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ABSTRACT
SARS-CoV-2 or Coronavirus disease 19 (COVID-19) is a rapidly spreading, highly contagious, and some-
times fatal disease for which drug discovery and vaccine development are critical. SARS-CoV-2 papain-
like protease (PLpro) was used to virtually screen 1697 clinical FDA-approved drugs. Among the top
results expected to bind with SARS-CoV-2 PLpro strongly were three cell protectives and antioxidants
(NADþ, quercitrin, and oxiglutatione), three antivirals (ritonavir, moroxydine, and zanamivir), two anti-
microbials (doripenem and sulfaguanidine), two anticancer drugs, three benzimidazole anthelmintics,
one antacid (famotidine), three anti-hypertensive ACE receptor blockers (candesartan, losartan, and val-
sartan) and other miscellaneous systemically or topically acting drugs. The binding patterns of these
drugs were superior to the previously identified SARS CoV PLpro inhibitor, 6-mercaptopurine (6-MP),
suggesting a potential for repurposing these drugs to treat COVID-19. The objective of drug repurpos-
ing is the rapid relocation of safe and approved drugs by bypassing the lengthy pharmacokinetic, tox-
icity, and preclinical phases. The ten drugs with the highest estimated docking scores with favorable
pharmacokinetics were subjected to molecular dynamics (MD) simulations followed by molecular
mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. Phenformin, quer-
cetin, and ritonavir all demonstrated prospective binding affinities for COVID-19 PLpro over 50ns MD
simulations, with binding energy values of �56.6, �40.9, and �37.6 kcal/mol, respectively. Energetic
and structural analyses showed phenformin was more stable than quercetin and ritonavir. The list of
the drugs provided herein constitutes a primer for clinical application in COVID-19 patients and guid-
ance for further antiviral studies.
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Introduction

SARS-CoV-2 or Coronavirus disease-19 (COVID-19) has
recently emerged in China and rapidly spread throughout
many other countries (WHO, 2020). The new SARS-CoV-2 was
classified as a Beta-coronavirus (Liu et al., 2020). As recently
evolved, there is a great demand for the discovery of new
drugs against SARS-CoV-2.

The new SARS-CoV-2 is classified as a beta-coronavirus
(Liu et al., 2020), characterized by a large genome of approxi-
mately 30 kb, and comprised of genes for four structural pro-
teins—spike (S), envelop (E), membrane (M), and
nucleocapsid (N)—and non-structural (NS) genes (Shi et al.,
2015). In CoVs, there are 14–16NS genes encoding proteins
used in the vital processes of virus genomic transcription,
protein processing, virion assembly, and replication (Brian &

Baric, 2005). CoV infections caused mild respiratory symp-
toms until more dangerous forms evolved approximately two
decades ago, noted by the emergence of SARS CoV. Three
highly fatal CoVs have been of global health concern: SARS
CoV, MERS CoV, and SARS-CoV-2 (Guarner, 2020). The SARS-
CoV-2 genome composition is highly similar to that of
SARS CoV, yet the former possesses inherently more efficient
gene expression due to more biased codon usage and lower
effective codon numbers than SARS CoV, pangolin Beta-CoV,
bat SARS CoV, and MERS CoV (Kandeel et al., 2020; Kandeel &
Altaher, 2017).

The CoV NS polyprotein is processed by two proteases,
the main protease (Mpro) (a strict protease) and the multi-
functional PLpro (Harcourt et al., 2004). Inhibition of PLpro

impacts virus replication via deficient viral protein processing
and can also affect remote PLpro activities, including
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deubiquitination, de-ISGylation, and innate, anti-host immun-
ity reactions (B�aez-Santos et al., 2014; Mielech et al., 2014).
PLpro comprises a central catalytic domain and the ubiquitin-
like domain (Ubl) (Bailey-Elkin et al., 2014; Lei et al., 2014;
Yang et al., 2014), which interferes with the host IRF3 and
NF-kB antiviral pathways and modulates the host immune
response (Ratia et al., 2014). PLpro subdomains showed differ-
ent reaction patterns in the presence or absence of ubiquitin
(Alfuwaires et al., 2017b). Furthermore, PLpro was an import-
ant drug target against several CoVs, including MERS CoV
(Kandeel et al., 2019) and SARS CoV (B�aez-Santos
et al., 2015).

FDA-approved drugs are the first potential treatments to
use in emergent cases, due to their commercial availability,
proven safety, and direct applicability without the need for
any preclinical and clinical testing. This study aims to identify
the top candidates among FDA-approved drugs with strong
binding potential for SARS-CoV-2 PLpro, with the ultimate
goal of repurposing drugs for inhibition of SARS-CoV-2. The
most promising drugs based on the predicted docking scores
for COVID-19 PLpro will be further investigated using molecu-
lar dynamics simulations over 50 ns. A molecular mechanics/
generalized Born surface area (MM/GBSA) approach will be
applied to evaluate drug- PLpro binding energies (DGbinding)
throughout the MD simulated time. The stability, binding
affinity, and interactions of the drug-PLpro binding will also
be estimated.

Methods

Construction of FDA-approved drugs dataset

A dataset of FDA-approved drugs was obtained as an SDF
file from Selleckchem Inc. (WA, USA). The drugs dataset was
imported to the ligprep module of the Maestro package
(Schrodinger Inc., LLC, NY, USA). The structures of drugs
were 3D optimized at neutral pH and desalted.

Preparation of SARS-CoV-2 PLpro structure

The structure of SARS-CoV-2 PLpro was retrieved from the
protein data bank (PDB ID 6w9c) and imported to the pro-
tein preparation module in the Maestro software package.
Protein preparation was as previously described (Alfuwaires
et al., 2017a; Kandeel et al., 2020; Kandeel & Al-Nazawi,
2020). Briefly, the protein was preprocessed to assign the
substructure components and detect potential errors. The
structure was protonated and optimized at neutral pH. The
protein structure was energy minimized using an OPLS2005
force field. The docking grid was generated by selecting the
co-crystalized ligand, and the grid box extended to approxi-
mately 20 Å around the ligand.

Virtual screening

Virtual screening was implemented by the glide docking
module of the Maestro package using the standard precision
(SP docking) mode (Friesner et al., 2004). 6-Mercaptopurine

(6-MP) was proved to be a potent inhibitor of SARS PLpro

with IC50 ¼ 0.0216mM (B�aez-Santos et al., 2015). The result
of the docking run was compared to the values of 6-MP as a
reference inhibitor.

Molecular dynamics simulations

Molecular dynamics (MD) simulations were conducted on the
most promising drugs to target PLpro using AMBER16 soft-
ware (Case et al., 2016). In MD simulations, the general
AMBER force field 2 (GAFF2) (“GAFF and GAFF2 are public
domain force fields and are part of the AmberTools16 distri-
bution, a.f.d.a.h.a.o.i.a.A.M.A.t,”) and AMBER force field (Maier
et al., 2015) were utilized to describe drugs and COVID-19
PLpro, respectively. The restrained electrostatic potential
(RESP) approach (Bayly et al., 1993) at the HF/6-31G� level
was employed to estimate the atomic partial charges of the
drugs. The quantum mechanical calculations were conducted
using Gaussian09 software (Frisch et al., 2009). The docked
drug- PLpro complexes were solvated in a cubic water box
with 15 Å distances between the edges of the box and any
atom of the complexes. The solvated complexes were then
minimized for 5000 steps and gently annealed from 0K to
300 K over 50 ps. The systems were equilibrated for 1 ns, and
production stages were executed over simulation times of
50 ns. Every 10 ps, a snapshot was taken over the production
stage, giving 5,000 snapshots for each complex. Periodic
boundary conditions and the NPT ensemble were adopted in
all explicit MD simulations, including both the equilibration
and production stages. Long-range electrostatic interactions
under periodic conditions were treated with the Particle
Mesh Ewald (PME) method (Darden et al., 1993) with a direct
space cut-off of 12 Å. The temperature was held constant at
298 K using Langevin dynamics with the gamma_ln param-
eter set to 1.0. A Berendsen barostat with a relaxation time
of 2ps was employed to control system pressure (Berendsen
et al., 1984). All bonds involving hydrogen atoms were con-
strained using the SHAKE option, and the time step was set
to 2fs. The MD simulations were executed with the GPU ver-
sion of pmemd (pmemd.cuda) in AMBER16 on the
CompChem GPU/CPU cluster (hpc.compchem.net).

Binding energy calculations

Coordinates and energy values were collected every 10ps
over the production stage for binding energy calculations.
Based on the collected coordinates, the binding energies of
the drugs with COVID-19 PLpro were evaluated using the
molecular mechanics–generalized Born surface area (MM-
GBSA) approach (Massova & Kollman, 2000). The MM-GBSA
binding free energies were estimated as follows:

DGbinding ¼ GComplex � Gdrugs þ GPLproð Þ
where the energy term (G) is estimated as:

G ¼ Evdw þ Eele þ GGB þ GSA

with Evdw, Eele, GGB and GSA as the van der Waals, electro-
static, General Born solvation, and surface area energies,
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respectively. Entropy contributions were not considered in
this study.

Statistical analysis

Several correlation runs were conducted to evaluate the rela-
tion between the calculated docking score and the func-
tional parameters of compounds recognition by SARS-CoV-2
PLpro. Pearson’s correlation coefficient and the significance
degree were estimated in GraphPad Prism software.

Results

The virtual screening results of a total of 1697 FDA-approved
drugs against the SARS-CoV-2 PLpro are provided in
Supplementary File 1. The presented parameters include the
docking scores, ligand efficiencies, and lipophilic and hydro-
gen bonding interactions. Table 1 shows the compounds
with the highest docking scores, including 26 compounds
with a docking score of –7 or higher. The relative docking
score and interaction parameters were calculated based on
the values of the reference PLpro inhibitor 6-mercaptopurine
(6-MP).

Among the top hits (Table 1 and Figure 1), there were
three general tonics, cell-protective substances, and antioxi-
dants (NADþ, quercetin, and oxyglutathione), three antivirals
(ritonavir, moroxydine, and zanamivir), two antimicrobials
(doripenem and sulfaguanidine), two anticancer drugs, three
anthelmintics from the benzimidazole group, one antacid
(famotidine), and other miscellaneous systemically or topic-
ally acting drugs.

As shown in Supplementary File 1, 6-MP occupied the
132nd rank in the virtual screening study. Therefore, the top
retrieved hits were more likely to have more potent interac-
tions with SARS-CoV-2 PLpro. The improved docking scores
were derived by a corresponding increase in both the hydro-
phobic scores and hydrogen bonding interactions.

To analyze the interactions of the top hits in comparison
with the reference drug, the ligand interaction profiles of
drugs and the analyses of the contributing forces were plot-
ted (Figure 1). The binding mode of the compounds showed
a U-shaped configuration (Figure 2); it had a U-shaped cavity
with the arms of the U hosting TYR261. Zanamivir formed
three hydrogen bonds with ASP157, GLU160, and TYR261.
NADþ showed a strong network of five hydrogen bonds,
one salt bridge, and stacking interactions. Ritonavir showed
four hydrogen bonds and a stacking interaction with ARG159
(Figure 3).

Statistical analysis revealed a significant positive correl-
ation between the docking score and the hydrogen bonds,
lipophilic interactions, and ligand efficiency scores (p < .001)
(Table 2). The molecular weight did not show a significant
correlation with the docking score. The positive correlation
between both the hydrogen bond and the Glide lipo con-
firms the role of both hydrogen bonding and lipophilic inter-
actions in the binding to PLpro. This contributed to the
improved docking scores of the top hits compared with the
score of the previously identified PLpro inhibitor 6-MP.

Molecular dynamics simulation

Conformational flexibilities of drug-receptor complexes, solv-
ent effects, and dynamics must be determined to attain
dependable drug-receptor–binding affinities (De Vivo et al.,
2016; Kerrigan, 2013). Therefore, molecular dynamic (MD)
simulations combined with binding energy (MM-GBSA) calcu-
lations over 50 ns were conducted for the most promising
drugs (i.e. those which had predicted docking scores in asso-
ciation with COVID-19 PLpro). The evaluated average MM-
GBSA binding energies over the 50 ns MD simulations are
listed in Table 3. According to the calculated MM-GBSA bind-
ing energies (DGbinding), only 3 of the 10 investigated drugs
demonstrated considerable binding energies (DGbinding >

�37.6 kcal/mol); 7 exhibited relatively weak binding energies
in the range of �36.4 � DGbinding � �19.5. Interestingly,
phenformin, quercetin, and ritonavir showed promising bind-
ing affinities toward COVID-19 PLpro, with binding energies
(DGbinding) of �56.5, �40.9, and �37.6 kcal/mol, respectively
(Table 4).

Post-dynamics analyses

Binding energy decomposition

Decomposition of the average MM-GBSA binding energy
over a 50 ns MD simulation was carried out to disclose the
nature of dominant interactions for phenformin, quercetin,
and ritonavir with COVID-19 PLpro (Table 2). According to
energy decomposition results, the electrostatic interactions
(Eele) were the dominant forces in the drug–PLpro binding
affinity, with values of �124.1, �75.0, and �26.7 kcal/mol for
the phenformin–PLpro, quercetin– PLpro, and ritonavir–PLpro

complexes, respectively. In addition, the van der Waals (Evdw)
contributions were favorable, with values of �23.2, �33.5,
and �45.0 kcal/mol for the phenformin–PLpro,
quercetin–PLpro, and ritonavir–PLpro complexes, respectively.

Hydrogen bond length

Correlational analyses of the hydrogen bond lengths
between phenformin, quercetin, and ritonavir and the key
amino acid ASP157 residue were estimated through 50 ns
MD simulations and are presented in Figure 4a. What stands
out in the figure is the higher stability of phenformin and
ritonavir inside the active site of COVID-19 PLpro, with aver-
age hydrogen bond lengths of 2.10 and 2.29 Å, respectively.
Quercetin formed a stable hydrogen bond through the first
30 ns, with an average length of 1.70 Å. After 30 ns in the MD
simulations, there was an increase in the hydrogen bond
length, however, so that the average bond length was 2.92 Å
throughout the final 20 ns of the MD time.

Center-of-mass distance

Phenformin, quercetin, and ritonavir inside the active site of
COVID-19 PLpro were further scrutinized by measuring the
center-of-mass (CoM) distance between the drug and the
ASP157 residue through the 50 ns of the MD simulations (see
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Table 1. The top hits after virtual screening of FDA-approved drugs against SARS-CoV-2 PLpro.

Name Mol Weight
Docking
score

Glide ligand
efficiency

Glide
lipo

Glide
hbond Clinical application

Fostamatinib disodium 624.423 �8.888 �0.222 �1.508 �0.47 chronic immune thrombocytopenia
Chlorhexidine HCl 578.368 �8.666 �0.255 �1.253 �1.533 antiseptic
Candesartan (Atacand) 440.454 �8.136 �0.247 �1.943 �0.462 angiotensin receptor blocker
NAD1 663.425 �7.983 �0.181 �0.85 �0.696 General tonic
Zanamivir (Relenza) 332.31 �7.812 �0.34 �0.817 �0.86 Influenza neuraminidase inhibitor
Quercitrin 448.377 �7.757 �0.242 �2.31 �0.32 Anticancer, antioxidant
Montelukast Sodium 608.165 �7.572 �0.185 �3.316 �0.599 leukotriene receptor antagonist in asthma
Losartan 462.009 �7.501 �0.25 �2.349 �0.289 angiotensin II receptor blocker
Famotidine (Pepcid) 337.445 �7.411 �0.371 �1.035 �1.034 antacid
Dacomitinib (PF299804, PF-00299804) 469.939 �7.408 �0.224 �1.63 �0.841 anticancer
Ritonavir 720.944 �7.393 �0.148 �1.396 �1.429 Antiviral – HIV protease inhibitor
Flubendazole (Flutelmium) 313.283 �7.359 �0.32 �1.605 �0.342 Anthelmintic
Moroxydine HCl 207.661 �7.334 �0.611 �0.589 �1.184 Broad spectrum antiviral
Tezacaftor VX-661 520.498 �7.333 �0.198 �1.373 �1.195 cystic fibrosis
Phenformin hydrochloride 241.721 �7.232 �0.482 �1.025 �1.148 hypoglycemic agent
Oxiglutatione 612.631 �7.219 �0.18 �0.928 �1.015 Cell protective- antioxidant
Valsartan (Diovan) 435.519 �7.2 �0.225 �2.401 �0.152 angiotensin II receptor blocker
Doripenem Hydrate 438.52 �7.188 �0.266 �1.481 �0.801 carbapenem antibiotic
Guanabenz (WY-8678) Acetate 291.134 �7.186 �0.513 �1.086 �0.948 alpha-2 selective adrenergic

agonist - antihypertensive
Dichlorphenamide (Diclofenamide) 305.159 �7.128 �0.446 �0.947 �0.709 carbonic anhydrase inhibitors

for glaucoma
LCZ696 Sacubitril 915.979 �7.127 �0.223 �2.514 �0.242 Cardiovascular
Albendazole (Albenza) 265.331 �7.084 �0.394 �1.868 �0.367 Anthelmintic
Fenbendazole (Panacur) 299.348 �7.032 �0.335 �1.709 �0.337 Anthelmintic
Acetazolamide 222.245 �7.024 �0.54 �0.569 �0.456 carbonic anhydrase inhibitors
Sulfaguanidine 214.245 �7.013 �0.501 �0.733 �0.878 Antimicrobial

Figure 1. Virtual screening and docking of FDA-approved drugs with COVID-19 CoV PLpro. (a) The top 10 hits docked into the PLpro binding site. (b) The molecular
surface of SARS-CoV-2 PLpro and its binding site.

Figure 2. The site of SARS-CoV-2 PLpro binding with the top hits, showing the binding site residues. The binding site is shown in blue mesh, and the binding site
residues are colored by element (white for carbon and green for ligands).
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Figure 4b). The CoM distance data in Figure 4b demonstrate
that phenformin, quercetin, and ritonavir showed high stabil-
ity inside the active site of COVID-19 PLpro during the 50 ns
of the MD simulations, with average CoM distances of 4.55,
7.57, and 6.05 Å, respectively.

Binding energy per frame

Correlations between the binding energy and time would
grant a deeper insight into the stability of the drug–PLpro

Figure 3. The ligand interactions of zanamivir, NADþ, ritonavir, and 6-mercaptopurine with SARS-CoV-2 PLpro. Charged residue (negative) in pink, positive charged
residue in blue, and hydrophobic residues in cyan; hydrogen bonds indicated by purple arrow; stocking interactions indicated by green lines.

Table 2. Pearson’s correlation of the obtained docking score with the drug’s molecular weight and interaction parameters with SARS-CoV-2 PLpro.

Docking score vs. glide
ligand efficiency

Docking score vs.
glide lipo

Docking score vs.
glide hbond

Docking score vs.
MolWeight

Pearson r
r 0.3024 0.2311 0.3602 0.01789
95% confidence interval 0.2585 to 0.3451 0.1855 to 0.2757 0.3181 to 0.401 �0.02978 to 0.06547
R squared 0.09147 0.05341 0.1298 0.00032
P value
P (two-tailed) <0.0001 <0.0001 <0.0001 0.4620
P value summary ���� ���� ���� ns
Significant? (alpha 5 0.05) Yes Yes Yes No
Number of XY Pairs 1693 1693 1693 1693

Table 3: Calculated MM-GBSA binding energies (in kcal/mol) for the top 10
potent drugs against COVID-19 PLpro over 50 ns MD simulations.

No. Drug name MM-GBSA Binding energy (kcal/mol)

1 Phenformin �56.5
2 Quercetin �40.9
3 Ritonavir �37.6
4 Montelukast �36.4
5 Fosmatinib1 �33.5
6 Nadid �32.9
7 Candestran �28.9
8 Valsartan �28.6
9 Zanamivir �24.7
10 Oxyglutathione �19.5
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interactions. The MM-GBSA binding energies were there-
fore measured per frame for phenformin, quercetin, and
ritonavir with PLpro and are displayed in Figure 4c. Data in
Figure 4c revealed that the phenformin, quercetin, and
ritonavir complexes demonstrated a tight binding affinity
over the 50 ns of the MD, with an average DG binding of
�56.5, �40.9, and �37.6 kcal/mol, respectively. These find-
ings show a promising stability of phenformin, quercetin,
and ritonavir in complex with PLpro over the simulated MD
time of 50 ns.

Root-mean-square deviation

The root-mean-square deviation (RMSD) was utilized to scru-
tinize the structural changes in the drug–PLpro complexes
over the MD simulated time. The RMSD for the backbone
atoms of phenformin, quercetin, and ritonavir in complex
with PLpro relative to the starting structures throughout the
50 ns MD simulations were estimated and are summarized in
Figure 4d. What stands out in this figure is the backbone of
the phenformin–, quercetin–, and ritonavir–PLpro complexes
and the demonstrated stability over the 50 ns MD

Figure 4. (a) Hydrogen bond lengths. (b) CoM distances between the most promising drugs and the key residue amino acid ASP157. (c) Variations in the MM-
GBSA binding energies. (d) RMSD of the backbone atoms from the initial structure for phenformin (black), quercetin (red), and ritonavir (blue) in complex with
PLpro through 50 ns MD simulations.

Table 4. Decomposition of MM-GBSA binding energies for phenformin, quercetin and ritonavir in complex with COVID-19 PLpro through 50 ns MD simulations.

Drug Name

Calculated MM-GBSA binding energy (kcal/mol)

DEVDW DEele DEGB DESUR DGgas DGSolv DGbinding
Phenformin �23.2 �124.1 94.8 �4.0 �147.3 90.7 �56.5
Quercetin �33.5 �75.0 72.7 �5.2 �108.4 67.6 �40.9
Ritonavir �45.0 �26.7 40.0 �5.9 �71.7 34.0 �37.6
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simulations, giving an RMSD of less than 0.35 nm. Overall,
these results indicate that the three investigated drugs are
tightly bonded in the active site of the PLpro and do not
impact the overall topology of the PLpro.

Discussion

This work covers an essential gap in the discovery of new
drugs against COVID-19. CoVs encode a limited number of
virus-encoded enzymes. Therefore, the therapeutic opportu-
nities are directed to these targets in the hope of finding
new anti-SARS drugs. Of these enzymes, PLpro lies at the
heart of drug discovery targets owing to its essential func-
tion in processing the viral polyprotein, as well as its multiple
remote activities that lead to suppression of the host
immune response.

In criticizing the top hits, some of these drugs are not
suitable for oral administration due to pharmacokinetic
restrictions, for example, because of the poor absorption of
sulfaguanidine and most of the benzimidazole anthelmintics.
Others have important effects on body system functions,
such as tezacaftor (cystic fibrosis), guanabenz (adrenoceptor
agonist), venetoclax and taxifolin (anticancer drugs), and
chlorhexidine (a drug for topical application).

Three previously known antivirals were found among the
top hits (ritonavir, moroxydine, and zanamivir). Ritonavir is a
viral protease inhibitor approved for treating HIV (Croxtall &
Perry, 2010). Ritonavir/lopinavir was successful in treating an
index case with severe pneumonia (Lim et al., 2020).
Moroxydine is an old antiviral with several new derivatives
that are effective against the hepatitis C virus (Magri et al.,
2015). It has broad-spectrum antiviral actions involving DNA
and RNA viruses (Yu et al., 2016, 2018). Zanamivir is a strong
influenza neuraminidase inhibitor (Zhao et al., 2017). It is
used in combination with oseltamivir for treating drug-resist-
ant H1N1 influenza (de Mello et al., 2018).

Three previously known antivirals were found among the
top hits (ritonavir, moroxydine, and zanamivir). Ritonavir is a
viral protease inhibitor approved for treating HIV (Croxtall &
Perry, 2010). Ritonavir/lopinavir was successful in treating an
index case with severe pneumonia (Lim et al., 2020).
Moroxydine is an old antiviral with several new derivatives
that are effective against the hepatitis C virus (Magri et al.,
2015). It has broad-spectrum antiviral actions involving DNA
and RNA viruses (Yu et al., 2016, 2018). Zanamivir is a strong
influenza neuraminidase inhibitor (Zhao et al., 2017). It is
used in combination with oseltamivir for treating drug-resist-
ant H1N1 influenza (de Mello et al., 2018).

Theoretically, neuraminidase inhibitors are not feasible for
application against SARS-CoV-2 due to the absence of a
molecular target. However, the general goal in identifying a
lead compound is finding a chemical structure that can the-
oretically match a receptor. Several neuraminidase inhibitors
theoretically matched the receptor of SARS-CoV-2 PLpro and
could be inhibitors of the viral protease. The presence of
ACE receptor blockers among the top hits suggests that they
could be used in SARS-CoV-compromised hypertensive
patients. In conclusion, after a virtual screening campaign of

1697 FDA-approved drugs, 10 drugs were selected for MD
and energy composition analysis. Of these, three drugs
showed favorable profiles suggesting that they could be
repurposed for COVID-19 treatment. The top three hits,
phenformin, quercetin, and ritonavir, can be a basis for
future anti-SARS CoV-2 studies.
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