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Abstract: The high-affinity potassium transporter (HKT) genes are key ions transporters, regulating
the plant response to salt stress via sodium (Na+) and potassium (K+) homeostasis. The main goal of
this research was to find and understand the HKT genes in rice and their potential biological activities
in response to brassinosteroids (BRs), jasmonic acid (JA), seawater, and NaCl stress. The in silico
analyses of seven OsHKT genes involved their evolutionary tree, gene structures, conserved motifs,
and chemical properties, highlighting the key aspects of OsHKT genes. The Gene Ontology (GO)
analysis of HKT genes revealed their roles in growth and stress responses. Promoter analysis showed
that the majority of the HKT genes participate in abiotic stress responses. Tissue-specific expression
analysis showed higher transcriptional activity of OsHKT genes in roots and leaves. Under NaCl, BR,
and JA application, OsHKT1 was expressed differentially in roots and shoots. Similarly, the induced
expression pattern of OsHKT1 was recorded in the seawater resistant (SWR) cultivar. Additionally,
the Na+ to K+ ratio under different concentrations of NaCl stress has been evaluated. Our data
highlighted the important role of the OsHKT gene family in regulating the JA and BR mediated rice
salinity tolerance and could be useful for rice future breeding programs.

Keywords: HKT; salinity; seawater; hormones; rice

1. Introduction

Rice is a major agronomic crop, providing energy to nearly 2.7 billion people [1].
China is the leading rice producer, followed by India, Indonesia, Bangladesh, and Vietnam.
Since it is grown in different agro-zones, variations in size, color, and gene pool are
common [2]. However, the looming threat of climate change has hampered rice productivity
greatly in the last decade. Among the various environmental stresses, salinity is the most
important and concerning abiotic stress impacting the livelihoods of rice growers around
the globe [3,4]. The International Oryza Map Alignment Project, a wild rice genomic
resource, provided a cultivated rice (O. sativa) genomes (3K-RG) dataset aiming to catalog
natural variations that exist in cultivated and wild rice. The information can be utilized to
identify genes and genomic regions that can be used to drive the next generation of crops
in the era of climate change [4,5].

About 45 million hectares of the total arable land have been affected by salinity
stress (http://www.fao.org/soils-portal/en/) (accessed on 5 April 2022). Salinity damages
the rice plant at the seedling and vegetative stages; and salt’s occurrence during the
reproductive phase can significantly limit the rice yield [6]. Rice plants respond to salinity
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stress by adjusting the balance of Na+ ions in roots and shoots [7,8]. These sodium ions
are regulated by an ion transporter family called the high-affinity HKT gene family [9].
Based on gene organization, protein structure, and ion specificity, HKT transporters are
divided into two sub-types: sodium uniporters (type I) and sodium/potassium symporters
(type II). The selectivity filter of type I and II HKTs differs significantly [10], providing ion
specificity. The key differentiating feature of the HKT protein’s first pore domain (PD) is
an amino acid [11]. The SF of type I members has a serine residue, whereas the remaining
three amino acid residues are glycine (S–G–G–G motif). At all points in the SF, type II
HKTs exhibit the G–G–G–G motif. However, this rule has exceptions, and extra residues
are implicated in providing cation selectivity [12]. In Arabidopsis, there is just one gene,
AtHKT1 [13]. Both dicot and monocot species have large numbers of HKT genes [14]. In
both A. thaliana and cereal crops (particularly type I HKT1; 5 s), allelic variants related
to amino acid changes and/or expression differences have been linked to conferring salt
tolerance [15]. HKT1; 5 transports Na+ across the plasma membranes, decreasing xylem sap
(loaded/transferred to neighboring parenchyma cells) and Na loading, and transporting
Na+ to the shoot. Introduction of Triticum monococcum Nax2 (TmHKT1; 5-A) into salt-
sensitive durum wheat (lacking HKT1; 5-A) reduces leaf Na salty soils and increases the
grain yield [16]. In bread wheat, the KNA1 locus (which contains TaHKT1; 5-D) is linked to
salinity tolerance, and RNAi silencing of TaHKT1; 5-D in transgenic bread wheat causes
leaf Na+ accumulation [17]. Salinity tolerance is linked to allelic variation in OsHKT1; 5 at
the Saltol locus in rice, and four amino acid variations in the OsHKT1; 5 sequences impart
differential Na+ transport characteristics [18]. Variations in OsHKT1; 5 expression levels in
rice landrace roots are also linked to salinity tolerance [19]. Two SNPs in the coding region
ZmHKT1; 5 in maize are strongly linked to salt tolerance variants [9]. Natural variation in
HvHKT1; 5 expression levels has recently been linked to salt exclusion from barley shoots.
They researchers found that functionally compromised alleles of HvHKT1; 5 (owing to miss
localization and/or altered Na+ transport activity) increase shoot and grain Na+ content.
As a result, allelic variation in HKT1; 5 may influence shoot Na+ content, and as a result,
plant fitness in salinity [20–22]. Rice crops’ evolutionary diversity allows them to adapt to
harsh environmental conditions through specialized molecular mechanisms. However, the
exact molecular mechanisms of those adaptations are poorly understood.

Herein, we identify the HKT gene family in Oryza sativa. Bioinformatic analysis,
including of the phylogenetic tree, conserved motifs, gene structures, gene ontologies,
cis-acting elements, and microarray expression, was performed. Their expression levels in
different organs and tissue were also investigated. Expression analysis of the HKT gene
family under jasmonic acid, brassinosteroids, seawater, and salinity stress was evaluated.
The results might be helpful for understanding the role of HTK in plant development and
elucidating its regulatory mechanisms that are involved in abiotic stress responses.

2. Materials and Methods
2.1. HKT Genes Family Identification

We used the hidden Markov model (HMM) to retrieve the protein sequences of
HKT genes from Arabidopsis thaliana [23] and Triticum aestivum [24]. CD-search NCBI
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (accessed on 6 February 2022)
was used to analyze the extracted Oryza sativa protein sequences.

2.2. Phylogenetic Tree and Digital Expression

The Mega (version 7.0) (Bellingham Research Institute, Bellingham, WA, USA) pro-
gram created the maximum likelihood phylogenetic tree [25]. The gene expression lev-
els were determined at various stages in all available tissues. The RNA-seq data were
retrieved in transcripts per million (TPM) from the expVIP rice Expression Browser
(http://www.rice-expression.com/) (accessed on 8 February 2022) [26,27]. The abiotic
stress comprises salinity stress, whereas hormonal treatment comprised jasmonic acid (JA)
and brassinosteroids (BRs) application. The ratios of the expression levels under different
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treatments compared to the control level were calculated to determine the regulation pat-
terns of a given gene subjected to stress. Ratios greater than or less than 1.0 under a given
treatment indicated that the stress treatment had altered gene expression. In contrast, a
ratio of 1.0 showed that the treatment did not affect gene expression [27]. The heatmap was
created using the Heml 1.0 software tool (http://hemi.biocuckoo.org/faq.php) (accessed
on 8 February 2022) [28].

2.3. Chromosomal Locations and Protein–Protein Interactions of OsHKT Genes

The chromosomal locations of the OsHKT genes were determined using plants from the
Ensemble Genomes (http://www.ensemblegenomes.org/pub/plants/release-31/fasta/
oryzasatviam/) (accessed on 10 February 2022) [27]. The MAPD raw was also used to
map the physical locations of OsHKT genes, and nomenclature was assigned according to
the order in which they appeared on the chromosomes. Investigations into rice protein–
protein interactions were conducted using the STRING online server (http://string.embl.de)
(accessed on 10 February 2022) (version. 10) [28].

2.4. Gene Structure and Conserved Motif Analysis

For the Gene structure analysis, Gene Display (http://gsds.cbi.pku.edu.cn/) was
utilized by using the genomic and CDS sequences of OsHKT genes [29]. The conserved
motifs in the OsHKT proteins were discovered using the online server MEME 4.11.3 (http:
//meme-suite.org/tools/meme) (accessed on 10 February 2022) [30].

2.5. Gene Ontology and Cis-Elements Analysis of HKT Family Genes

A 1.5 Kb genomic DNA sequence upstream of each identified OsHKT gene’s start
codon was obtained from the Ensemble Plants database (http://plants.ensemble.org/
Oryzasativa) (accessed on 11 March 2022) [31]. The online Plant CARE (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/) (accessed on 11 March 2022) database was used
to identify cis-regulatory elements for all the OsHKT genes. Ontology analysis of the OsHKT
protein sequences was performed using Blast2GO version 2.7.2 (http://www.blast2go.com)
(accessed on 11 March 2022), and the groups of GO classification (molecular functions,
biological process, and cellular components) were documented [28].

2.6. RNA Isolation and cDNA Synthesis

From the stress-exposed seedlings at selected time points, including 0 (control), the
roots, leaves, and stems had their total RNA extracted using Trizol reagent (Invitrogen,
Carlsbad, CA, USA). First, the DNA was removed using DNase I. The concentration and
purity were measured with a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific,
Rockford, IL, USA), and the integrity was checked using 1.5% agarose gel electrophoresis.
Following the manufacturer’s instructions, 1 µg of total RNA was reverse-transcribed on a
thermocycler programmed at 37 ◦C for 15 min using the PrimeScriptTM RT Master Mix
(TaKaRa, Dalian, China) containing oligo dT primer [28].

2.7. Expression Profiling of HKT Genes in Oryza sativa

Two µL aliquots of cDNA were amplified by qPCR in 20 µL reaction volumes using
the SYBR Premix Ex TaqTM II (TaKaRa, Dalian, China). The cDNAs were amplified at
95 ◦C for 2 min, followed by 35 cycles of 10 s at 95 ◦C, 30 s, and 72 ◦C for 30 s; and a final
extension step of 72 ◦C for 10 min in a CFX96 real-time PCR system (Bio-Rad Co., Ltd.,
Hercules, CA, USA). mRNA amounts of all genes were separately quantified with the
stable expression of the constitutive reference gene, actin. The specific primers are detailed
in (Supplementary Materials, Table S1). After amplification, target gene cycle threshold
(Ct) values were normalized to the reference gene by the 2−∆∆CT method [32]. The data
mean values of three biologically independent replicates were used for the final graphs,
following the protocol of Ahmad et al. [28].
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2.8. Na+, K+, and Their Ratio in Tolerant (3Y9H) and Sensitive (JLY252) Cultivars
2.8.1. Experimental Method

The experiment was conducted in 2021 at the hydroponic test base in the College of
Agriculture, Yangzhou University. The hydroponic pond is 580 cm long, 142 cm wide, and
45 cm deep. Each board has 14 planting holes, each with an aperture of 4 cm and a hole
spacing of 10 cm. The hole spacing between the two boards is 16 cm. Field seedlings were
sown on May 16 and transplanted on June 16. When transplanting, select seedlings of the
same size were transplanted: 2 plants per hole, and 5 holes for each variety. A total of 5 salt
concentration treatments were set up for this test (0, 25, 50, 75, and 100 mM); this ratio is the
quality ratio), and the salt used for testing was industrial salt. The whole nutrient solution
of the hydroponic pool consisted of Epsino nutrient mixed with an Arnon traces nutrient
solution. The whole nutrient solution was used during transplanting, 1/2 of the whole
nutrient solution was used 20 d after transplanting, and 1/4 of the whole nutrient solution
was used after ear extraction. A canopy at the top of the pool was fully enclosed to avoid
the rain. We adjusted the pH value with dilute sulfuric acid daily to keep it at about 5.5.
Pumps were used to oxygenate, to maintain the uninterrupted flow of the nutrient solution.
Each hydroponic pool site’s nutrients, salt, and pH were maintained simultaneously, and
disease and pest control were carried out at the appropriate times [33].

2.8.2. Measurements of Na+, K+ Ratio

Plant roots, leaves, and stems were selected for the experiment, and three replicates
were picked of each treatment. The samples were dried at 85 ◦C in the oven for 48 h.
Then, the dried samples were ground into a fine powder, and three replicates of 0.445 to
0.460 g were weighted from each sample. Then, the weighted dry powder was digested
using the MARS-6 microwave digestion system (applied to each sample 5 mL HNO3,
3 mL double-distilled water, and two drops of H2O2) and prepared for the micro and
macronutrient analysis following the methods described by [34,35]. Each sample was
filtered with Whatman filter paper (0.45 µm) and then stored in 10 mL plastic tubes before
we used it for further analysis. The digested filtrate was used to measure the total Na+, K+,
and their ratio through inductively coupled plasma atomic emission-spectrometry (Model
iCAP 6300, Thermo fisher scientific, ICP Spectrometer, Waltham, MA, USA).

2.9. Statistical Analysis

The data presented in this paper were analyzed using SPSS software (version 25.0,
SPSS Inc., Chicago, IL, USA) for statistical analysis (ANOVA) and statistical significance,
and we used the 95% confidence interval (p ≤ 0.05). The data are expressed in the form
of mean ± standard deviation (SD) of three biologically independent replicates for all
measured parameters; and finally, GraphPad Prism (version 8.0.2) (GraphPad Software,
Inc., LA Jolla, CA, USA) was used for graphical representations.

3. Results

This in the current study, seven OsHKT genes from rice were retrieved using the Ensem-
ble Plants database (http://plants.ensemble.org/Oryzasativa) (accessed on 20 April 2022)
and were named according to their chromosomal positions, namely, OsHKT1, OsHKT3,
OsHKT4, OsHKT6, OsHKT7, OsHKT8, and OsHKT9 (Table 1). Additionally, various other
features of Oryza sativa OsHKT proteins were identified, such as chromosomal coordinates,
molecular weights, chemical properties, and isoelectric points (PI), which are listed in
Table 1.

http://plants.ensemble.org/Oryzasativa
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Table 1. Genomic information of OsHKT gene family in rice.

Gene Name Locus ID CDS Chr. Position AA MW PI SL

OsHKT1 LOC_Os06g48,810 1593 Chr6- 29,541,219-29,538,934 531 59,295.0781 9.82610035 PM
OsHKT3 LOC_Os01g34,850 1530 Chr1- 19,242,042-19,243,853 510 56,374.3789 9.11009979 PM
OsHKT4 LOC_Os04g51,820 1659 Chr4- 30,727,084-30,724,244 553 61,862.4492 8.86629963 PM
OsHKT6 LOC_Os02g07,830 1596 Chr2- 4,103,333-4,105,657 532 59,304.5312 9.78820038 PM
OsHKT7 LOC_Os04g51,830 1503 Chr4- 30,739,334-30,734,183 501 54,239.3008 8.87370014 PM
OsHKT8 LOC_Os01g20,160 1665 Chr1- 11,463,442-11,458,955 555 60,218.2812 8.68159962 PM
OsHKT9 LOC_Os06g48,800 1530 Chr6- 29,536,553-29,534,805 510 56,116.7188 8.54440022 PM

AA: amino acid, MW: molecular weight, PI: isoelectric point, SL: subcellular location, PM: plasma membrane.

3.1. Phylogenetic Analysis of OsHKT

We used the maximum likelihood method to construct a phylogenetic tree that in-
cluded Oryza Sativa OsHKT, Triticum aestivum TaHKT, and Zea maize ZmHKT to investigate
their phylogenetic relationship, and the final tree was programmed using Interactive Tree
Of Life (iTOL) (version 5) (accessed on 25 April 2022) [36] (Figure 1). The results showed
that 7 Oryza sativa OsHKT, 3 Zea maize ZmHKT, and 7 Triticum aestivum TraesHKT are clus-
tered; and they were further divided into five groups, namely, group I, group II, group III,
group IV, and group V. Furthermore, group IV is the largest group containing 2 OsHKT,
(OsHKT4 and OsHKT6), 2 TraesHKT, and 1 AtHKT. Group V is the smallest group, contain-
ing 1 OsHKT (OsHKT1) and 1 TraesHKT. Group I contains 2 OsHKT, (OsHKT3 and OsHKT9),
1 ZmHKT, and 1 TraesHKT. Similarly, group III contains 1 OsHKT (OsHKT8), 1 ZmHKT,
and 2 TraesHKT. Group II contains 1 OsHKT, (OsHKT7), 1 ZmHKT, and 1 TraesHKT. These
results confirm that evolutionarily, Zea maize, Triticum aestivum, and O. sativa are closest.

3.2. Gene Structure and Conserved Motif Analysis of OsHKT Genes

A total of five conserved motifs were discovered using the MEME online server
(accessed on 5 May 2022), and they were found to be appropriate for explaining the HKTs
structure (Figure 2). All seven OsHKT genes contained all six conserved motifs, motif 1 to
motif 6. This result indicates that all motifs are conserved and might play important roles
in regulating the expression of the HKT gene family. All HKTs contained five motifs, and
the E-value was <b12 for all identified HKTs.

The genes OsHKT7 and OsHKT8 contain more introns as compared to other HKTs.
In molecular biology, the intron distribution plays a significant role in the phylogenetic
relationship among members of the gene family. Our results indicated that Oryza sativa is
relatively complex, and each HKTs gene contains an intron. From the perspective of gene
length, OsHKT 7 and OsHKT8 are longer than other genes (Figure 3).

3.3. Gene Ontology of OsHKT Genes in Rice

Gene Ontology (GO) analysis was performed to explore the putative (biological,
molecular, and cellular) functions of the OsHKT gene family (Figure 4). According to their
molecular functions, HKT genes modulate the transmembrane and ion transport activity.
Responses to salt stress and sodium homeostasis were revealed by the biological function
category. Most of the OsHKT genes reside in the nucleus and plasma membrane, revealing
their central roles in functional cellular activities.

3.4. Cis-Elements of OsHKT Genes in Rice

The 1.5 kb upstream regions of the OHKT genes were Blasted in the Plant CARE
database to identify the cis-acting elements. Stress-responsive elements (MYC, MYB,
and MBS) were recorded in abundance in OsHKT genes (Figure 5). The abscisic acid
responsiveness elements (ABRE), gibberellin-responsive elements (TATC box), and MeJA
responsive elements (CGTCA and TGACG) were richly represented. Additionally, the CAT
box, MSA-like, Ry, and AT rich elements, which are mainly involved in growth-related
activities, were identified. Based on these results, it can be assumed that OsHKT genes



Bioengineering 2022, 9, 410 6 of 20

are not only involved in stress biology but also regulate plant growth by fine-tuning the
hormonal accumulation.

3.5. Protein–Protein Interactions of OsHKT

The OsHKT protein prediction analysis showed an array of other proteins that have
interactions with OsHKT1 (Figure 6 and Table 2). NHX2, which plays a vital role in the
putative Na+/H+ antiporter, a sodium/hydrogen exchanger, showed interaction with
our reference gene. Similarly, our gene interacted with NHX1, which plays a vital role
in sodium/hydrogen exchange; it belongs to the monovalent cation: proton antiporter
1 (CPA1) transporter (TC 2.A.36) family. It also interacted with: P5CS1, which plays a
vital role in delta-1-pyrroline-5-carboxylate synthase glutamate 5-kinase gamma-glutamyl
phosphate reductase; P5CS which plays a key role in proline biosynthesis, leading to
osmoregulation in plants; HAK1, which is potassium transporter 1 and high-affinity potas-
sium transporter, and also transports rubidium with the same affinity. It transports cesium
with a lower affinity and belongs to the HAK/KUP transporter (TC 2.A.72.3) family. More-
over, our reference gene OsHKT1 interacts with OsJ_04382, which is a putative BTB and
TAZ domain protein, and TPKC, which is two-pore potassium channel c-containing protein.
As an inward-rectifying potassium channel, it belongs to the two-pore domain potassium
channel (TC 1.A.1.7) family. The OsJ_30786 Hsp20/alpha crystallin family protein be-
longs to the small heat shock protein (HSP20) family and also interacts with our reference
gene OsHKT1.
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BTB and TAZ domain protein, and TPKC, which is two-pore potassium channel 
c-containing protein. As an inward-rectifying potassium channel, it belongs to the 
two-pore domain potassium channel (TC 1.A.1.7) family. The OsJ_30786 Hsp20/alpha 
crystallin family protein belongs to the small heat shock protein (HSP20) family and also 
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Table 2. Predicted function partners of OsHKT1 in Oryza Sativa.

Reference Protein Predicted Interactive Partner Annotation and Putative Function

OsHKT1

NHX2 Putative Na+/H+ antiporter; Sodium/hydrogen exchanger.

NHX1 Sodium/hydrogen exchanger; Belongs to the monovalent cation: proton
antiporter 1 (CPA1) transporter (TC 2.A.36) family.

P5CS1

Delta-1-pyrroline-5-carboxylate synthase Glutamate 5-kinase
Gamma-glutamyl phosphate reductase; P5CS plays a key role in proline
biosynthesis, leading to osmoregulation in plants. Involved in abiotic
stress tolerance.

HAK1

Potassium transporter 1; High-affinity potassium transporter.
Additionally, transport rubidium, with the same affinity and cesium,
with a lower affinity; which belongs to the HAK/KUP transporter (TC
2.A.72.3) family.

OsJ_04382 Putative BTB and TAZ domain protein.

TPKC Two pore potassium channel c; Inward-rectifying potassium channel;
Belongs to the two-pore domain potassium channel (TC 1.A.1.7) family.

OsJ_30786 Hsp20/alpha crystalline family protein expressed; Belongs to the small
heat shock protein (HSP20) family.

3.6. Tissue-Specific Expression Analysis of OsHKT Genes in Rice

Tissue-specific expression is important to understand the functional role of a particular
gene family. We analyzed the expression of OsHKT genes in different rice tissues by using
the RiceXPro expression database (version 3.0, National Institute of Agrobiological Sciences,
Tsukuba, Ibaraki, Japan) (accessed on 28 May 2022) [37]. Gene expression patterns in
different tissues of rice were drawn on a heatmap, as shown in Figure 7. OsHKT3, OsHKT6,
and OsHKT9 showed dominant expression in roots, leaf sheaths, and leaf blades. OsHKT1
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displayed higher transcriptional activity mainly in roots. The OsHKT4 gene was recorded in
lamma/palea with higher mRNA accumulation in leaf sheaths, anther, and lamma/palea.
The OsHKT7 exhibited dominant expression in the stem only, whereas OsHKT8 showed
dominant expression in leaf sheaths, roots, and stem tissues.
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3.7. Expression Analysis of OsHKT Genes in Rice Roots under Brassinosteroids Application

Brassinosteroids (BRs) are important hormones that regulate plant growth and devel-
opment. Herein, we show the heatmap of the OsHKT gene expression pattern in response
to the application of brassinosteroids (Figure 8). Among the OsHKTs, OsHKT3, OsHKT4,
and OsHKT7 showed dominant expression under brassinosteroids application after 6 h
of treatment. In comparison, OsHKT9 expression was lower under various durations
brassinosteroid treatment. OsHKT1 showed lower expression in response to 30 min and
1 h treatments, but higher expression after 3 and 6 h treatments. OsHKT8 showed high
expression initially, (0 min), and as the duration of treatment increased, the expression level
also decreased, whereas OsHKT6 showed dominant expression consistently.

3.8. Expression Analysis of OsHKT Genes in Rice Root under Jasmonic Acid Application

Gene expression pattern in rice subjected to the jasmonic acid application was drawn
on the heatmap shown in Figure 9. The results show that only OsHKT1 had high expression
in response to jasmonic acid treatment after the 3 h duration, and after 6 h duration.
OsHKT8 also displayed relatively high expression as compared to other genes. OsHKT3,
OsHKT4, OsHKT6, OsHKT7, and OsHKT9 expression was relatively low as compared to
OsHKT1 and OsHKT4.
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3.9. Expression Analysis of OsHKT Genes in Rice Roots and Stems under Saline Conditions

Based on the bioinformatically predicted data, we further studied the response of
OsHKT genes in rice roots and stems under saline conditions (Figure 10). OsHKT1 is
down regulated, and no expression was recorded in NaCl roots, whereas control CK roots
showed high expression. Similarly, in stems, OsHKT1 transcript level was low under NaCl
treatment compared to CK stems. The OsHKT3 transcript level was lower in roots. High
expression was recorded in the stems, and as compared to CK stems, the NaCl treatment
showed a lower mRNA level. The OsHKT4 transcript showed normal expression in roots
for both control and treatment, whereas in the stems, the expression level was higher under
NaCl treatment as compared to control. The OsHKT6, OsHKT7, OsHKT8, and OsHKT9
transcript levels were also lower than in the control in both stems and roots.
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3.10. Expression Analysis of OsHKT Genes in Salinity Resistant Cultivar Subjected to
Seawater Stress

Based on the bioinformatically predicted data, we further studied the response of the
OsHKT gene family in the salinity resistant cultivar subjected to seawater stress (Figure 11).
The results showed that OsHKT1 was highly expressed in SWR-NaCl as compared to
SWR-CK and CK control. The OsHKT3 and OsHKT4 transcript levels were low in SWR-
NaCl and SWR-CK and high in the CK control cultivar. The OsHKT6 transcript level was
higher in SWR-NaCl and CK cultivars as compared to SWR-CK cultivars under stress.
The OsHKT7 and OsHKT8 transcripts showed higher expression levels in SWR-CK and
SWR-NaCl cultivars compared to the CK control. The OsHKT9 transcript level was lower
than in the control in both SWR-CK and SWR-NaCl cultivars.
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3.11. Na+, K+ Ratio in Tolerant Cultivar 3Y9H

Based on our results and the functions of OsKHT genes, we further tested the 3Y9H
cultivar under five salt concentration treatments (25, 50, 75, 100 mM). The tissues tested
were the root, leaf, and stem tissues (Figure 12). The results indicate that K+ ratio was
higher under control and 25 mM conditions, whereas suppression was observed at 50, 75,
and 100 mM. In contrast, the ratio of Na+ increased under 50, 75, and 100 mM treatments
of salt as compared to the control conditions. Similarly, in leaf tissues, the ratio of K+ was
higher under control conditions as compared to 25, 50, 75, and 100 mM salt treatment. In
contrast, the ratio of Na+ in leaves increased in 50, 75, and 100 mM treatments of salt as
compared to control conditions. In stem tissues, the ratio of K+ was higher under control,
25, and 50 mM treatments; however, it declined under 75 and 100 mM treatments. In
contrast, the ratio of Na+ in leaves increased in 50, 75, and 100 mM treated stem tissues as
compared to control tissues.

3.12. Na+, K+ Ratio in the Sensitive Cultivar (JLY252)

The JLY252 cultivar was subjected to five different salt concentrations (25, 50, 75,
100 mM). The tissues tested were the roots, leaves, and stems (Figure 13). The results
indicated that the K+ ratio in root tissues was higher under control and 25 mM conditions,
and lower under 50, 75, and 100 mM treatments with salt. In contrast, the ratio of Na+

in 50 and 100 mM salt treated tissues was higher as compared to 25, 75 mM, and control
conditions. Similarly, in leaf tissues, the ratio of K+ was higher under control, 25, 50, and
75 mM treatments as compared to 100 mM salt treatment. In contrast, the ratio of Na+ in
leaves increased under 50, 75, and 100 mM as compared to the control tissues. In stem
tissues, the ratio of K+ was higher under control, 25 50, and 75 mM treatments, whereas a
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decreasing trend was recorded for 100 mM. In contrast, the ratio of Na+ in leaves increased
under 50, 75, and 100 mM conditions as compared to the control.
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4. Discussion

Most studies on the functional analysis of HKT genes have been carried out in model
plants, mainly A. thaliana [38], and in crops such as wheat [16], barley [39], sorghum [40],
and maize [41]. However, a comprehensive study of the rice HKT gene family was missing.

4.1. OsHKT Genes Are Distributed Widely in the Rice Genome

We identified eight HKT genes from the Oryza sativa genome database. The HKT genes’
classification in different species was confirmed by using the HMM and CD online servers.
The absence of a single amino acid residue from the domain indicated the HKT genes as
main transporters of ions [42]. Based on these results, it can be suggested that these HKT
genes do not affect the plant’s resistance to salinity in a direct manner. These HKT genes
could increase plant resistance to salt via balancing the ions’ accumulation in the roots
and shoots.

The HKT genes in rice are divided in to five subgroups, as showed by the phylogenetic
tree analysis (Figure 1). Further, shared homology between the HKT genes from each
subgroup displays their evolutionarily unchanged cladding. Given the obtained results,
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the HKT genes could be highly conserved and may participate in several other functions
(Figure 3). The division of each subfamily also highlighted the diverse functions of these
myriad biomolecules in maintaining plant fitness against salinity stress [42,43]. Instead of
the series of evolutionary events, the highly conserved grouping of HKT genes confirmed
that they possess similar functions [44].

We noted that the intron–exon, motif distribution, and physiochemical properties of
all HKT proteins were quite similar in each subfamily. For instance, we noted that HKT
proteins with more than one intron are classified into subfamily V, and one or intron-less
HKT proteins were divided into subfamilies I, II, and IV (Figure 2). Similarly, we also
noted that a maximum number of HKT proteins that consisted of five or less motifs were
found in subfamily V. The results further noted that the physicochemical properties of all
HKT proteins were similar in each subfamily. These results suggest that HKT proteins
shared a close evolutionary relationship during biological evolution in plants [45,46]. The
intron–exon distribution revealed that most HKT genes possessed two exons and one intron
(Figure 2), further confirming that the HKT genes may have close evolutionary relationships
in plants [47]. Furthermore, the motif analysis also noted that all HKT proteins consisted of
a total of five to seven motifs (Figure 3), indicating the strong evolutionary relationship of
the HKT proteins [48,49]. In addition, the in silico analysis found that the HKT proteins
interact with other proteins to regulate the development of different aspects of plant growth
(Figure 6).

4.2. OsHKT Genes Control Plant Response to Salt Stress, Brassinosteroids, and JA Treatments

Studies have shown that OsHKT1 is mainly expressed in the shoots, and OsHKT1;5
is mostly expressed in roots [50]. Our results also confirmed that OsHKT4 and OsHKT9
are highly expressed in stem tissues under salt stress (Figure 11). Results have shown
that OsHKT1 is mainly expressed in roots; in contrast, our results showed that OsHKT1
is mostly expressed in the stem. OsHKT3, OsHKT6, and OsHKT9 are mainly expressed in
stem cells, and their expression significantly affects ABA induction. This result is in line
with previous studies [50,51]. Studies have shown that HKT1; 5 can take much Na from
xylem offloading into surrounding parenchyma cells, reducing xylem SAP. The Na+ content
prevents transport to the aboveground part of the plant, indirectly raising the content of
K+ aboveground [52]. OsHKT1, OsHKT6, and OsHKT8 are highly expressed in SWR-NaCl.
The results confirmed that these genes play a significant role in salinity stress management.

Previous studies highlighted that HKT genes work in concert with other transcription
factors. These transcription factors, including MYBc and BHLH, alter the transcriptional
activity of HKT genes, and thus regulate the plant’s response to salinity stress [53–56]. For
instance, the expression of OsHKT1 was decreased significantly in the OsMYBc antisense
lines and in the process compromised the response of rice plants to salinity stress [57]. These
multiple lines of evidence suggest the prominent role of OsHKT genes in rice tolerance to
salinity stress by complex genetic and epigenetic machinery.

Excessive Na+ in plants could result in ion toxicity, which causes an imbalance in ion
uptake and nutritional disorders and leads to growth inhibition and even plant death [58,59].
Maintaining K+ and Na+ ion homeostasis is important for a series of physiological and
biochemical processes in plants, and for resistance to salinity [60]. In the present study,
the concentration of Na+ ions was significantly lower in the tolerant line than that in the
sensitive line in both leaves and roots. Furthermore, the concentration of K+ ions in the
tolerant line was significantly higher than in the sensitive line. These results indicate that
tolerant lines may have a more selective absorption and transportation capacity for K+ and
Na+ and could maintain a higher concentration of K+ under saline conditions.

5. Conclusions

We conducted comprehensive bioinformatics and functional analysis of the OsHKT
gene family in rice. The in silico analysis revealed the potential biological and molecular
roles of the OsHKT genes in rice growth and stress biology. Expression analysis of OsHKT



Bioengineering 2022, 9, 410 17 of 20

genes revealed their putative role in regulating the rice plant growth under normal and
salinity stress conditions. Additionally, OsHKT genes showed sensitivity to different
hormones, highlighting their importance in hormonal-mediated stress responses and
growth regulation. The hydroponic experiment of the two cultivars clearly indicated
that the 3Y9H cultivar performed well under the saline condition compared to the sensitive
cultivar (JLY252). Higher Na+ and low K+ content in the sensitive and tolerant cultivars,
respectively, further highlighted the potential of HKT transporters in rice’s tolerance
against salinity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9090410/s1, Table S1: Primers information of
OsHKT genes for qRT-PCR expression analysis in rice.
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