Reconfigurable self-assembly of photocatalytic magnetic microrobots for

water purification

Mario Urso¹, Martina Ussia¹, Xia Peng¹, Cagatay M. Oral¹, Martin Pumera^{1,2,3,4*}

¹ Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of

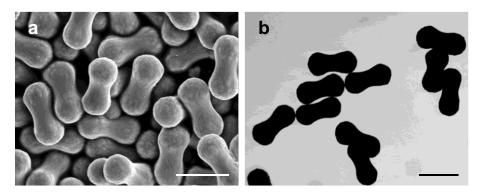
Technology, Purkyňova 123, 61200 Brno, Czech Republic

² Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17.

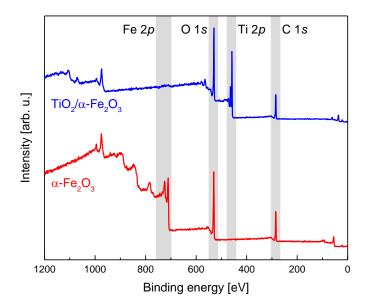
listopadu 2172/15, 70800 Ostrava, Czech Republic

³ Department of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih

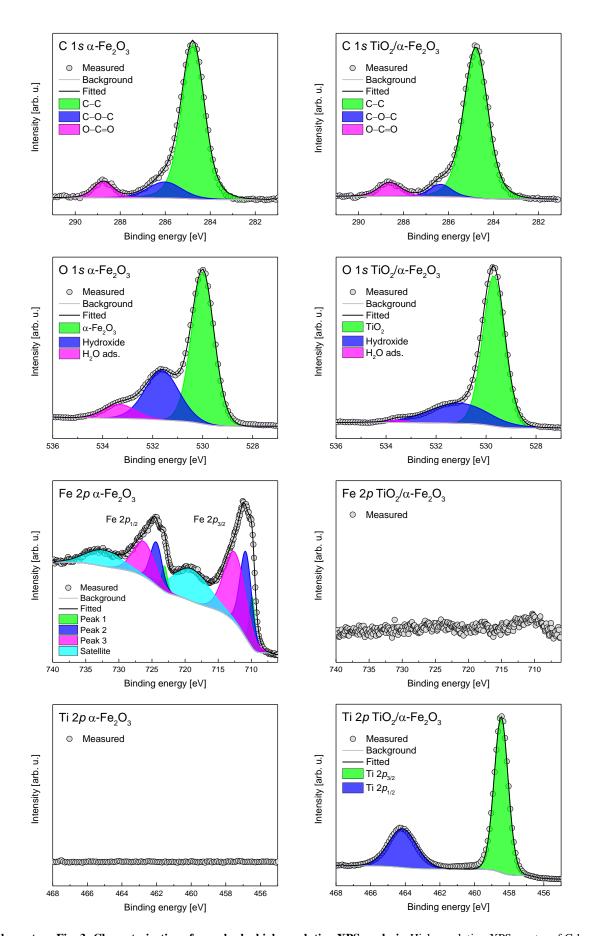
Road 91, 40402Taichung, Taiwan


⁴ Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu,

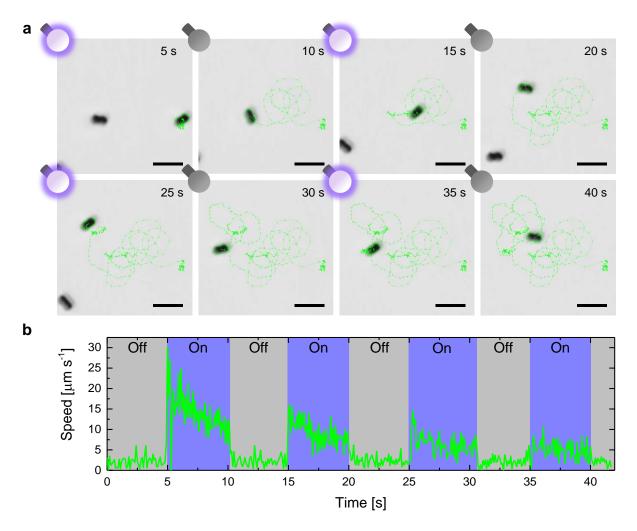
03722 Seoul, Republic of Korea

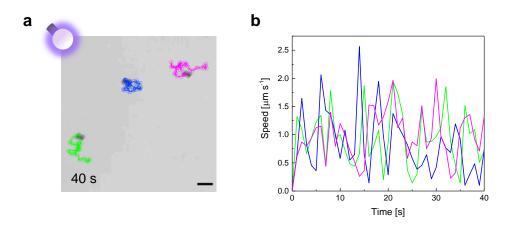

E-mail: pumera.research@gmail.com

Supplementary Information

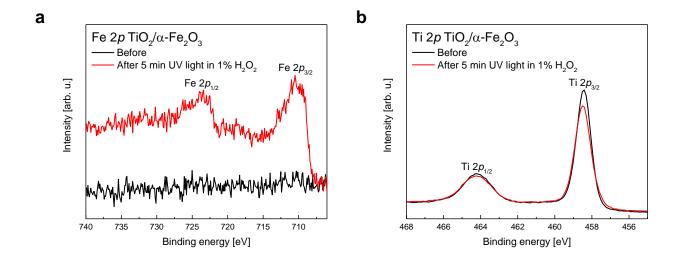

1

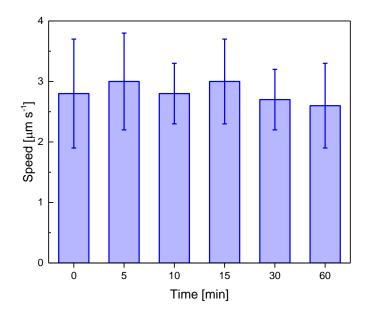
Supplementary Fig. 1: Characterization of TiO_2/α -Fe₂O₃ microrobots by SEM and STEM analyses. a SEM and b STEM images of TiO_2/α -Fe₂O₃ microrobots. Scale bars are 2 μ m.

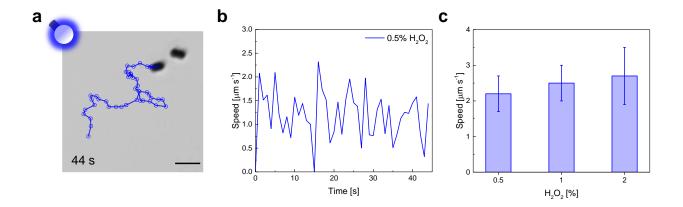

Supplementary Fig. 2: Characterization of samples by XPS analysis. XPS wide spectra of α -Fe₂O₃ microparticles and TiO₂/ α -Fe₂O₃ micropobts.

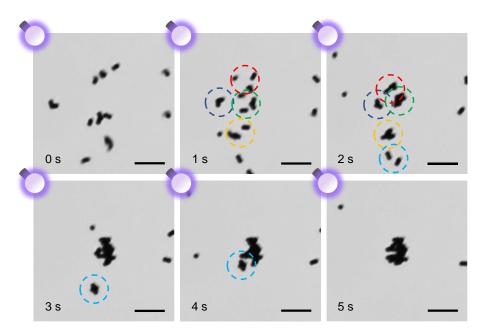

Supplementary Fig. 3: Characterization of samples by high-resolution XPS analysis. High-resolution XPS spectra of C 1s, O 1s, Fe 2p, and Ti 2p for α -Fe $_2$ O $_3$ microparticles and TiO $_2$ / α -Fe $_2$ O $_3$ microrobots.

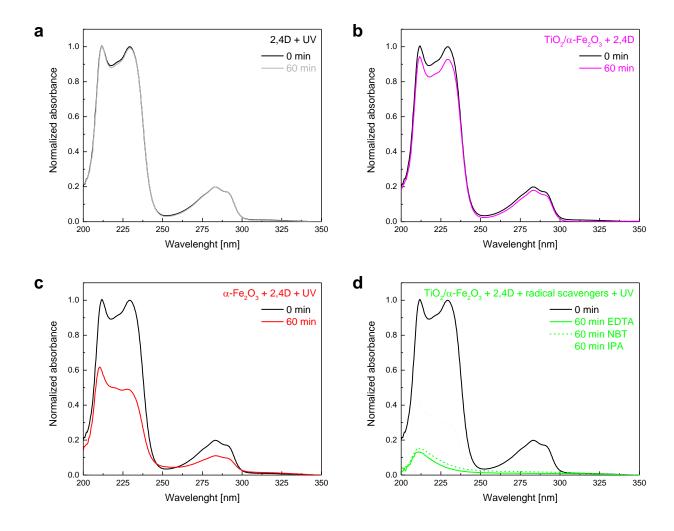
Supplementary Table 1. XPS peak fitting results for α-Fe₂O₃ microparticles and TiO₂/α-Fe₂O₃ microrobots.


Sample	Region	Binding energy [eV]	Assigned to	Ref.
α-Fe ₂ O ₃	C 1s	284.8	C-C	
		286.0	C-O-C	1
		288.8	O-C=O	
	O 1s	530.0	α-Fe ₂ O ₃	2
		531.6	Hydroxide	
		533.3	H ₂ O ads.	
	Fe $2p_{3/2}$ (Fe $2p_{1/2}$)	709.8 (723.1)	Peak 1	2
		710.8 (724.4)	Peak 2	
		712.5 (726.2)	Peak 3	
		719.1 (732.3)	Satellite	
TiO ₂ /α-Fe ₂ O ₃	C 1 <i>s</i>	284.8	C–C	1
		286.4	C-O-C	
		288.6	O-C=O	
	O 1s	529.7	TiO ₂	3
		531.1	Hydroxide	
		533.5	H ₂ O ads.	
	Ti 2 <i>p</i>	458.5	Ti 2p _{3/2}	3
		464.2	Ti 2p _{1/2}	

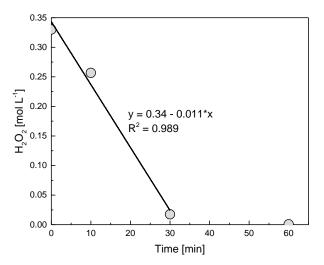

Supplementary Fig. 4: Influence of the on/off switching of light on the motion behavior of TiO_2/α -Fe₂O₃ microrobots. a Time-lapse micrographs showing the trajectory of a TiO_2/α -Fe₂O₃ microrobot at 5 s on/off switching of UV light irradiation in pure water and **b** the corresponding instantaneous speed as a function of time. Scale bars are 5 μ m.


Supplementary Fig. 5: Motion behavior of α -Fe₂O₃ microparticles. a Micrograph showing the trajectories of three α -Fe₂O₃ microparticles under UV light irradiation in pure water for 40 s and **b** the corresponding instantaneous speed as a function of time. The scale bar is 5 μ m.


Supplementary Fig. 6: Evidence of the partial corrosion of the TiO₂ layer of TiO₂/ α -Fe₂O₃ microrobots by XPS analysis. High-resolution XPS spectra of **a** Fe 2p and **b** Ti 2p for TiO₂/ α -Fe₂O₃ microrobots before and after exposure to UV light irradiation in 1% H₂O₂ for 5 min.


Supplementary Fig. 7: Lifetime of the speed of TiO_2/α -Fe₂O₃ microrobots. Speed of TiO_2/α -Fe₂O₃ microrobots under UV light irradiation in pure water as a function of time. Error bars represent the standard deviation, n = 20 independent microrobots.

Supplementary Fig. 8: Motion behavior of TiO_2/α -Fe₂O₃ microrobots under visible light irradiation. a Micrograph showing the trajectory of a TiO_2/α -Fe₂O₃ microrobot under blue light irradiation in 0.5% H_2O_2 for 44 s and **b** the corresponding instantaneous speed as a function of time. The scale bar is 5 µm. **c** Microrobots' speed as a function of H_2O_2 concentration under blue light irradiation. Error bars represent the standard deviation, n = 20 independent microrobots.


Supplementary Fig. 9: Self-assembly of TiO_2/α -Fe₂O₃ microrobots into a cluster. Time-lapse micrographs showing the clustering process of TiO_2/α -Fe₂O₃ microrobots under UV light irradiation in 1% H_2O_2 for 5 s. Scale bars are 10 μ m.

Supplementary Fig. 10: Absorbance spectra of 2,4D solutions subjected to different treatments. Absorbance spectra of 2,4D solutions (5×10^{-5} M) before (0 min) and after the treatment with a UV light irradiation in pure water for 60 min, b TiO_2/α - Fe_2O_3 microrobots (1 mg mL⁻¹) without UV light irradiation in pure water for 60 min ("no motion" condition), c α - Fe_2O_3 microparticles (1 mg mL⁻¹) and UV light irradiation in pure water for 60 min, d TiO_2/α - Fe_2O_3 microrobots (1 mg mL⁻¹), a radical scavenger (10 mg L⁻¹ EDTA, 10 mg L⁻¹ NBT, or 0.25 μ L mL⁻¹ isopropanol), and UV light irradiation in pure water for 60 min.

Supplementary Discussion 1

 H_2O_2 consumption experiments were performed to measure the H_2O_2 consumption rate by TiO_2/α - Fe_2O_3 microrobots under UV light irradiation. For this purpose, UV-transparent cuvettes were filled with 1 mL of solution containing microrobots (1 mg mL⁻¹) and 1% H₂O₂, and exposed to UV light irradiation for different durations (0, 10, 30, and 60 min). Afterward, microrobots were separated by centrifugation to record the UV-Vis absorbance spectra of treated solutions. The H₂O₂ concentration was determined from absorbance spectra according to a previous work. 4 Supplementary Fig. 11 shows the time dependence of the H₂O₂ concentration. The slope of the linear fit in the range 0÷30 min gave an H₂O₂ consumption rate of 0.011 mol L⁻¹ min⁻¹, corresponding to 1.8×10⁻⁷ mol s⁻¹ for 1 mL of solution. To normalize the rate per unit area [mol s⁻¹ m⁻²], TiO₂/α-Fe₂O₃ microrobots' surface area was estimated. For simplicity, the microrobots were assumed to be peanutshaped α-Fe₂O₃ microparticles consisting of two adjacent spheres with a radius of 0.56 μm, as measured by STEM analysis. Considering that the volume (V) of a spherical particle with radius r is $V = \frac{4}{3} \pi r^3$, the volume occupied by a microrobot was found as $\sim 1.5 \times 10^{-18}$ m³. Given an α -Fe₂O₃ density (ρ) of 5.3 g cm⁻³, the mass (m) of the single microrobot was calculated to be 8.0×10^{-12} g through the relation $m = \rho V$. Therefore, in 1 mL of solution with a concentration of microrobots of 1 mg mL⁻¹, there are 1.3×10⁸ microrobots. Since the surface (A) of a spherical particle with radius r is $A = 4 \pi r^2$, the area exposed by a microrobot was calculated to be 7.9×10^{-12} m², whereas the surface area of 1 mg of microrobots was found as 1.0×10^{-3} m². Consequently, the surface area-normalized H₂O₂ consumption rate was calculated to be approximately -1.8×10⁻⁴ mol s⁻¹ m⁻².

Supplementary Fig. 11: H_2O_2 consumption experiments. H_2O_2 concentration as a function of time following H_2O_2 consumption experiments by TiO_2/α -Fe₂O₃ microrobots under UV light irradiation in 1% H_2O_2 .

Supplementary References

- 1. Urso, M., Ussia, M., Novotný, F. & Pumera, M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. *Nat. Commun.* **13**, 3573 (2022).
- 2. Biesinger, M. C. *et al.* Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. *Appl. Surf. Sci.* **257**, 2717–2730 (2011).
- 3. Biesinger, M. C., Lau, L. W. M., Gerson, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. *Appl. Surf. Sci.* **257**, 887–898 (2010).
- 4. Aye, T. T., Low, T. Y. & Sze, S. K. Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry. *Anal. Chem.* **77**, 5814–5822 (2005).