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Abstract: Copy number variations (CNVs) are gains and losses of genomic sequence 

between two individuals of a species when compared to a reference genome. The data from 

single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, 

but they also can be utilized for copy number detection. Substantial progress has been 

made in array design and CNV calling algorithms and at least 10 comparison studies in 

humans have been published to assess them. In this review, we first survey the literature on 

existing microarray platforms and CNV calling algorithms. We then examine a number of 

CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large 

incongruities in the results from different CNV calling tools highlight the need for 

standardizing array data collection, quality assessment and experimental validation. Only 

after careful experimental design and rigorous data filtering can the impacts of CNVs on 

both normal phenotypic variability and disease susceptibility be fully revealed. 

Keywords: copy number variation (CNV); algorithm; segmental duplication; single nucleotide 

polymorphism (SNP); cattle genome 
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1. Introduction 

Genomic structural variation, including copy number variation (CNV), has been extensively studied 

in humans [1–5] and rodents [6–9]. Initial CNV reports have also been released for domesticated 

animals, including dog [10–12], cattle [13,14], chicken [15,16], pig [17,18], sheep [19,20], and goat [21] 

amongst others. Recent bovine CNV studies have generated several cattle CNV maps based on the 

data from Illumina Bovine SNP50K microarrays [22–25]. 

CNVs can be identified using various approaches, including comparative genomic hybridization 

(CGH) arrays, SNP arrays, and DNA sequencing. In spite of the increasing adoption of next-generation 

sequencing, microarrays will continue to be the primary platform for CNV detection in the near future. 

Compared to other approaches, the advantages of SNP arrays include their relative low cost and high 

throughput. Substantial genotyping data have been produced from genome-wide association studies, 

which can be directly exploited for CNV analysis. Dozens of human and mouse CNV studies have 

demonstrated that some CNVs are associated with phenotypic traits and diseases [26–29]. Efforts to 

explore the association between cattle CNV and economical traits have been published [30–32], even 

though the actual functional mechanisms are not yet well defined. 

2. CNV Detection Using SNP Arrays 

SNP arrays were initially designed to genotype thousands of SNPs across the genome concurrently. 

Their applications have now expanded to include CNV detection using additional information such as 

the probe hybridization signal on each individual chip. The most well-known SNP microarrays are 

available from commercial vendors such as Illumina and Affymetrix [33,34]. Both companies sell 

competing arrays and continue to offer ever increasing coverage for detecting SNPs and CNVs 

simultaneously. However, one important consideration is the inherent bias of the SNP chip coverage 

against areas of the genome known to frequently harbor CNVs. For example, common copy number 

polymorphisms (CNPs) may cause a SNP to be rejected when the SNP fails standard inheritance 

checks and Hardy-Weinberg tests [35].  

Segmental duplications (SDs), defined as >1 kb stretches of duplicated DNA with high sequence 

identity in a species, were shown to be one of the catalysts and hotspots for CNV formation [36–38]. 

Although the current microarray platforms offer some detection power in SD regions, calls within 

these regions are often affected by low probe density and cross-hybridization of repetitive sequence.  

In addition, only a relative copy number (CN) increase or decrease is reported with respect to the 

reference samples in SD regions. This poses a particular problem in the detection of CNVs in SD 

regions as the test individual’s copy number may differ from that of the reference by a smaller 

proportion than is detectable using array-based calling criteria. Although analyses of a subset of  

CNVs provided evidence of linkage disequilibrium with flanking SNPs [39], a significant portion of 

CNVs fell in genomic regions not well covered by SNP arrays, such as SD regions, and thus were not 

genotyped [40–42].  

Since SNP chips are primarily designed for their use in SNP genotyping, some background noise 

that does not affect SNP calling may cause problems for CNV calling algorithms. For example, SNP 

data is typically normalized against a reference population in order to reduce between-array variations 
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and probe-specific hybridization effects. The assumption that the large majority of reference samples 

have the same two copies does not hold for common CNV regions. At these regions, the normalization 

should be further optimized to derive correct parameters. Several new array designs have incorporated 

CNV detection, for example, monomorphic probes in common CNV regions are included on more 

recent Illumina and Affymetrix SNP array platforms. 

3. Algorithms for CNV Detection 

Undoubtedly, microarray development has spurred the advances in computational analysis 

methodology in quantitative fields of biology. A wide range of CNV discovery tools has been developed 

based on data derived from SNP arrays, such as cnvPartition [43], Birdsuite [44], PennCNV [45], and 

amongst others. In this section, we briefly introduce these CNV detection tools.  

cnvPartition: Illumina data can be initially viewed, processed and exported using the proprietary 

GenomeStudio program (Illumina, CA, USA). In addition to quality checking and genotype calling, 

the program calculates several important input values for CNV discovery. The log R ratio (LRR), i.e., 

log2(Robserved/Rexpected), is calculated from the observed normalized intensity of a sample and expected 

normalized intensity, which is calculated from linear interpolation of canonical genotype clusters. The 

B allele frequency (BAF, normalized measure of relative signal intensity ratio of the B and A alleles) 

is calculated from the difference between the actual value and the expected position of the cluster 

group. LRR and BAF are used by many CNV detection algorithms. cnvPartition is offered as a plug-in 

for the GenomeStudio program, where it uses LRR and BAF to assess copy number using 14 different 

Gaussian distribution models between zero and four copies. cnvPartition also uses a likelihood-based 

method to compute the confidence score for each CNV call. Given the integration of cnvPartition into 

Illumina proprietary software (GenomeStudio), cnvPartition is currently unable to process and analyze 

Affymetrix chip data. 

Birdsuite: Affymetrix SNP array data from older chips must first be analyzed in the Genotyping 

Console program provided by Affymetrix for initial quality checks and controls. Data from the newer 

Affymetrix chip can be processed by additional programs contained in the Birdsuite package [44].  

The Canary module of Birdsuite genotypes the known common CNVs using an Expectation-Maximization 

(EM) algorithm while the Birdseye module detects novel CNVs by using a Hidden Markov Model 

(HMM) with a Viterbi algorithm calculating emission states. For Affymetrix SNP arrays, there are 

other freely available CNV detection programs, such as GADA [46], Cokgen [47], iPattern [26] in 

addition to Birdsuite. For details about these programs, please see these published reviews [35,48,49]. 

The developers of Birdsuite have mentioned future plans for Illumina platform support [50] but current 

options only include a beta version for Illumina 610 array platforms.  

PennCNV and QuantiSNP: PennCNV and QuantiSNP are two freely available programs developed 

based on HMMs [45,51]. Both programs can process Illumina and Affymetrix SNP data. PennCNV 

incorporates multiple sources of information, including LRR and BAF at each SNP marker, the distance 

between neighboring SNPs and the allele frequency of SNPs. PennCNV also integrates a computational 

approach by fitting regression models with GC content to overcome ―genomic waves‖ [52,53]. 

Additionally, PennCNV is capable of considering pedigree information (a parents-offspring trio)  
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to improve call rates and accuracy of breakpoint prediction as well as to infer chromosome-specific 

SNP genotypes in CNVs. Finally, PennCNV also reports data quality control measurements for each 

CNV dataset.  

QuantiSNP, by contrast, uses an Objective Bayes approach [51] to infer copy number states based 

on the LogR ratio and the B allele frequency for each SNP marker. Whereas the PennCNV algorithm 

uses a transition matrix to model realistic copy number transitions between SNP probes [45], 

QuantiSNP calculates Bayesian probabilities for each SNP marker pair and then uses a HMM to join 

markers to form CNVs. Another significant difference between the two programs is that PennCNV is 

an open-source project whereas QuantiSNP was written for MatLab, which may limit availability to 

users that may not have a MatLab license. Finally, QuantiSNP is no longer under active development 

as listed on its webpage [54]. 

Approaches originally developed for array CGH: Several tools for CNV detection, which were 

originally developed for array CGH CNV calling, have been modified for SNP array analysis. However, 

these methods normally do not consider BAF information, which is the preferred data source to use for 

CNV calling in SNP data. For example, the Circular Binary Segmentation (CBS) method was designed 

to convert noisy intensity values into neighboring segments of distinct assigned copy numbers using 

dynamic programming [55]. DNAcopy is a widely used R implementation of the CBS method. 

Other commercial CNV detection tools: Other commercially available programs include Partek 

Genomics Suite, Nexus Copy Number software and Golden Helix SNP & Variation Suite (SVS).  

The strength of these commercial tools include their graphical user interfaces, streamlined pipelines for 

analysis and work flow, optimized computational speed as well as technical support. These factors are 

very important to labs with limited bioinformatics support; however, commercial companies often do 

not utilize some of the latest methods developed in the academic environment. For this study, we have 

chosen to look in detail at the Golden Helix SVS [56]. The SVS Copy Number Analysis Module 

(CNAM) employs a segmentation algorithm using only the signal intensity data to detect CNVs on 

either a per-sample (univariate) or multi-sample (multivariate) basis. According to its online manual, 

the univariate method, which considers only one sample at a time, is designed for detecting rare and/or 

large CNVs. The multivariate method, which considers all samples simultaneously, is designed for 

detecting small, common CNVs.  

Comparing univariate and multivariate methods: Although the exact algorithm of each method 

is proprietary, Breheny et al. explored the strengths and weaknesses of two similar approaches using 

both simulations and real data [57]. In their study, the univariate method (the CNV-level testing, i.e., 

across markers within one sample) involves estimating, at the level of the individual genome, the 

underlying copy number at each location. Once this is completed, tests are performed to determine the 

association between copy number state and phenotype. The multivariate method (the pooled  

marker-level testing across samples) carries out association testing first between the phenotypes and 

raw intensities at the level of the individual marker, and then aggregates neighboring test results to 

identify CNVs associated with the phenotype. Accounting for multiple comparisons across SNP 

markers is more straightforward, as a multiple-comparison correction (e.g., Bonferroni, permutation) 

can directly control the family-wise error rate (FWER) of the overall procedure [58]. False discovery 

rates can be calculated to account for multiple comparisons with the CNV-level testing method [59]; 
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however, this is more complicated and somewhat conservative. Partially overlapping CNVs across cell 

lines introduce dependence across the tests, thereby reducing the effective number of independent 

tests. Breheny et al. confirmed that that the univariate method/CNV-level testing has greater power to 

detect associations involving large, rare CNVs, while the multivariate method/pooled marker-level 

testing has greater power to detect associations involving small, common CNVs. It is important to 

understand these tradeoffs. Several recent papers have proposed to develop methods capable of 

simultaneously pooling information across both markers and samples for CNV detection and 

association studies [60–64]. 

CNV quality score: Many programs like cnvPartition, Birdsuite, PennCNV and QuantiSNP 

reported CNV quality scores, which are quantitative values indicating CNV confidences. Although 

their exact meanings and interpretations depend on each algorithm and they are often not reported in 

microarray studies. These CNV quality scores are important for constructing CNV regions, which can 

then be used in association studies. 

4. Comparing the CNV Detection Algorithms Using Human Data 

As shown in Table 1, at least 10 comparisons of the strengths and weaknesses of these array 

platforms and CNV calling tools have been published using human CNV data. Although published 

results are quickly outdated as new platforms and tools are introduced, a general theme is consistent 

across these comparisons. The first of these is the lack of a standard approach to collecting the data and 

the lack of standardized reference samples; this makes it difficult to compare CNV results across 

different studies [65]. The second is that CNV results also differ substantially depending on CNV 

detection methods [35,49]. For example, as the most comprehensive study on this topic, Pinto et al. 

have systematically compared CNV detection on 11 microarray platforms to evaluate data quality and 

CNV calling, reproducibility, concordance across array platforms and laboratories, breakpoint 

accuracy and analysis tool variability [49]. It is surprising that reproducibility in replicate experiments 

is <70% for most platforms and different analytic tools applied to the same raw data typically yield 

CNV calls with <50% concordance. The authors attributed these poor reproducibility observations to 

these facts: (1) large CNVs often overlap with SDs in complex genomic regions (as we described 

before) and (2) large CNVs also lead to call fragmentation (a single CNV is detected as multiple 

smaller variants). This led the authors to conclude that, ―the striking differences between CNV calls 

from different platforms and analytic tools highlight the importance of careful assessment of 

experimental design in discovery and association studies and of strict data curation and filtering in 

diagnostics‖ [49]. 
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Table 1. Survey of recent comparison studies of copy number variation (CNV) detection. 

Authors Year Algorithm Data Platform Vendor Conclusion Comment 

Lai [66] 2005 CGHseq, Quantreg, 

CLAC, GLAD, CBS, 

HMM, Wavelet, 

Lowess, ChARM,  

GA and ACE 

Simulation and 

empirical samples for 

Glioblastoma 

array CGH Custom 

cDNA array 

Several general characteristics 

of future program development 

were suggested. 

Earlier programs for array CGH. 

Baross [67] 2007 CNAG, dChip, CNAT, 

GLAD 

Simulation and 

empirical mental 

retardation 100K 

Affymetrix SNP array 

SNP array Affymetrix Multiple programs were needed 

to find all real aberrations. 

False positive deletions was 

substantial, but could be greatly 

reduced by using the SNP 

genotype information to confirm 

loss of heterozygosity. 

Winchester [35] 2009 Birdsuite, CNAT, 

GADA, PennCNV, 

QuantiSNP 

NA12156, NA15510 SNP array Affymetrix, 

Illumina 

Multiple predictions from 

different software. 

Use software designed for the 

platform. 

Dellinger [68] 2010 CBS, cnvFinder, 

cnvPartition, GALD, 

Nexus, PennCNV and 

QuantiSNP 

Simulation and 

empirical samples from 

Singapore cohort study 

of the risk factors for 

Myopia 

SNP array Illumina QuantiSNP outperformed other 

methods based on ROC curve 

residuals over most datasets. 

Nexus Rank and SNPRank 

have low specificity and high 

power. Nexus Rank calls 

oversized CNVs. PennCNV 

detects one of the fewest 

numbers of CNVs. 

The normalized singleton ratio 

(NSR) is proposed as a metric 

for parameter optimization. 

Tsuang [69] 2010 PennCNV, QuantiSNP, 

HMMSeg, and 

cnvPartition 

48 Schizophrenia 

samples 

SNP array Illumina Both guidelines for the 

identification of CNVs inferred 

from high-density arrays and 

the establishment of a gold 

standard for validation of 

CNVs are needed. 

Given the variety of methods 

used, there will be many false 

positives and false negatives. 
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Table 1. Cont. 

Authors Year Algorithm Data Platform Vendor Conclusion Comment 

Zhang [70] 2011 Birdsuite, Partek 

Genomics Suite, 

HelixTree, and  

PennCNV-affy 

~1,000 Bipolar + 270 

HapMap samples 

SNP array Affymetrix Birdsuite and Partek had higher 

positive predictive values. 

Poor overlap between 2 gold 

standards (Kidd et al. and  

Conrad et al.). 

Marenne [71] 2011 cnvPartition, PennCNV, 

and QuantiSNP 

96 pair samples from 

Spanish Bladder 

Cancer/EPICURO 

study 

SNP array Illumina PennCNV was the most reliable 

algorithm when assessing the 

number of copies.  

Current calling algorithms 

should be improved for high 

performance CNV analysis in 

genome-wide scans. 

Pinto [49] 2011 Birdsuite, cnvFinder, 

cnvPartition, dCHIP, 

ADM-2 (DNA 

Analytics), Genotyping 

Console (GTC), 

iPattern, Nexus Copy 

Number, Partek 

Genomics Suite, 

PennCNV, QuantiSNP 

6 samples in triplicate 

on 11 array platforms 

array 

CGH, SNP 

array, and 

BAC array 

Agilent, 

NimbleGen, 

Affymetrix, 

and Illumina 

Different analytic tools applied 

to the same raw data typically 

yield CNV calls with <50% 

concordance. Moreover, 

reproducibility in replicate 

experiments is <70% for most 

platforms. 

The CNV resource presented 

here allows independent data 

evaluation and provides a means 

to benchmark new algorithms. 

CNV calls are disproportionally 

affected by genome complexity 

as they tend to overlap SDs and 

a single CNV is detected as 

multiple smaller variants. 

Koike [48] 2011 Birdsuite, Birdseye, 

PennCNV, CGHseg, 

DNAcopy 

HapMap samples SNP array Affymetrix Hidden Markov model-based 

programs PennCNV and 

Birdseye (part of Birdsuite), or 

Birdsuite show better detection 

performance.  

Segmental duplications and 

interspersed repeats (LINEs) are 

involved in CNVs. 

Eckel-Passow 

[72] 

2011 Affymetrix Power 

Tools (APT), 

Aroma.Affymetrix, 

PennCNV and CRLMM 

1,418 GENOA 

(Genetic Epidemiology 

Network of 

Atherosclerosis)/FBPP 

(Family Blood Pressure 

Program) samples 

SNP array Affymetrix Recommended trying multiple 

algorithms, evaluating 

concordance/discordance and 

subsequently consider the 

union of regions for 

downstream association tests. 

Advocated that software 

developers need to provide 

guidance with respect to 

evaluating and choosing optimal 

settings in order to obtain 

optimal results for an individual 

dataset. 
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5. Comparing CNV Detection Algorithms Using Bovine High-Density SNP Data 

We performed an analysis of CNVs based on Illumina BovineHD chips, which contain more than 

750,000 SNP markers [73], using PennCNV. As a consequence of the higher SNP count, more CNVs 

were identified with higher resolution boundaries. In order to provide an additional comparison of 

CNV detection methods, we have tested three additional tools to call CNVs on the same BovineHD 

dataset: cnvPartition version 3.6.1, Golden Helix SVS 7.0 and DNAcopy [55]. These four tools were 

applicable to our dataset (Illumina bead array), available to us (due to existing commercial licensing or 

free availability) and were not designed specifically for human-based array studies.  

In order to perform an accurate and fair comparison of calls across the different methods, our PennCNV 

calls were derived from the same 630 animals of 27 cattle breeds on the cattle reference assembly 

UMD3.1 without using trio information [73]. We carried out cnvPartion calling using the default 

parameters as recommended by Illumina. For the Golden Helix SVS7.0, we used the SVS DSF Export 

Plug-In 4.1 to export LRRs from the GenomeStudio project. We then utilized CNAM to process the 

DSF file under the univariate option (minimum 3 markers/segment, a significance level of p = 0.005 

for 2,000 pairwise permutations). We also performed DNAcopy analysis based on LRR. Finally, CNV 

segments were then filtered with a minimum of 3 probes for all 4 tools and a minimum of absolute 

segment mean values of 0.3 for SVS and DNAcopy. 

Table 2. CNVs and CNVRs identified using PennCNV, cnvPartition, SVS, and DNAcopy. 

Tool Event Count Gain Loss Average Length 

PennCNV CNV 46,751 (74.2) 17,796 (28.2) 28,955 (46.0) 2,334,244,479 (49,929) 

 
CNVR 3,364 a 1,382 b 2,376 c 147,476,461 (43,840) 

cnvPartition CNV 16,566 (26.3) 5,021 (8.0) 11,545 (18.3) 2,191,528,246 (132,291) 

 
CNVR 1,298 a 541 b 916 c 172,378,730 (132,803) 

SVS CNV 92,463 (146.8) 205 (0.3) 92,258 (146.4) 2,234,601,290 (24,168) 

 
CNVR 7,099 a 78 b 7,056 c 151,471,634 (21,337) 

DNAcopy CNV 41,858 (66.4) 4,469 (7.1) 37,389 (59.3) 1,863,930,368 (44,530) 

 
CNVR 5,961 a 1,457 b 5,284 c 194,287,154 (32,593) 

Numbers in parentheses are values normalized by sample counts, except in the case of the parentheses values 

in the ―Average Length‖ column, which are average lengths normalized by CNV counts. a These numbers 

represent non-redundant CNVR counts after merging both gain and loss CNVs identified across all  

630 samples. b Gain CNV events were merged separately. c Loss CNV events were merged separately. 

A summary of CNV and CNVR results derived from all 630 samples is shown in Table 2. Detailed 

results can be found in the four worksheets of Supplementary Table 1. Compared to PennCNV results, 

CNVs and CNVRs in cnvPartition results are fewer and ~3 times longer (45 kb vs. 130 kb, 

respectively). While PennCNV and cnvPartition have loss/gain ratios of ~1.7 and DNAcopy has a ratio 

of 3.6, SVS has a ratio over 90, suggesting SVS is more sensitive to loss events than to gain events. 

Additionally, both SVS and DNAcopy CNVRs (average length approximately 20 kb and 30 kb, 

respectively) are shorter than PennCNV (~40 kb), and significantly shorter than cnvPartition CNVRs 

(~132 kb). Similar observations were also obtained when each subspecies/group (i.e. taurine, indicine, 

composite (taurine × indicine) and African breeds) was processed separately, confirming the above 
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results (data not shown). When we compared CNV calls across subspecies/groups for all four CNV 

calling methods, CNV counts per sample were higher in African and indicine breeds, intermediate in 

composite breeds, and lower in taurine breeds, agreeing with our previous results using PennCNV [73]. 

We then compared the CNVRs from the four datasets derived from our calling programs based on the 

UMD3.1 cattle reference assembly (Figure 1). Approximately 50 Mb of core CNVRs are shared 

among the four CNVR sets. We calculated concordances using the ratios of between intersections and 

unions for both counts and lengths (Table 3 and Figure 1). PennCNV shared more regions (108 Mb or 

50.82%) by length and 43.80% by count with cnvPartition than with any other tools. Therefore,  

we have observed that tools based on similar algorithms and input data (both LRR and BAF) seem to 

share more common regions. By contrast, PennCNV and SVS shared 24.88% or 60 Mb in length and 

13.74% by count. This comparison was consistent with a recent publication based on PennCNV and 

SVS using human autism samples [74]. When we applied different filtering criteria requiring a 

minimum of five or 12 probes, the overlap of calls from these two methods increased slightly, ranging 

from 24–52% by the number of nucleotides that overlapped. We also evaluated the overlaps between 

loss CNV events across four datasets for each individual sample. The number of bases overlapped by 

CNVs from each dataset ranged from 26–48%, which agreed with our CNVR overlapping results. 

Figure 1. Comparisons of CNVR results identified by PennCNV, cnvPartition, SVS, and 

DNAcopy based on genomic location in UMD3.1. The overlap lengths of CNVRs were 

indicated in Mb. 

 

Table 3. Overlaps among CNVRs across 4 CNV detection tools. 

  

Count  Length (base pair) 

Tool1 Tool2 Intersection 
a
 Union

 a
 Percentage  Intersection

 b
 Union

 b
 Percentage 

PennCNV cnvPartition 1,420 3,242 43.80%  107,775,740 212,079,451 50.82% 

PennCNV DNAcopy 2,355 6,970 33.79%  93,149,061 248,614,554 37.47% 

PennCNV SVS 1,264 9,199 13.74%  59,557,597 239,390,498 24.88% 

cnvPartition DNAcopy 1,284 5,975 21.49%  79,825,624 286,840,260 27.83% 

cnvPartition SVS 981 7,416 13.23%  56,569,347 267,281,017 21.16% 

DNAcopy SVS 2,332 10,728 21.74%  88,864,805 256,893,983 34.59% 

a These numbers represent intersections and unions of two CNVR datasets by count. b These numbers 

represent intersections and unions of two CNVR datasets by length in base pair. 
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6. Conclusions  

Like other published comparisons of CNV calling methods, we observed large variations in calls 

made by different programs. As pointed out previously, hybridization studies will generate both false 

positive and false negative results, regardless of how the data are analyzed [75]. As shown in Table 1, 

many authors recommended using multiple CNV calling algorithms instead of just one [35]; however, 

although the net effect of this strategy decreases the false negative rate, it also increases the false 

positive rate. With next generation sequencing projects producing better CNV calling standards, such 

as the 1,000 human genomes project [5] and our recent effort [76], we should be able to better estimate 

the false positive and false negative rates for each tool. Large incongruities in the results from different 

CNV calling tools highlight the need for standardizing array data collection, quality assessment and 

experimental validation. This is extremely true for other species like cattle, for which there is no gold 

standard of CNV calls to compare data against. Only after careful experimental design and rigorous 

data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility 

be fully revealed. 
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