
materials

Article

Statistical Analysis and Preliminary Study on the Mix
Proportion Design of Self-Compacting Steel Fiber
Reinforced Concrete

Xinxin Ding 1,*, Minglei Zhao 2,*, Siyi Zhou 1, Yan Fu 1 and Changyong Li 1

1 International Joint Research Lab for Eco-building Materials and Engineering of Henan,
North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
syzhou@stu.ncwu.edu.cn (S.Z.); yanfu@stu.ncwu.edu.cn (Y.F.); lichang@ncwu.edu.cn (C.L.)

2 School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
* Correspondence: XxDing_159387@163.com (X.D.); coffeyha@aliyun.com (M.Z.)

Tel.: +86-371-6579-0248 (M.Z.)

Received: 21 January 2019; Accepted: 18 February 2019; Published: 20 February 2019
����������
�������

Abstract: With the sustainable development of green construction materials in civil engineering,
self-compacting steel fiber reinforced concrete (SC-SFRC) has attracted widespread attention due to its
superior self-compacting performance and excellent hardened properties. In this paper, 301 groups of
test data from published literatures were collected to quantify the characteristics of the mix proportion
of SC-SFRC. The type, aspect ratio and volume fraction of steel fiber commonly used in SC-SFRC
are discussed and the effects of steel fiber on the workability and mechanical properties of SC-SFRC
are statistically studied. The relationship of cubic compressive strength and water-to-binder ratio
and that of the splitting tensile strengths between SC-SFRC and referenced self-compacting concrete
(SCC) are also evaluated. Based on these analyses, the reasonable ranges of material components
in the mix proportion design of SC-SFRC are determined. The results showed that with several
adjusted parameters, the calculation model of the water-to-binder ratio for the mix proportion design
of ordinary concrete is suitable for SC-SFRC. The calculation model of tensile strength is suggested
for SC-SFRC with various types of steel fiber.

Keywords: self-compacting steel fiber reinforced concrete (SC-SFRC); mix proportion; fiber factor;
water-to-binder ratio (w/b); cubic compressive strength; splitting tensile strength; calculation model

1. Introduction

Self-compacting steel fiber reinforced concrete (SC-SFRC) is a type of high performance concrete
with the benefits of self-compacting performance at the fresh stage and superior mechanical properties
at the hardened stage. The composition, production and mechanism of SC-SFRC are more complicated
than those of self-compacting concrete (SCC). Due to the large density, elongated shape and large
surface area of steel fiber [1], the direct addition of steel fibers in SCC would impair the self-compacting
performance and disturb the solid skeleton of fresh concrete [2–4]. Nowadays, studies showed
that a limited volume fraction of steel fiber could be used in SC-SFRC in order to ensure higher
workability and better mechanical performance. Due to the packing effect of the fiber-aggregate
solid skeleton, the self-compacting performance could not be achieved once the volume fraction of
steel fiber in concrete exceeds the limited value even if the concrete mixture is a homogeneous and
stable suspension [5]. The limitation (usually less than 2%) is mainly affected by the characteristics
of raw materials [2,6,7] and mix proportion [8–12]. The characteristics of the raw materials include
the maximum particle size and surface morphology of coarse aggregate, volume fraction, aspect ratio
and geometry of steel fiber, binder paste content and sand ratio. The volume fraction of steel fiber
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used in SC-SFRC increased in proportion to the sand ratio [12]. A higher volume fraction of steel
fiber for SC-SFRC could be used by altering the compositions of concrete mixture and adjusting the
characteristics of steel fibers.

At present, various mix design methods for SC-SFRC have been reported. The binary mixture
method [4,9,13–21] is one of the most commonly used methods, in which steel fibers are directly added
to SCC. The workability of fresh SC-SFRC is tested to evaluate its satisfaction in terms of the required
self-compacting performance. If self-compacting could not be achieved, the material compositions
were subsequently adjusted without affecting the water-to-binder ratio (w/b). The adjustment
measures include adding chemical admixture [13,18–21] and taking the volume of steel fiber into the
consideration of an aggregate [9,15,16] or coarse aggregate [4]. The method has several disadvantages,
such as project targeting, particularized condition and poor adoptability. The actual applications relied
on the experience of engineering technicians.

Another mix design method is the modified Densified Mixture Design Algorithm (DMDA) [22,23],
which is based on the required durability. The principle is low water content and low cement content
to enhance the durability. The detailed measures included three steps. Firstly, we maximized the
pile-up density of aggregates and fly ash using the loose packing test to optimize the content of fly ash
and aggregates. After this, we added steel fibers as part of the solid volume and calculated the lowest
void fraction of solid skeleton. Finally, we calculated the total paste volume with consideration of the
thickness of lubricating paste. It can be seen that only the influence of volume of steel fiber is taken
into account in this method.

Grünewald [2] proposed a performance-based mix design method for SC-SFRC. This method uses
the Compressive Packing Model (CPM) [3] and assumes that the steel fiber is the equivalent packing
diameter [24]. The virtual packing density of the steel fibers was calculated from the experimental
packing density under the consideration of the wall-effect (experimental results) and the applied
compaction process (the compaction index K = 3.6, which is experimentally determined for the
deposition method). Ferrara [25] presented a “rheology of paste model” mix design method for
SC-SFRC. The method chose to include steel fibers in the particle size distribution of the solid skeleton
by creating the concept of an equivalent diameter of the same specific surface. The parameters
of these methods have complex calculation processes and require high theoretical knowledge for
engineering technicians.

Eduardo [26] and Barros [7] produced SC-SFRC by optimizing the composition of binder materials
and that of aggregates, respectively. The optimization of binder materials is based on the requirements
of both workability and compressive strength. The optimization of the particle size distribution of
aggregates is experimentally determined by the packing test of steel fiber–aggregates solid skeleton.
In addition, the volume fraction of steel fiber is included according to the engineering requirement.
The minimum binder paste in SC-SFRC is chosen according to the self-compacting performance.
This method is project targeted and needed a large amount of experimental data to evaluate the
influence of steel fiber on the solid skeleton.

Besides, Sahmaran [27] attempted to produce SC-SFRC by simply increasing water content with
constant contents of binder and chemical admixtures. Cai [28] produced SC-SFRC by increasing
contents of water and binder with constant w/b. Anastasiou [29] produced SC-SFRC by increasing the
amount of ladle furnace slag used with constant w/b. Li [12] reported that the optimal sand ratio of
SC-SFRC should consider the volume fraction of steel fibers.

The solid skeleton of aggregates or steel fiber–aggregates and its balance with the binder content
are considered in the above-described mix design methods. The addition method of steel fibers is
the major difference among them. The limit of the type and volume fraction of steel fibers in these
methods are not clear. Thus, more statistical analysis, quantity trails of experiments and a simplified
calculation process are needed for determining the mix proportion design of SC-SFRC.

In this paper, the experimental database of SC-SFRC is built. Combined with the previous study
of the numerical analysis of mix proportion for SCC [30], the differences of compositions between the
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SC-SFRC and SCC are systemically discussed. Moreover, the type, aspect ratio and volume fraction of
steel fibers commonly used in SC-SFRC are discussed. The effects of the fiber factor on the workability
and mechanical properties are statistically studied. The relationship of w/b and cubic compressive
strength of SC-SFRC as well as splitting tensile strengths between SC-SFRC and referenced SCC
are studied.

2. Statistical Analysis for Mix Proportion of SC-SFRC

2.1. Experimental Database

In this paper, 301 groups of test data for SC-SFRC from previous literatures [2,9,10,12–19,22,23,26–
29,31–61] were collected to build the database. The range of results used for the experimental database
are listed in Table 1. The mineral admixtures of SC-SFRC in the experimental database included
parts of fly ash, slag powder, silica fume and stone powder. It should be noted that some values of
the cylinder compressive strength used in the experimental database were converted into the cubic
compressive strength (f cu). The conversion factors are followed by the reference [62]. The detailed
information of experimental database for SC-SFRC is presented in Appendix A.

Table 1. The range of results used for the experimental database.

Index Minimum Value Maximum Value

Water-to-binder ratio (w/b) 0.15 0.52

Water-cement ratio (w/c) 0.25 1.30

Coarse aggregate Maximum particle size (MA) (mm) 8 25
Apparent density (kg/m3) 2600 3170

Fine aggregate
Maximum particle size (MA) (mm) 2 5

Fineness modulus 1.9 3.5
Apparent density (kg/m3) 2590 2720

Sand ratio by mass βs (%) 41 76

Cement density (kg/m3) 3090 3170

Steel fiber
Length lf (mm) 6 60

Aspect ratio lf/df 15 120
Volume fraction ρf (%) 0.08 1.79

Slump flow (SF) (mm) 500 830

The cubic compressive strength (f cu) (MPa) 20 120

The splitting tensile strength (f ft) (MPa) 3.0 12.4

2.2. Aggregates

Figure 1 displays the variations of the volume content of aggregates, coarse aggregate and
fine aggregate (VRA, VRCA and VRFA) along with the cubic compressive strength f cu for SC-SFRC.
SC-SFRCs (A)–(G) form the test data of SC-SFRC with a binary mixture design method, modified
DMDA method, modified CPM method, method based on the packing test of steel fiber–aggregates,
method of changing water content, method of increasing water and binder contents with w/b constant
and method of increasing binder content, respectively. The volume content of their raw materials
are distinguished using points of different color. VRa, VRCA and VRFA changed by 45–70%, 10–35%
and 25–45% for SC-SFRC, respectively. Both VRA and VRCA show a small decrease with increased
cubic compressive strength. VRFA shows little regularity with increased cubic compressive strength.
Linear fitting was used to obtain the trendline. Trendlines of VRA, VRCA and VRFA along with f cu for
SCC [30] are drawn as black lines where r is the correlation coefficient of the regression equation. It can
be seen that VRA and VRCA of SC-SFRC are about 1.49–3.59% and 4.18–4.78% lower than those of SCC,
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respectively. Compared with SCC, one feature of the mix proportion for SC-SFRC is the lower VRA

and VRCA values.
In term of self-compacting performance, a smaller content of coarse aggregate leads to less

blocking effect and high flowability of fresh concrete. A suitable volume content of fine aggregate
and a certain range of sand ratio would increase the segregation resistance of fresh concrete.
However, a higher volume content of coarse aggregate would be beneficial in restricting the shrinkage
deformation of hardened concrete, which is consistent with the requirements of the concrete structure
performance. Thus, considering the different volume contents of coarse aggregate and fine aggregate,
the mix proportion of SC-SFRC is classified into two types, which was named as NC-type SC-SFRC
(legends of chamfering triangle in Figures 1 and 2) and LC-type SC-SFRC (legends of triangle in
Figures 1 and 2), respectively. NC-type SC-SFRC has a volume content of coarse aggregate that is more
than 600 kg/m3 and volume content of fine aggregate that is less than 1000 kg/m3. LC-type SC-SFRC
has coarse aggregate content that is less than 600 kg/m3 and fine aggregate content that is more than
1000 kg/m3. LC-type SC-SFRC focuses more on the performance of fresh concrete, while NC-type
SC-SFRC focuses on both the workability and volume deformation of hardened concrete. Similar VRA

values were observed in NC-type and LC-type SC-SFRC. LC-type SC-SFRC has a VRCA and VRFA that
was lower by 10.75–11.59% and higher by 5.64–7.34%, respectively, than NC-type SC-SFRC.
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Figure 1. The differences of volume fraction of aggregates: (a) VRA; (b) VRCA; and (c) VRFA.

VRA, VRCA and VRFA of SC-SFRC with different mix design methods also showed some
differences. SC-SFRC (C), SC-SFRC (D), SC-SFRC (E) and part of SC-SFRC (A) and SC-SFRC (F)
can be categorized to LC-type SC-SFRC. In contrast, SC-SFRC (B) and part of SC-SFRC (A) and
SC-SFRC (F) can be categorized to NC-type SC-SFRC.

Figure 2 shows the variation of sand ratios according to mass βs along with the cubic compressive
strength. βs changed by 40–80% for SC-SFRC, which is about 3.0–4.1% higher than that of SCC.
Moreover, more than 80% of the sand ratios of SC-SFRC were 47–69%. βs of LC-type SC-SFRC was
higher by 15.9–16.2% than that of NC-type SC-SFRC.
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Figure 2. Variation of sand ratio βs along with cubic compressive strength f cu.

Figure 3 shows the probability distributions of the maximum particle size (MA) of coarse
aggregates for SC-SFRC and SCC. The test data of SC-SFRC with MA ≤ 10 mm, 10 mm < MA
≤ 16 mm, 16 mm < MA ≤ 20 mm and 20 mm < MA ≤ 25 mm are 28.4%, 49.6%, 21.0% and 1.0%,
respectively. The test data of SCC [30] with MA ≤ 10 mm, 10 mm < MA ≤ 16 mm, 16 mm < MA ≤
20 mm and 20 mm < MA ≤ 25 mm are 18.5%, 42.3%, 21.5% and 16.2%, respectively. Thus, one feature
of SC-SFRC is the smaller MA of coarse aggregates compared to SCC.
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2.3. Binder and Binder Paste

Figure 4 exhibits the variations of volume contents of the binder and binder paste (VRb, VRBP)
along with the cubic compressive strength f cu. Similar to Figures 1 and 2, the legends of the chamfering
triangle are NC-type SC-SFRC and the legends of triangle are LC-type SC-SFRC. In this paper,
the binder material is the sum of cement and mineral admixtures while VRBP is the sum of water and
binder materials by volume. The influence of hydration reaction on the volume change of binder
paste is ignored. VRb and VRBP changed by 12–30% and 30–55% for SC-SFRC, respectively. Similar
to SCC [30], VRb and VRBP of SC-SFRC increased in proportion to the cubic compressive strength.
VRR and VRBP of SC-SFRC are higher by approximately 0.47–0.97% and 0.92–2.82% compared to that
of SCC, respectively. Thus, one feature of the mix proportion for SC-SFRC is the higher VRBP.

As shown in the red box line of Figure 4, several test data have higher VRb and VRBP

values [27,28,51]. All these test data belong to LC-type SC-SFRC. Moreover, the experimental study
of Abrishambaf used abundant binder materials of 766 kg/m3 and a slightly low water content of
140 kg/m3 [41] with f cu = 63 MPa. The limestone filler was considered as one of the binder materials.
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As shown in the red box line of Figure 4, several test data have higher VRb and VRBP values 
[27,28,51]. All these test data belong to LC-type SC-SFRC. Moreover, the experimental study of 
Abrishambaf used abundant binder materials of 766 kg/m3 and a slightly low water content of 140 
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Figure 4. The differences of binder materials: (a) VRb; and (b) VRBP.

VRb and VRBP of SC-SFRC with different mix design methods also show some differences.
Comparing with the trendlines of VRb and VRBP, SC-SFRC (C) and SC-SFRC (G) have similar VRb
and VRBP, SC-SFRC (E) and part of SC-SFRC (F) have higher VRb and VRBP due to the same reason
discussed in the above paragraph. In contrast, SC-SFRC (B) and SC-SFRC (D) have lower VRBP due to
the lower water content.

2.4. Steel Fiber

It can be summarized from the experimental database that the hooked-end steel fiber is the most
commonly used, which was involved in about 54% of SC-SFRC. This was followed by 23% of SC-SFRC
containing crimped steel fibers. All of the other macro steel fibers of straight, milled cut, indentation,
twisted and large-end account for about 20%. In contrast, micro steel fiber is only involved in about
3% of SC-SFRC.

The histograms of the probability distributions of length lf, aspect ratio lf/df and fiber factor
λf = ρf·lf/df of steel fiber are drawn in Figure 5 where df is the equivalent diameter of the cross-section
of steel fiber and ρf is the volume fraction of steel fiber in concrete. More than 75% of lf were less than
42.5 mm, more than 56% of fiber length lf ranged from 30 mm to 35 mm, more than 58% of aspect ratio
lf/df ranged from 50 to 70 and more than 80% of the fiber factor λf were less than 0.55.
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have no obvious influence on the compressive strength. In this study, fcu and fcu0 are the cubic 

Figure 5. Probability distribution of steel fiber in SC-SFRC: (a) length lf; (b) aspect ratio lf/df;
and (c) fiber factor λf.

Figure 6 shows the relationship between fiber length lf and the maximum particle size of aggregate
MA. To ensure an efficient reinforced effect of steel fibers, lf/MA should be larger than 1.33 in
vibrated-compacting SFRC [63]. It can be seen that 99% of lf/MA are larger than 1.33 in SC-SFRC.
lf/MA decreases with the increasing MA and 94% of lf/MA are between 1.5 and 6.5.
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The influences of steel fiber on the fresh and hardened performances of SC-SFRC are shown in
Figure 7. SF and SF0 are the slump flows of SC-SFRC and the referenced SCC, respectively. The ratio of
the slump flow SF/SF0 forms a linear correlation with fiber factor λf, which decreases with an increase
in λf. The type of steel fiber has no obvious influence on SF/SF0. Both the fiber factor and type have
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no obvious influence on the compressive strength. In this study, f cu and f cu0 are the cubic compressive
strengths of SC-SFRC and the referenced SCC, respectively. We determined that 89.4% of the ratios of
cubic compressive strength f cu/f cu0 ranged from 0.85 to 1.15.
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of slump flow ratio SF/SF0 with fiber factor λf; and (b) variation of cubic compressive strength ratio
f cu/f cu0 with fiber factor λf.

3. Calculation Model of Water-to-Binder Ratio for SC-SFRC

The calculation model of w/b for the vibrated-compacting concrete in Chinese standard JGJ/T
55 [64] is:

w/b =
αa fb

fcu,0 + αaαb fb
(1)

where f cu,0 is the designed cubic compressive strength of concrete; αa and αb are coefficients mainly
related to the type of coarse aggregate; and f b is the compressive strength of binder materials at 28 days
(MPa), which can be predicted by Formula (2), when there is no measured value.

fb = γfγs fce (2)

where f ce is the compressive strength of cement at 28 days; γf is the influence coefficient of fly ash,
which can be taken as values listed in Table 2 [65]; and γs is the influence coefficient of slag powder,
which can be taken as the values specified in JGJ/T 55 [64]. With a similar influence, stone powder has
the same influence coefficient with fly ash. Moreover, the influence coefficient of silica fume is taken as
1.0 conservatively in the following sections.

Table 2. Proposed values for mortars with different fly-ash and w/b [65].

Percentage of Fly-Ash 0 10 20 30 40 50

Fly-ash of class I or superfine
fly-ash; Fly-ash of class II with

w/b ≤ 0.35
1 1.00–1.05 0.95–1.00 0.85–0.90 0.75–0.80 0.65–0.70

Fly-ash of class II with
w/b > 0.35 1 0.90–0.95 0.80–0.85 0.70–0.75 0.60–0.65 -

Besides, the calculation model of w/b for SCC in Chinese Standard JGJ/T 283 [66] is;

w/b =
0.42 fce(1 − β + β · γ)

fcu,0 + 1.2
(3)

where β is the replacement ratio by the mass of mineral admixture in binder materials; and γ is the
influence coefficient of mineral admixtures. These values are 0.4 and 0.9 for fly ash with β ≤ 0.3 and
slag powder with β ≤ 0.4, respectively.
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In fact, both Equations (1) and (3) have a form of reciprocal function and are identical in essence,
which could be expressed in one form:

w/b =
αaκ fce

fcu,0 + αaαbκ fce
(4)

where κ is the influence coefficient of mineral admixture on the compressive strength of cement.
K = γf·γs in JGJ/T 55, κ = 1 − β + β·γ in JGJ/T 283.

If f b = κf ce, αab = −αaαb, Equation (4) can be transformed to Equation (5).

fcu,0

fb
= αa

b
w

+ αab (5)

With b/w as the x-axis and f cu/f b as the y-axis, Figure 8 plots the test data and fitting result of
SC-SFRC. The parameters αa = 0.319 with the standard deviation of 0.030 and αab = 0.291 with the
standard deviation of 0.091 are obtained.
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Considering the reliability of cubic compressive strength with a probability of 95% in the mix
proportion design, αa = 0.270 and αab = 0.141 for SC-SFRC are obtained. Thus, αb = -αab/αa = −0.522.

The different coefficients reflect the different changes in w/b with cubic compressive strength f cu.
With the same w/b, f cu of SCC is about 7–10 MPa lower than that of vibrated-compacting concrete [30].
For SC-SFRC, a w/b lower than that of vibrated-compacting concrete and higher than that of SCC is
needed to achieve the same f cu. Thus, Equation (1) with αa = 0.270 and αb = −0.522 is advised for the
mix proportion design of SC-SFRC.

4. Designed Tensile Strength of SC-SFRC

Steel fibers obviously strengthen the splitting tensile strength in SC-SFRC [20,60]. The calculation
model of designed tensile strength f ft for SC-SFRC is shown as Equation (6) [60].

fft = ft(1 + αtbαteλf) (6)

where f t is the tensile strength of referenced SCC, which could be accurately estimated by using the
EC-2 model [67–69]; αte is the coefficient related to the effective fiber distribution; and αtb is a coefficient
that colligated the other factors, which influence the bridging effects of steel fibers in the splitting
tensile test.

A total of 89 groups of splitting tensile test data in the experimental database were used to verify
Equation (6). There were different advised values of αtbαte for different types of steel fibers according
to Chinese standard JGT 472 [63]. The tested splitting tensile strength f t of SCC in the same strength
grade was used to calculate the tensile strength f ft,c of SC-SFRC. Apart from αtbαte = 0.5, the SC-SFRC
with crimped steel fiber and cubic compressive strength of the referenced SCC ranged from 20 MPa to
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60 MPa [60]. Moreover, a simple Formula (7) was used to calculate the tensile strength of SC-SFRC
with hybrid steel fibers based on the previous study of concrete with hybrid steel fibers [70].

fft = ft
(
1 + κt∑ αtbαteλf

)
(7)

where κt is a coefficient of the hybrid effect for concrete with hybrid steel fibers. For concrete with
hybrid steel fibers, κt > 1 means a positive hybrid effect between steel fibers while κt < 1 means a
negative hybrid effect between steel fibers. For SC-SFRC mixed with hooked-end and straight steel
fibers in this study, κt ≈ 1. It means that the hybrid effect did not exist in the hooked-end steel fiber
and straight steel fiber with lengths that were smaller than 10 mm.

Figure 9 and Table 3 provide the detailed comparison of calculated tensile strength f ft,c and tested
tensile strength f ft,t of SC-SFRC. The results show that Equation (6) with advised values of αtbαte is
suitable for predicting the tensile strength of SC-SFRC with the steel fibers of hooked-end, crimped,
milled, indentation and large-end. Equation (6) with advised values of αtbαte obviously underestimates
the tensile strength of SC-SFRC with spiral steel fibers and overestimates that of SC-SFRC with straight
steel fibers.
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Figure 9. Comparison of calculated and measured values of tensile strength for SC-SFRC using
Equations (6) and (7).

Table 3. Comparison of f ft,c and f ft,t of SC-SFRC.

Fiber Type Number of
Tests Data

Mean Ratio
of f ft,c/ f ft,t

Standard
Deviation

Coefficient of
Variation

Hooked-end 38 1.042 0.154 0.148
crimped 25 0.962 0.124 0.128
Milled 8 1.030 0.045 0.044

Straight 5 1.167 0.183 0.157
Spiral 3 0.603 0.075 0.124

Indentation 1 0.916 – –
Large-end 1 0.984 – –

Hooked-end & straight 8 1.011 0.219 0.216

5. Conclusions

Based on the statistical analyses of test data for SC-SFRC, the following conclusions are drawn:
SC-SFRC has differences in the mix proportion compared with SCC. SC-SFRC usually has higher

contents of binder paste and fine aggregate, higher sand ratio, lower content and smaller maximum
particle size of coarse aggregates. Based on the content of coarse aggregates in the mix proportion,
SC-SFRC could be divided into LC-type and NC-type. LC-type SC-SFRC has a significantly lower
content of coarse aggregate and higher sand ratio compared with NC-type SC-SFRC. Most of the steel
fibers used in SC-SFRC have lengths less than 37.5 mm, aspect ratios less than 70 and fiber factors no
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more than 0.45. The ratio of slump flows between SC-SFRC and the referenced SCC decreased with an
increase in the fiber factor.

Based on the calculation model of water-to-binder ratio in Chinese standard JGJ/T 55, suitable
coefficients are advised for the mix proportion design of SC-SFRC. The calculation model of the
designed tensile strength with advised coefficients according to Chinese standard JGT 472 is suitable
for SC-SFRC with steel fibers of hooked-end, milled, indentation and large-end. The calculation model
of the designed tensile strength with coefficients proposed in the authors’ previous study is suitable
for SC-SFRC with crimped steel fibers. More adjustments in the mix proportion design of SC-SFRC,
such as determining the dosages of binder materials and water and optimizing sand ratios, need to be
further studied.
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Appendix A

Table A1. Ranges of main parameters of SC-SFRC.

Ref.
no

Cement Type N w/b w/c
MA

(mm)
βs

(%)

Steel Fiber
f cu

(MPa)
f ft

(MPa)
SF

(mm)Type lf
(mm) lf/df

ρf
(%)

[2]

CEM III 42.5N
+ CEM I 52.5R
or/and CEM III

52.5A

16

0.30 0.47 16 68 Hooked-end 60 80 0.77 54 6.3 –
0.30 0.47 16 68 Hooked-end 30 80 0.77 58 6.6 –
0.30 0.47 16 68 Hooked-end 40 65 1.28 52 6.6 –
0.30 0.47 16 68 Hooked-end 30 45 1.79 56 7.6 –
0.32 0.46 8 70 Hooked-end 30 80 0.51 70 7.6 –
0.32 0.46 8 70 Hooked-end 20 65 0.77 76 7.4 –
0.31 0.44 16 68 Hooked-end 60 80 0.77 75 8.7 –
0.31 0.44 16 68 Hooked-end 30 80 0.77 72 8.1 –
0.31 0.44 16 68 Hooked-end 40 65 1.28 74 8.9 –
0.31 0.44 16 68 Hooked-end 30 45 1.79 78 9.8 –
0.31 0.44 16 68 Hooked-end 60 80 0.77 75 8.1 –
0.31 0.44 16 68 Hooked-end 30 45 1.79 72 9.6 –
0.28 0.38 16 68 Hooked-end 60 80 0.77 117 12.4 –
0.30 0.47 16 68 Hooked-end 30 45 0.77 52 5.6 –
0.30 0.47 16 68 Hooked-end 30 45 1.54 56 7.3 –
0.28 0.38 16 68 Hooked-end 30 80 0.77 114 11.6 –

[9] CEM II 42.5 9 0.34 0.49 15 50–52
Hooked-end 25 25 0.35–1.0 42–46 3.0–3.3 653–693
Hooked-end 30 30 0.35–1.0 43–48 3.2–3.4 625–655
Hooked-end 50 50 0.35–1.0 40–45 3.3–3.4 594–638

[10] ASTM Type III 3 0.30 0.43 19 49–50 Hooked-end 60 80 0.5 100–110 7.5–8.4 700–785

[12] P.O 42.5 6 0.31–0.34 0.61–0.67 20 50–57 Straight 30 60 0.3–1 35–69 2.5–5.3 665–680

[13] P.II 52.5 7 0.32–0.36 0.46–0.57 16 46–47 Crimped 25 50 0.38–0.89 75–84 – 445–665

[14] P.O.42.5R 3 0.22 0.31 20 46 straight 10 62.5 0.3–0.9 98–103 – 570–655

[15] OPC #53 9 0.31 0.48 16 45–48
- 13 14 0.5–1.5 45–48 4.5–4.7 650–685
- 23 25 0.5–1.5 46–48 4.6–4.7 590–655
- 32 35 0.5–1.5 45–47 4.4–4.5 565–605

[16] CEM II 4 0.31 0.40 15 – Hooked-end 30 60 0.2–0.8 55–59 4.9–5.3 580–690

[17] CEM I 5
0.23 0.27 10 – screw-type 25 50 0.08–0.51 112–120 5.2–7.4 700–730
0.22 0.31 10 45 Straight 10 67 0.31–0.61 98–103 – 630–655

[18] P.O.42.5 3 0.30 0.38 20 48–49 dumbbell-shaped 20 50 0.6–0.8 79–82 – 635–680

[19] P.O.42.5 1 0.32 0.45 20 49 Hooked-end 35 65 0.26 72 5.3 720

[22] Type I PC 5
0.25–0.32 0.42–0.62 19 44–56 Hooked-end 30 60 0.51–1.02 55–85 – 395–645

0.32 0.57 19 54 Hooked-end 50 100 0.51 60 – 620

[23] OPC #53 3 0.23–0.36 0.37–0.58 20 52 Hooked-end 35 65 0.5–0.75 46–71 4.9–6.5 610–660

[26] CEM I 42.5R 1 0.15 0.27 12 59 Hooked-end 60 80 0.38 62 – 720

[27] ASTM Type I 3
0.40 0.904 19 60 Hooked-end 30 55 0.77 26 3.1 660
0.36 0.82 19 – Hooked-end&straight – – 0.77 30 3.4 630
0.36 0.82 19 60 Straight 6 37.5 0.77 30 3.1 700

[28] P.O 42.5 9 0.33 0.41–0.55 20 53–76 Hooked-end 35 65 0.6–1.2 45–61 3.7–6.4 650–700

[29] CEM I42.5 N 6 0.34–0.39 0.5 16 61 Hooked-end&straight 30 60 0.4–0.7 41–44 – 500–600
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Table A1. Cont.

Ref.
no

Cement Type N w/b w/c
MA

(mm)
βs

(%)

Steel Fiber
f cu

(MPa)
f ft

(MPa)
SF

(mm)Type lf
(mm) lf/df

ρf
(%)

[31] CEM II 42.5 7 0.40–0.44 0.44–048 8 49 Hooked-end 35 65 0.64 49–62 2.9–5.1 450–850

[32] CEM I42.5 R 4 0.21 0.39 13 59 Hooked-end 33 60 0.77 75–85 – 680–720

[33] P.O 42.5 3 0.34 0.5 20 44 Crimped 15 40 0.5–1.25 54–63 – 650–685

[34] CEM I 52.5R 2 0.36 0.47 18 55
Hooked-end 50 50 0.45 – – 540
Hooked-end 30 79 0.45 – – 590

[35] P.O 42.5 9 0.31–0.37 0.39–0.48 20 48 Hooked-end 35 44 0.2–0.6 35–60 – 610–705

[36] P.O 42.5 7
0.35 0.50 10 49–50 Hooked-end 60 80 0.26–0.76 49–62 – 650–710

0.33–0.35 0.46–0.50 10 48–50 Hooked-end 35 65 0.32–0.64 42–67 – 650–760

[37] CEM I 42.5R 12 0.41 0.41 8 47–49
Crimped 35 28 0.5–1.5 69–77 – 740–805
Crimped 50 25 0.5–1.5 75–79 – 720–795

[38]
P.C 32.5R

7
0.45 0.56 10 45 Hooked-end 35 65 0.25–0.51 35–36 – 420–580

P.O 42.5R 0.35 0.5 10 51 Hooked-end 35 65 0.32–0.64 42–48 – 730–760
P.II 52.5R 0.33 0.46 10 50 Hooked-end 35 65 0.32–0.64 65–67 – 650–700

[39] – 5 0.22–0.41 0.25–0.41 10 51–63 Hooked-end 30 55 0.51–0.64 80 – 560–830

[40] – 1 0.41 0.41 11 60 Hooked-end 50 50 0.64 61 – 570

[41] CEM 42.5 R 1 0.34 0.34 – – Hooked-end 33 60 0.8 63 – 670

[42] CEM II/A-L
42.5 R 1 0.34 0.40 10 – Straight 11 27.5 0.65 45 – 650

[43] ASTM Type I 3 0.32 0.71 10 48 Hooked-end 30 60 0.5–1.5 55–67 – 550–670

[44] P.O 42.5 11 0.34 0.49 20 46–49 Mill-cut 32 40 0.3-1.2 40–45 5.2–6.2 650–685

[45] OPC # 53 9 0.35 0.35 20 41
Straight 50 – – 41–42 3.5–4.3 –

Hooked-end 50 – – 43–44 4.0–4.3 –
Crimped 50 – – 44–48 4.0–4.5 –

[46] CEM I 52.5R 12 0.26 0.26 10 –
Double Hook-end 60 65 0.25–1.0 66–74 – 730–810
Double Hook-end 60 65 0.25–1.0 66–71 – 765–830
Single hooked-end 60 65 0.25-1.0 67–73 – 740–810

[47] CEM I 42.5R 6 0.43

0.43 15 70
Hooked-end 30 45 0.5 68 – 740

straight 6 37.5 0.5 67 – 760
mixed 0.5 67 – 750

0.85 15 70
Hooked-end 30 45 0.5 68 – 710

straight 6 37.5 0.5 65 – 720
mixed 0.5 69 – 700

[48] CPIII 40 4 0.32 0.5 9.5
– Hooked-end 35 65 1.0–1.5 – – –

Hooked-end and
straight 35/12 65/67 1.0–1.5 – – –

[49] SLC 1 0.52 1.3 10 – Hooked-end 60 80 0.38 50 4.5 670

[50] CEM1 42.5R 2 0.24 0.45 12 – Hooked-end 60 80 0.38–0.57 84–89 – 700

[51] ASTM type I 22

0.41 0.77 12 65

Hooked-end 30 80 0.5–1.5 50–59 – 570–650
Hooked-end 30 55 0.5–1.5 50–58 – 585–635

4DHooked-end 60 65 0.5–1.5 55–60 – 535–635
5DHooked-end 60 65 0.75–1.5 52–54 – 505–555

0.29 0.36 12 63
Hooked-end 30 80 0.5–1.5 82–87 – 570–720

4DHooked-end 60 65 0.75–1.5 88–89 – 595–750
5DHooked-end 60 65 0.75–1.5 82–85 – 685–720

[52] ASTM Type I 18 0.32 0.46 15

48.6 Hooked-end 30 55 0.26–0.77 73–90 – 600–750
48.6 Hooked-end 60 80 0.26–0.77 65–86 – 530–720
63.2 Hooked-end 30 55 0.26–0.77 79–85 – 640–755
63.2 Hooked-end 60 80 0.26–0.77 73–85 – 600–750
71.5 Hooked-end 30 55 0.26–0.77 77–83 – 680–765
71.5 Hooked-end 60 80 0.26–0.77 75–81 – 660–760

[53] ASTM Type II 8
0.48 0.48 12.5 60 Milled-cut 20.6 20 0.4–1.5 43–50 3.4–4.3 640–750
0.38 0.42 12.5 60 Milled-cut 20.6 20 0.4–1.6 71–76 5.1–5.9 730–780

[54] CEM II/B
42.5N

13 0.4 0.4 20 50
Crimped 35 58 0.3–1.2 48–53 4.3–5.6 650–800
Crimped 40 67 0.3–1 51–53 4.9–5.7 650–795
Crimped 50 83 0.3–1 52–53 5.3–5.8 630–750

[55] Type II PC 6 0.23 0.37 10 52–53
Crimped 25 50 0.5–1.0 100–106 6.2–6.8 720–770
straight – – 0.5–1.0 99–103 5.9–6.4 730–780

[56] Type II PC 4 0.62 0.62 6 69 Hooked-end 35 65 0.19–0.77 29–33 – 580–770

[57] CEM I 42.5R 9 0.44 0.44 16 46 Straight and crimped
mixed 6/35 32/27 1–2 39–48 – 700–790

[58] High Strength
PC 9 0.32 0.5 13.2 64–65 Hooked-end 35 65 0.5–1 52–63 3.2–5.2 570–675

[59] ASTM Type I 5 0.35 0.4 19 63 Hooked-end and
straight mixed 35/6 55/37.5 0.77 44–59 3.6–5.1 615–695

[60] P.O 42.5 6 0.31–0.32 0.44–0.46 16 53–57

Crimped 38.8 33.2 0.5–1.5 46–57 3.5–3.9 690–740
Indentation 32.3 28.5 1 49 3.8 715
Hooked-end 50.7 63.3 1 48 3.8 660

Large-end 52.2 67.4 1 47 4.2 665

[61] CEM II/A-LL
42.5R 1 0.29 0.44 12 54 Hooked-end 50 63 0.51 68 – 720

Note: N is the number of groups in references. A group of test data is a set of results tested from SC-SFRC with the
same mix proportion and type and content of steel fiber in the reference.
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