004; Misimi
et al., 2016). Carcass weight is an essential parameter
regarding production economics and cutting equipment
adjustment at every slaughtering plant (Jorgensen
et al., 2019). The carcass weight and size determine
the appropriate cutup station’s cutting specifications
for a given specific broiler carcass. Carcass substantiality
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in poultry is strongly dependent on the leg and breast
muscle; therefore, selection may be targeted at these
areas, as indicated by Wilkiewicz-Wawro et al. (2003).

Most poultry processing plants are currently factoring
in the weight of the entire carcass during classification.
Owing to the carcass shape distinction, such classifica-
tion does not consider the exact share and size of individ-
ual muscle prediction in the carcass. Automatic cutting
of larger-sized carcasses than expected in cutting-line
settings may result in some portions of the meat left in
the body, resulting in economic losses (Adamczak
et al., 2018). Most current raw material classification
systems are equipped with a 2D camera and video sys-
tems capable of accurately assigning carcasses into qual-
ity classes allowing appropriate targeting of carcasses
with suitable parameters and better use of raw material
for further processing stages in the division (Mollah
et al., 2010; Adamczak et al., 2018; Teimouri et al.,
2018). Therefore, we must eradicate potential meat con-
taminations from human operators, which pose health
hazards and increase processing speed during processes
of sorting, grading, and packaging in the poultry and
meat and food industries in general (Bhattacharya,
2014).

Applications to Eggs

The production of eggs in poultry farms involves many
tasks such as collecting and harvesting eggs, washing
and cleaning, separating cracked eggs from healthy
eggs, classifying, sorting, grading, and packaging, most
of which are performed manually and therefore tedious
human labor involved (Aragua and Mabayo, 2018). In
the poultry industry, weighing eggs is an essential
requirement, and the information can be used for many
applications. The geometrical properties (volume and
surface area) of an egg are crucial in both the poultry
production industry as well as in biological investiga-
tions as they provide relevant information on poultry
weight prediction, internal egg parameters, shell quality
inspection, and ecological and population morphology
research (Narushin, 2005).

Eggs are classified, sorted, graded, and finally packed
as per their size for market distribution, determining
their weight. Eggs are commonly sold for markets as
per size grading. Egg weight is also used worldwide in
specific food recipes (Waranusast et al., 2016). Size and
appearance are critical to the purchase of eggs and are
the best critical quality attribute that consumers assess
before selecting eggs (Soltani et al., 2015). Because of
chicken rearing benefits, chicken eggs are the most
preferred over other poultry varieties such as turkey,
duck, ostrich, and quail (Okinda et al., 2020b). The
Archimedes-based water drainage method, also known
as the water displacement method, was commonly used
to measure and estimate egg volume (Loftin and
Bowman, 1978; Rush et al., 2009; Boersma and
Rebstock, 2010). However, this approach is destructive
because the egg becomes moist, which inhibits the
egg’s incubation. (Narushin, 1997; Rush et al., 2009).

Several studies have been conducted on egg size classi-
fication, egg weight estimation, and egg volume predic-
tion. For example, Cen et al. (2006) developed an egg-
weight detection system using MV. Duan et al. (2016)
have developed an on-line egg shape and size detection
system based on the convex hull algorithm. The devel-
oped system was able to detect 30,000 eggs per h for
shape classification at 89.3% accuracy and 90.5% for
size grading. Waranusast et al. (2016) introduced image
processing techniques and the SVM classifier to classify
egg size using a smartphone camera. The results showed
2.8, 3.4, and 5.9% errors for the eggs’ major axis, eggs mi-
nor axis, and the radius of the coins, respectively, when
automatically acquired by the system were compared
with the manually measured properties. The study re-
ported an overall accuracy of 80.4% after performance
evaluation, which applied the 10-fold cross-validation
to the classification model. By counting the number of
pixels after detecting the coin from the image, the
egg’s size can be estimated. The egg pixels were modeled
as an ellipse for size estimation purposes, and camera
lens distortion was not considered. These conditions
had limited egg size estimation accuracy.

Similar research by Thipakorn et al. (2017) applied
image processing and machine learning to classify the
egg size and predict egg weight. They used linear regres-
sion to predict egg weight and SVM classifiers for egg
classification as per size. The results reported an
87.58% accuracy for the egg size classification and a cor-
relation coefficient of r = 0.9915 between the real and the
predicted weight. Zalhan et al. (2016) proposed a CV-
based egg grade classifier. The egg was placed vertically
on a stage, and the camera aligned with the egg’s apex.
The egg images’ pixel size was determined from reference
values derived from a coordinate measuring machine.
Using a digital camera, the egg radius calculation model
gave more than 96% volume accuracy. They concluded
that the coordinate measuring machine is generally an
expensive method with high operational complexity
levels. Soltani et al. (2015) also predicted egg volume us-
ing MV based on a mathematical model known as the
Pappus theorem and artificial neural networks. They
developed an image processing algorithm for the compu-
tation of minor and major diameters of the eggs used as
the ANN model’s input parameters. The results reported
a predicted volume accuracy of R? = 0.99 from the math-
ematical Pappus theorem model with a maximum abso-
lute error of 1.69 cm® and an absolute mean error of
0.59 cm®. The topology of the best ANN model reported
an R” = 0.992 and an RMSE of 0.66 cm®. The mathe-
matical model overall was superior to the ANN model,
but the results were significantly better than other
studies.

In another study, Chan et al. (2018) used the Micro-
soft Kinect 3D camera to develop a system for measuring
an egg’s volume. For calculating the egg volume, a point
cloud postprocessing algorithm was implemented.
Okinda et al. (2020b) recently estimated egg volume us-
ing image processing, CV, and machine learning tech-
niques. They developed an algorithm that was used to
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segment the occluded eggs. The exponential Gaussian
process regression was the highest performing model,
with 0.984 R? and 1.175 cm® RMSE. The model also esti-
mated egg volume under partial occlusion at RMSE of
1.294 cm® and 1.080 cm?, respectively. A ¢ test conducted
also found no significant difference between the different
volume estimation methods used in the research.
Javadikia et al. (2011) proposed measuring egg weight
using image processing and the adaptive neuro fuzzy
inference system (ANFIS) model. The model used
weight prediction features extracted from the width
and length and consequently found the relationship be-
tween them and egg weight. Aragua and Mabayo
(2018) estimated egg weight using CV. The approach
was reported as cost-effective as it reduces human
involvement over the entire process. The experimental
results showed egg classification and weight estimation
accuracy of 96.31%.

Asadi and Raoufat (2010) applied MV and neural
network techniques for fresh egg weight estimation.
The study extracted 12 size features that were used to
train the various algorithms. The results reported the
multilayer perceptron and scaled conjugate gradient su-
perior to the other algorithms with high accuracy (R =
96) in egg weight estimation. In a later study, Asadi
et al. (2012) presented a MV technique for estimating
fresh egg mass, where 6 algorithms were used to extract
features and the data used for model establishment. The
results showed that an egg’s mass could be accurately
estimated by using its 2 perpendicular views. The study
achieved a correlation coefficient accuracy of 95% for egg
mass prediction.

Siswantoro et al. (2017) designed a CVS to predict egg
volume using a backpropagation neural network. The re-
sults indicated an absolute relative error of 2.2078% in
the proposed technique and a correlation coefficient of
0.978 between the actual and predicted egg volume
and no significant difference. In another study, CV was
used by Widiasri et al. (2019) for mass and volume mea-
surement using the disc approach. The extracted fea-
tures were the major and minor axis, and the data
were used for volume calculation, while mass was esti-
mated using density and a linear regression model. To
test the proposed technique’s accuracy, correlation tests,
relative absolute error, and ANOVA tests were carried
out. Ab Nasir et al. (2018) developed an egg grading sys-
tem based on CV using egg shape and weight parame-
ters. The k-nearest neighbor classifier was applied for
classification. The results showed 94.16% accuracy for
shape-based grading and a weight-based accuracy of
44.17%. Alikhanov et al. (2015) proposed an indirect
technique using image processing to measure egg weight.
From the processed images, geometric parameters were
acquired, and egg volume and weight were calculated.
They used regression analysis to calculate egg weight
and the relation between geometric parameters and
exponential regression for the approximation of egg vol-
ume and weight relationship. This study concluded that
when measuring egg weight using image analysis and in-
direct measurement, some parameters are insignificant.

In addition, eggs have been sorted into various cate-
gories using different MV techniques to replace manual
sorting, which results in low efficiency (Alikhanov
et al., 2017). Egg sorting is usually performed by deter-
mining the geometric parameters of the eggs. In their
work, Alikhanov et al. (2017) designed an automatic
egg sorting and control framework machine that could
sort the eggs into specified categories. Later research
by Alikhanov et al. (2018) used image processing and
an indirect approach to sort egg weight into 4 classes.
Results showed that the egg area was the most crucial
parameter for indirect egg weight estimation, achieving
a correlation coefficient of 0.989, and the mathematical
model used for egg area and weight relationship
achieving a 0.978 correlation of determination. The
test and training set also had a 2.5% and 12.5 classifica-
tion error, respectively. In recent work, Alikhanov et al.
(2019) designed an automatic egg-sorting system using
CV. The system was capable of sorting eggs by indirect
shape and weight. Image processing algorithms were
used to obtain geometric features from the eggs, and a
regression model was developed to sort the eggs’ weight.
The experimental findings showed that the system was
feasible in sorting of 2 to 3 eggs per s with an accuracy
of 94.6 and 90.3%, respectively, after assessment of the
2 transport conveyor speeds.

Raoufat and Asadi (2010) used neural network tech-
niques with MV for egg weight estimation. From the
experimental results, the multilayer perceptron and
scaled conjugate gradient training algorithm was supe-
rior to the other 2 algorithms for egg weight estimation
with an accuracy of R* = 0.96 and an absolute error of
<23 g for an average egg size of 60 g.
Shanmugasundaram (2016) used an image processing al-
gorithm to determine the surface area and volume of
eggs. The study correlated volume obtained using the
tape and water displacement methods with the image
processing technique, and they were not statistically sig-
nificant. The findings showed a strong correlation of
R? = 0.95 between the measured egg mass and computed
volume.

In addition, a novel photogrammetric reconstruction
method was used to measure the egg’s surface area and
volume by Zhang et al. (2016). For volume calibration
factor estimation, a convex hull algorithm was used to
estimate the volume of the reconstructed 3D egg and
the Monte Carlo approach. The results showed a high
99% accuracy compared with the drainage method.
Although this method is accurate, it requires many im-
ages to be used in the photogrammetric bundle adjust-
ment operation, taken from different positions and
orientations. In addition, a target field is required to pro-
vide tie points between the images. Zhou et al. (2008)
used MV and linear models to calculate the surface
area and egg volume. They developed a particular stage
to keep a leveled egg under lighting so a digital camera
could capture the egg’s shadow. Then, the length and
breadth of the egg could be calculated. The study’s R-
value results were 0.88 for the volume model and 0.86
for the surface area.
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Qiaohua and Youxian (2007) developed a Newton
dichotomy—based egg weight prediction model and im-
age detection method. The model used could forecast
the correlation between the egg shape index and its
weight. The findings revealed that the procedure could
predict egg weight at a correlation coefficient of 0.980.
In research by Georgieva-Nikolova et al. (2020), the
weight of quail and hen eggs was indirectly calculated
by shapes and spectral indices. Rashidi et al. (2008) pro-
posed that egg volume can be estimated using image pro-
cessing and the spheroid approximation method. In his
later research, Rashidi and Gholami (2011) used linear
regression models to predict egg mass based on geomet-
rical attributes. The models were divided into a mass
model based on length and diameter established on
mean geometric diameter, projected areas. The predic-
tion of egg volume and surface area was conducted in
Narushin (2005) based on egg breadth and length mea-
surement. For calculations and comparisons between
the measured and predicted geometrical properties, mul-
tiple equations were used. They reported that about 90%
of their estimates yielded a 2-mL volume error. Nonethe-
less, this method requires manually positioning the egg
with an egg-shaped hole on the system’s stage, making
it hard to automate. Besides, there was no guarantee
that the egg would be leveled faultlessly.

In another research by Dehrouyeh et al. (2010), an
MVS was used to grade defective eggs. Omid et al.
(2013) also graded eggs as per size using MV and artifi-
cial intelligence approaches. An egg size algorithm was
developed to classify the eggs by size. The algorithm pro-
vided 95% accuracy for egg size detection. In another
research, Kunrui et al. (2015) proposed an automatic
grading system for salted eggs using machine vision.
For grading and classification of the eggs, a multiple
linear regression equation was used. The results indi-
cated that the system had 5,400 eggs/h classification ac-
curacy and 93% egg-grading accuracy. Similarly,
research by Buyukarikan (2018) used MV and image
processing techniques for egg classification.

Eggs are a vital poultry commodity widely consumed
worldwide as healthy, readily available, and affordable
because eggs are the cheapest animal protein source
than other protein sources. Egg grading generally in-
volves the sorting of the product by weight, consistency,
size, and other factors that influence its relative value
(USDA, 2005). Tt involves grouping into categories of
eggs having the same weight and quality. Factors such
as weight, quality, and soundness determine egg rating,
but the lowest grade element influences the overall egg
grade (Jacob et al., 2000).

Egg weight is a crucial requirement in the poultry
sector, which has multiple applications. It is possible
to use egg weight to predict eggshell features and qual-
ity (Narushin, 1994; Narushin et al., 2004). There is
also a high correlation between egg weight and shell
weight (Paganelli et al., 1974). Other studies found a
correlation between hatchability and egg weight;
whereas egg weight increased, the hatchability
decreased (Wilson, 1991; Gonzalez et al., 1999).

Besides, egg weight may be used in predicting chick
weight (Wilson, 1991). Egg weight also influences egg
quality, chick yield, and length (Igbal et al., 2017).
The volume and surface area of the eggs are the stan-
dards that are used for external egg properties. The
eggs’ volume and surface area can be used to measure
chick mass, internal egg parameters, shell quality attri-
butes, hatchability, and can also be used in ecological
morphology and population analysis (Zhou et al.,
2008). The egg size is one of the essential quality met-
rics consumers use when selecting and evaluating eggs.
In general, consumers prefer eggs of similar shapes and
sizes (Rashidi and Gholami, 2011). The tape method
was widely used for determining the surface area of
eggs. The tape is split into tiny parts covering the ob-
ject’s surface area and then stripped off, and the total
area is measured by area meter or by hand (Zhang
et al., 2016). This method’s accuracy depends heavily
on calculating the tape strips’ area and how precisely
they cover the object rendering this process time
consuming, vulnerable to human error, and labor-
intensive (Sabliov et al., 2002).

Consequently, researchers have used egg horizontal
and vertical diameter to establish prediction models
of surface area and volume (Narushin, 1997, 2001,
2005; Labaque et al.,, 2007; Zhou et al., 2008;
Boersma and Rebstock, 2010). In the poultry egg in-
dustry, a human (operator) performs most of the egg
grading manually. For this reason, numerous studies
have been carried out to develop expert egg-grading
systems to automate this process and improve egg
quality. Patel et al. (1998b) and Omid et al. (2013)
conducted studies on the grading and sorting of eggs.
The critical criterion when designing grading systems
for egg grading is the classification of egg weight. Clas-
sification is usually performed and defined by the eggs’
weight range (Patel et al., 1998a). Most egg grading
applications were conducted on defective eggs using
MV and image processing techniques (Oztiirk and
Gangal, 2014; Mota-Grajales et al., 2019). The basic
geometric parameters used for egg sorting are the
shape factor, shape index, area, perimeter, and major
and minor axis extracted using image processing algo-
rithms and used for model creation (Alikhanov et al.,
2015). An overall summary of all the studies is pre-
sented in Table 5 categorized by the poultry product
and application.

Challenges and Future Perspectives

The years’ leading research priorities cover develop-
ments in image processing and vision-based approaches
for food quality assurance. CVS has been increasingly
used in the poultry sector for assessment and inspection
because it can provide a consistent, economical, fast,
environmentally friendly, and impartial evaluation. Re-
searchers use CV technologies as effective nondestruc-
tive means to tackle these tasks to eliminate the
manual processes and achieve greater precision. Most
studies reported reasonable weight and volume
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estimates for poultry, cuttings, and eggs, as well as the
accurate size and grading classifications.

Despite the increasing use of CVS in the food and
agricultural industries, difficulties exist in the poultry
industry, taking up this technology. There have been
few studies on poultry’s live BW, carcass and cuts, vol-
ume, and weight determination. This is because
poultry has an irregular shape, thus challenging to
develop techniques for accurately estimating its weight
and possibly volume. However, the current literature
provides a sufficient framework for researchers to
improve the methodologies already used. New CV ap-
plications are expected to focus on these areas, as sig-
nificant progress is being made in CV applications in
egg production.

These studies reviewed here are mainly about 2D im-
aging techniques. The future trend will be toward more
complex 3D CV systems with a 3D data focus. Three-
dimensional CV will ensure significantly that the tech-
nology retains the quality and accuracy required in the
agricultural and food industries. Although there has
been substantial development of accurate and efficient
algorithms, computing speeds do not conform to modern
production requirements. Much of the literature
reviewed in this article was focused on a laboratory scale,
although only a few were used in commercial poultry
processing and production.

The use of machine learning techniques with CV in
poultry production is also worthy of mention. Most
reviewed literature has used regression techniques to
develop predictive models. Few studies have imple-
mented other approaches such as; SVM and neural net-
works. Thus, adopting these novel machine learning
techniques will ensure faster computation and better ac-
curate future application trends. Neural networks have
many benefits, such as requiring less statistical training
and implicitly identifying dynamic and nonlinear associ-
ations between independent and dependent variables,
identifying possible relations between predictor vari-
ables, and using several training algorithms (Tu, 1996;
Nyalala et al., 2019). The significant strengths of SVM
are as follows: the training is relatively easy, so they
deliver better performance (accuracy). They can be
controlled explicitly, have no optimal local solution,
elegant mathematical tractability, and avoid overfitting
because there is no need for many training samples. They
offer a direct geometric interpretation (Nyalala et al.,
2019).

We have found that there is limited information on
CV-based techniques in size and weight estimation of
live poultry and carcass and cuts. We can also presume
that using models developed from animals of the same
species for different management systems can be unreli-
able and may not estimate BW in another community.
Age-specific models developed elsewhere cannot esti-
mate animal weight in another field owing to apparent
variations in training techniques, diet, and housing
that influence the magnitude of linear body measure-
ments. Genetic variation and environmental factors
that impinge on a person may be associated with

variation in BW within a population; therefore, morpho-
metric measurements are possible features for use in an-
imal selection.

CONCLUSION

This review article provides a detailed overview of the
current CV application studies and advances in the
nondestructive measurement, classification, grading,
and sorting of poultry products in the poultry sector
and food industry as a whole. The results showed the ef-
ficacy of the live poultry technique, carcass and cuttings,
and egg production systems. The review began with the
concept of MVS and its critical components, namely a
camera, illumination, image grabber, and compatible
software and hardware. It also assessed the advantages
and constraints associated with this approach. It was re-
ported that the vision-based method is currently the
most efficient methodology for estimating and classi-
fying size, weight, and volume because it is detailed,
cost-effective, nondestructive, reliable, and fast. Owing
to the high processing speed of its algorithms and
computer-based technologies, the present article
concluded that CV has the ability and the necessity to
be a fundamental element in the poultry production
industry.

Different research results and more nondestructive,
rapid, and advanced approaches have gradually
addressed the challenges encountered with the manual
weighing, grading, and sorting (destructive) of poultry
products. This study aims to contribute an overview of
the recent work on developing food processing and
nondestructive detection technologies for agricultural
production. This review article is essential and will be
of value in helping researchers implement the latest ma-
chine learning techniques for accurate body measure-
ment estimates and other livestock meat classification.
This work will also contribute to the advancement of
more accurate, efficient, and reliable automated sorting
and grading systems for practical use in in-line process-
ing plants for poultry, as the industry continues to
become highly competitive and machine vision applica-
tion will provide an advantage in processing speeds
and costs and labor reduction. Besides, CV will help pro-
vide consumers with better quality poultry foods and
significantly improve the poultry industry’s productiv-
ity. The poultry measurement and classification systems
may be integrated into poultry meat systems for quality
inspection, identification, contamination, safety, and
disease detection. Furthermore, MV techniques based
on 2D CV systems can be applied nonintrusively to pro-
duction lines.
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