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INTRODUCTION

Proteins are the central machines of cells, and they perform their actions by interacting with each
other as well as with other molecules. Today, large-scale efforts in genomics, proteomics, lipidomics
and metabolomics are producing complete lists of the molecules in a cell as well as in different
subcellular compartments, including the membrane. Further, detailed knowledge of composition
(splice forms, PTMs) and expression levels in different cells are becoming available.

However, proteins do not act on their own but by interacting with other proteins. The interactions
are of many different types, from very stable interactions in large protein complexes to transient
interactions by disordered regions containing linear motifs (Palopoli et al., 2020). These protein-
protein interactions can be studied at different levels of detail. Only for a small number of the large
complexes atomistic the structure is known and in particular molecular complexes embedded in the
membrane are challenging to study experimentally. Today Cryo-EM provides high-resolution
structural information for many large biological complexes.

However, experimental techniques are not applicable for all type of protein interactions, as many
biological interactions are transient and contain weakly interacting proteins. These complexes are
virtually impossible to purify or crystallize and therefore for many biological complexes no or only
low-resolution structural information is available. Here, only computational methods will be able to
provide detailed structural information, but also for the stable complexes computational methods
will be of great importance.

Computational methods to predict the structure of individual proteins or protein complexes have,
until recently, almost exclusively been based on homology transfer. Here, structural information is
transferred from one protein to another, assuming that the structure if homologous proteins (or
complexes) is conserved. However, today by using co-evolution and advances in deep-learning, it is
now possible to predict the structure of many individual proteins and complexes directly using no
other information than the sequences and their evolutionary history. Below we will briefly describe,
the past, present and future of these type of methods.

STRUCTURE PREDICTION BY CO-EVOLUTION AND DEEP
LEARNING

The basis for the progress in protein structure prediction is the development of contact predictions
methods using direct coupling information. The predicted contacts can then be used to predict the
structure of individual protein (Marks et al., 2011) as well as of protein-protein interactions (Weigt
et al., 2009). One significant limitation of these methods is that they can only be applied on very large
protein families. Deep learning methods have been developed to overcome this problem (Skwark
et al., 2014; Wang et al., 2017). Lately, by changing the problem from predicting contacts to
predicting distances, another leap in performance has been obtained (Xu, 2019; Senior et al., 2020).
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The Challenges
In short, a complete 3D-proteome would require that the
following subproblems are solved.

1. Structure prediction of individual proteins.
2. Identification of what molecular components interact.
3. Predicting the structure of interacting molecules.

Structure Prediction of Individual Proteins
The progress of the prediction of individual proteins has been
tremendous in the last decade. The idea to use co-evolution to
predict contacts has been around since the mid-1990s, but until
ten years ago, the success was minimal. Then the direct coupling
analysis (DCA) methods were introduced, and everything
changed. In the first DCA studies, only protein families with
more than a thousand sequences could be predicted accurately.
Now often accurate predictions can be obtained for much smaller
families, and besides, the families have grown.

The last CASP meetings have reported a leap in performance
for difficult protein structure prediction targets showing that ab-
initio structure prediction is accurate for most proteins
(Kryshtafovych et al., 2019). Initial attempts to predict the
structure of all protein families, such as PconsFam (Lamb
et al., 2019) predicted the structure of a few hundred Pfam
families. However, the recent progress should multiply this
number, and today it is possible with high confidence to
predict the structure of all but ten proteins in a minimal
genome (Greener et al., 2020), indicating that the structure of
most protein domain families can be predicted already today.

However, large parts of the human proteome lack domains
this sometimes referred to as the dark proteome (Perdigao et al.,
2015). We have shown that these regions are both longer and
more disordered in eukaryotes than in prokaryotes (Basile et al.,
2019). This indicates that it is not only a lack of data that separates
these regions from the ones assigned to domains. Therefore, it
remains to be studied in detail how the (potential) structure of
these regions can be predicted although some attempts have been
made (Toth-Petroczy et al., 2016).

Identification of Molecular Interactions
Interaction between proteins can be of many different types.
Some proteins are tightly bound together in a molecular
machinery, while others interact only transiently. By a
combination of large-scale studies using methods, the general
properties of interaction networks of proteins are rather well
understood. For instance, the analysis of these networks has
shown that proteins with many interactions often contain long
disordered regions or domain repeats (Ekman et al., 2006).
However, the exact knowledge of most protein interactions is
missing.

Large scale information on how proteins interact is obtained
from various experimental methods including, yeast two-hybrid,
tap-tag, and co-expression. However, other information such as
gene-fusion, and genome localization, can also contribute to the
identification of interacting protein pairs. Therefore, by
combining experimental and, bioinformatical data insights can

be gained (von Mering et al., 2005). Unfortunately, most of the
large scale methods are quite noisy and prone to both false
positives and negatives. However, it is possible that structural
modeling can help to remove some of the noise (Cong et al.,
2019).

For proteins to interact, they do need to exist in the vicinity of
each other, i.e., be located in the same subcellular compartment.
Although subcellular localization of proteins has been studied for
decades, it is still not at all clear in what compartment many
proteins exist. For instance, recent studies indicate that many
proteins are found in the nucleus than previously observed
(Stadler et al., 2013). Therefore, improved prediction of
subcellular localization would help to identify interacting
proteins (Almagro Armenteros et al., 2017).

Currently, the only docking method that has been shown to
provide any useful information if two proteins interact or not is
template-based docking. In 2012 Honig and co-workers used
PrePPI to estimate if protein pairs interacted or not showing that
a purely computational method could be as efficient as the
experimental methods (Zhang et al., 2012). This method has
later been improved (Mirabello and Wallner, 2017).

Many proteins, in particular in eukaryotes, have closely
related paralogs. These often do not have the same interaction
partners. To distinguish which paralog interacts with another
protein is often not possible using template-based docking, as
the paralogs all are quite similar. Here, co-evolution can aid.
Bitbol showed that it is possible to identify the correct
interacting pairs within the bacterial two-component system
using co-evolution and a maximum entropy approach (Bitbol
et al., 2016).

Modeling the Structure of Interacting Proteins
In addition to detecting if two proteins interact it is important to
model how they interact. Protein-protein docking has, for a long
time, been a challenge for computational biology (Porter et al.,
2019). Although some progress has occurred in this field the
CAPRI evaluations has not seen the same progress as in CASP
(Wodak et al., 2020). Possibly this is due to the lack of participants
using co-evolutionary methods.

If two proteins have perfectly complementary surfaces,
protein-protein docking is trivial. However, this is rarely the
case as structural plasticity of the involved proteins that change
the interaction surfaces. Further, the use of modeled structures
change the interaction surfaces even more, making the practical
use for protein-protein docking methodologies to be of limited
practical use. Therefore, often it has been necessary to use low-
resolution experimental information to obtain reliable results as
we did when predicting the structure of the Tom-complex in
mitochondria (Imai et al., 2013).

Recently an alternative method, template-based docking, has
gained popularity (Zhang et al., 2012). Here, two proteins are not
docked given all degrees of freedom, instead, the database of
known protein complexes are used as templates to guide the
docking, in a similar fashion as templates is used in homology
modeling. Template-based docking is useful both for the
identification of protein interactions and for determining the
structure of the complex (Kundrotas and Vakser, 2013).
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The use of the same direct-information contact prediction
methods as described above can be applied for protein-protein
docking (Schug et al., 2009; Hopf et al., 2014; Ovchinnikov et al.,
2014). In theory, these methods can be used without modification
to obtain contact information between proteins pairs. However,
to predict inter protein contacts, it is necessary to identify the
exact pairs of proteins that interact. The problem is that even if it
is known that protein A and B interact in one organism and that
both proteins have homologs A* and B* in another organism it is
not certain thatA* and B* interact. For instance, A* might interact
with a paralog B** or the interaction might just not be conserved
between organisms. Further, homo-multimers also cause
problems for the current set of methodologies. Therefore,
improved methods for generating correct multiple sequence
alignments as well as improved contact predictions methods
are probably necessary to develop.

Status of Docking Methodologies
A comparison between the three methods can be found in
Figure 1. Here we compare three different docking strategies
on a common dataset of unbound structures (Kundrotas et al.,

2018). Gramm (Vakser, 1995) is a state-of-the-art free docking
tool. Models are generated by shape complementary and ranked
according to a potential function. TMdock (Kundrotas amd
Vakser, 2013) is template-based docking program. Here we
excluded all hits where both proteins have highly homologous
proteins in PDB(Westbrook et al., 2002) (E-value < 1. e-5).
Finally, we have used trRosetta (Yang et al., 2020), a contact-
based structure prediction method, to dock two proteins. Here we
modified the protocol so that both proteins are folded and docked
simultaneously. For each of the two proteins, multiple sequence
alignments were generated using jackhmmer (Finn et al., 2011)
over representative proteomes from UniProt (The UniProt
Consortium, 2017). The two MSAs were then merged by hits
found in the same proteome for both sequences. We used several
different alignment strategies, including different E-value cutoffs
and attempts to identify orthologs using reciprocal best hits. For
all three methods, ten models were generated, and the best,
according to dockQ, was used. No significant difference is
seen if only the top-ranked model is used.

It is clear from this brief analysis that 1) for the majority (165/
218) of protein no method provides an accurate model 2) still

FIGURE 1 | (A–C) comparison of models for target 1ay7 (the model with the best median score) generated by three different docking protocols, trRosetta (contact-
based docking), TMdock (template-based docking) and gramm (free docking). All superpositions is done on the first protein chain (in green). The native pdb structure is
shown in lighter colors. For trRosetta both chains are shown as they are both folded, while for the other methods the first chain is identical to the native structure and
therefore not seen. (D,A) A comparison of docking qualities for 218 heterodimeric proteins pairs from the dockground 4.3 dataset using dockQ (Basu andWallner,
2016) for the three methods. A dockQ score of 0.2 or higher is often used as an indication for an acceptable docking model. The number represent the number of models
a certain method is better than the other two and that the quality is higher than this cutoff. For each target the score for the best of the top-10 ranked modes is shown.
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traditional docking methods provide the highest number of
acceptable models (Xu, 2019) 3) the methods are
complementary to each other (only for four targets two
methods provide acceptable models).

DECIPHERING CELLULAR NETWORKS

Cells consists of complex networks of interacting biomolecules. In
addition to the physical-stable interactions between proteins that
I have discussed above other regulatory interactions are
important. These includes miRNA bases regulations, proteins
binding to promoter regions, andmany other type of interactions.
Many if these are studied and predicted in databases such as
string (von Mering et al., 2007).

Although all interactions are of great interest, it is unlikely that
the revolution seen by deep learning and DCA will equally affect
our ability to predict all types of interactions. The first
requirement is that we have sequence data for both molecules
interacting and that there is an evolutionary pressure for these to
co-evolve. This excludes all interactions including anything but
RNA, DNA and proteins. However, it has been shown that co-
evolutionary signals also can be used to detect epistatic
interactions in bacteria (Skwark et al., 2017) and viruses (Zeng
et al., 2020). However, one should not forget that at the end there
is always a physical interaction underlying all types of
interactions.

FUTURE OUTLOOK

Complete structural knowledge of all proteins and their
interactions in a cell will change our understanding of cell
biology in the same way as the human genome project
changed our understanding of genetics. It is not only a
question about knowing what is there but also what is
missing, i.e. what interactions do not exist. Given the rapid
progress in both experimental and computational methods,

this is no any longer an unrealistic scenario. During the
revision of this paper Deepmind presented their impressive
results at the CASP14 conference, strengthening the
assumption that the prediction of the structure of stable
protein domains is basically a solved problem and that one of
the focus should be on how proteins interact in the cell.

Clearly the interaction data provided from computational
methods needs to be complemented with experimental data.
Here, one has to distinguish between transient and permanent
interactions. Cryo-EM tomography will provide very valuable
low-resolution data for permanent interactions, but not for
transient interactions.

Transient interactions are fundamental for regulation in a cell.
These interactions can be of different natures, from the folding-
upon-binding type of disordered regions to rigid body
interactions to phase transitions in cellular bodies. The
evolutionary pressure on these interactions is also different
making it difficult to use co-evolutionary methods for some
type of interactions. For instance, the binding of disordered
motifs often shows no co-evolutionary signal, as the
disordered motif is extremely variable, while the interaction
surface is very conserved.

Anyhow, we believe that results from the rapid advancement
in structure prediction show the power of machine learning
methods. Therefore, this author is convinced that it is just a
question of time until these methods (based on co-evolution) will
be applied to predict interactions on a large scale. Further, I
believe that the main problem in the short time will be to
construct the optimal multiple sequence alignments for
detecting the interactions.
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