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Abstract

We investigated neural representations for visual perception of 10 handwritten digits

and six visual objects from a convolutional neural network (CNN) and humans using

functional magnetic resonance imaging (fMRI). Once our CNN model was fine-tuned

using a pre-trained VGG16 model to recognize the visual stimuli from the digit and

object categories, representational similarity analysis (RSA) was conducted using neu-

ral activations from fMRI and feature representations from the CNN model across all

16 classes. The encoded neural representation of the CNN model exhibited the hier-

archical topography mapping of the human visual system. The feature representa-

tions in the lower convolutional (Conv) layers showed greater similarity with the

neural representations in the early visual areas and parietal cortices, including the

posterior cingulate cortex. The feature representations in the higher Conv layers

were encoded in the higher-order visual areas, including the ventral/medial/dorsal

stream and middle temporal complex. The neural representations in the classification

layers were observed mainly in the ventral stream visual cortex (including the inferior

temporal cortex), superior parietal cortex, and prefrontal cortex. There was a surpris-

ing similarity between the neural representations from the CNN model and the neu-

ral representations for human visual perception in the context of the perception of

digits versus objects, particularly in the primary visual and associated areas. This

study also illustrates the uniqueness of human visual perception. Unlike the CNN

model, the neural representation of digits and objects for humans is more widely dis-

tributed across the whole brain, including the frontal and temporal areas.
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1 | INTRODUCTION

Recently, a number of studies have reported the similarity between

the primate visual pathway and convolutional neural network (CNN)-

based models, which are the best-performing computational models

for visual object recognition (Bracci et al., 2019; Cichy et al., 2016;

Cohen et al., 2020; Eickenberg et al., 2017; Güçlü & van

Gerven, 2015; King et al., 2019; Lindh et al., 2019; Mehrer

et al., 2021; Wen et al., 2018). For example, Güçlü and van Gerven

systematically evaluated the similarity of the feature representations

in each CNN layer with the neural activations indirectly measured

from functional magnetic resonance imaging (fMRI) along the visual

pathway, including the lateral occipital complex. The lower and higher

layers of the CNN resembled the topographical organization of the

human visual areas (Güçlü & van Gerven, 2015). In another study,

CNN-based computational models showed remarkable similarity with

inferior temporal (IT) cortex representation, outperforming bio-

inspired object recognition models such as HMAX (Cadieu

et al., 2014).

Representational similarity analysis (RSA), which can be used to

evaluate relationships across various modalities such as brain activity

data, computational models, and behavioral data, has been instrumen-

tal in previous brain-encoding studies (Kriegeskorte et al., 2008). The

construction of a representational dissimilarity matrix (RDM), which

consists of dissimilarity scores for the modalities between pairs of

experimental stimuli/conditions, is a crucial component of RSA that is

used to relate heterogeneous modalities in holistic geometric space

across stimuli/conditions (Kriegeskorte et al., 2008). CNN-based

encoding models for visual perception have been successfully

employed in decoding models for visual stimuli reconstruction (Shen

et al., 2019; Wen et al., 2018). More recently, a brain-encoding model

based on a CNN was used to develop an ecological dataset that could

maximize the similarity between the trained CNN model and the

visual object perception of the human brain (Mehrer et al., 2021).

However, despite the large number of previous brain-encoding stud-

ies, very few have investigated the neural representations of symbolic

visual stimuli using human brain activation and computer vision

models.

Numeral digits are fundamental symbolic visual stimuli for

humans that encode the numerical concept of abstract numbers

(Dehaene, 1992; Nieder, 2016). The neural underpinnings of numeri-

cal digit recognition in the human brain have long been the focus of

research (Anobile et al., 2021; Ansari et al., 2007; Bulthé et al., 2014;

Dehaene, 1992; Dehaene & Cohen, 1995; Nieder, 2021; Yeo

et al., 2020). Bulthé and colleagues demonstrated that multivoxel pat-

tern analysis (MVPA) of fMRI data can be used to decode the numeri-

cal magnitude of Arabic digits from the localized regions. More

recently, Yeo and colleagues reported the categorical distinction of

numbers versus other symbols in the number-preferring region in the

posterior inferior temporal gyrus (pITG). However, very few studies

have investigated the visual perception of symbolic digits in conjunc-

tion with that of objects. Investigating neural representations for

visual object recognition simultaneously with symbolic digit

recognition is fundamental to understanding human visual perception.

We believe that brain-encoding research on the visual perception of

concrete objects and symbolic digits is urgently needed.

In the present study, we were motivated to investigate the neural

representation of digit and object perception from a CNN model and

humans using naturalistic visual stimuli. To this end, we used the ten

handwritten digits available in the MNIST dataset and six objects in

the ImageNet dataset as visual stimuli. The neural activations for each

of the stimuli were acquired from fMRI data. The features from the

CNN model trained to classify the 10 digits and six objects were

represented as an RDM across all 16 classes. Consequently, we con-

ducted RSA to obtain the neural representation of the human brain

from a trained CNN model perspective. We also designed RDM codes

that encode several hypothetical human perceptions across our digit

and object categories in terms of the numerical magnitude of the

digits (i.e., small vs. large) and animacy of the objects (i.e., animate

vs. inanimate) in addition to distinguishing between digits, between

objects, and digits versus objects conditions. We believed that the

systematic comparison of the neural representations from the CNN

model and from human perception would illustrate their similarities

and differences, providing an insight into the development of CNN-

based computational models that imitate the visual perception of

humans.

2 | MATERIALS AND METHODS

2.1 | Overview

Figure 1 summarizes our investigation of the neural representations

of handwritten digit and visual object recognition using two RSA sce-

narios. First, we constructed a neural RDM for the 10 handwritten

digits and six visual objects using the multivoxel patterns of neural

activations in a searchlight area for each voxel using measured fMRI

data (Figure 1a). To investigate the neural representations of visually

presented category/class perception from the CNN, we fine-tuned a

pre-trained VGG16-based CNN model for the classification of the

16 classes used in our study. Subsequently, we obtained an RDM for

each of the CNN layers. To investigate the neural representations of

visual perception from humans, an RDM that encoded visual cate-

gory/class perception was designed (Figure 1b). Searchlight RSA was

conducted between the neural RDM and the RDMs of (i) the CNN

model (see Section 2.9 for more details) or (ii) human visual perception

(see Section 2.10 for more details). The potential links between the

neural representations obtained from the two RSA approaches were

also examined across two stages. In the first RSA, we computed the

similarity between the RDM for the CNN model and the RDM for the

category/class perception of humans. In a subsequent RSA, we

obtained the similarity between the RDMs for each CNN layer and

the neural RDMs obtained from the representative regions-of-interest

(ROIs) for the category/class perception of humans in the first RSA.

Please see Section 2.10 for the ROI definition and Section 2.11 for

the subsequent RSA descriptions.
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2.2 | Participants

The Institutional Review Board (IRB) at Korea University approved the

entire study protocol. All participants submitted written consent

forms and were compensated as described in the IRB documents.

Twenty-three healthy right-handed volunteers (mean ± standard

deviation = 22.3 ± 2.6 years old; 10 females, 13 males; Edinburg's

handedness score = 87.3 ± 10.4) with no self-reported neurological

or neuropsychiatric problems participated in the study.

2.3 | MRI parameters

MRI data were acquired using a 3T Siemens MAGNETOME MRI scanner

with a 20-channel head coil (Siemens, Erlangen, Germany). Blood-oxygen-

ation-level-dependent (BOLD) fMRI data were acquired using a multi-

band gradient-echo echo-planar-imaging (EPI) pulse sequence developed

from the Center for Magnetic Resonance Research (CMRR, Department

of Radiology, University of Minnesota). Specific imaging parameters were

multiband factor = 2, in-plane multiband Generalized Auto-Calibrating

Partial Parallel Acquisitions, time of repetition (TR) = 1440 ms, echo time

(TE) = 30 ms, flip angle (FA) = 71�, field-of-view (FoV) =

192 � 192 mm2, 3 mm isotropic voxels, 50 interleaved slices without a

gap, and 442 measurements in one fMRI run. A T1-weighted structural

MRI volume was acquired using a magnetization-prepared rapid gradient-

echo pulse sequence (TR = 1900 ms, TE = 2.28 ms, FA = 8�,

FoV = 256 � 256 mm2, and 1 mm isotropic voxels).

2.4 | Visual stimuli for the fMRI experiment

In the present study, we used a subset of the fMRI data collected for

our research project to understand the processing of image, sound,

and multimodal images with sound stimuli by the human brain. We

used (a) ImageNet (https://www.image-net.org/) for visual object

images, (b) MNIST (http://yann.lecun.com/exdb/mnist/) for handwrit-

ten digit images, and (c) the Google Speech Commands dataset for

sound stimuli for the images of the objects and digits (https://

pyroomacoustics.readthedocs.io/en/pypirelease/pyroomacoustics.

datasets.google_speech_commands.html). From these image and

sound stimuli, 10 digits (0–9) and six objects (bed, bird, cat, dog,

house, and tree) were available in both modalities. Thus, these 16 clas-

ses were used for both the image and sound stimuli. More specifically,

images of the objects in the six classes from the validation data for

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC;

2012 version) (Deng et al., 2009) and grayscale images of handwritten

digits in the 10 classes in the test data from the MNIST (Lecun

et al., 1998) were used as visual stimuli for the fMRI experiment.

Please refer to the supplementary materials, “Image stimuli for the

fMRI experiment for the digit and object categories” for more detail.

2.5 | Task paradigm for the fMRI experiment

We randomly selected 12 samples for (a) each of the 16 (i.e., 10 digits

and six objects) image classes, (b) each of the 16 sound classes, and

(c) each of the 16 multimodal classes with an image and sound for

each participant using the NumPy's “random” module in Python 3.6

(i.e., 192 images, 192 sounds, and 192 images with sound). These

576 stimuli/trials were interspersed across three fMRI runs in a

pseudo-randomized order across unimodality/multimodality condi-

tions and the 16 classes. There were 64 counter-balanced trials for

images only, sounds only, and images with sound in one fMRI run

(Figure 2). An image stimulus was presented for 0.2 s three times

interleaved with a brief fixation cross for 0.2 s (i.e., a stimulus duration

of 1 s) followed by a baseline fixation cross for 2 s. A sound stimulus

F IGURE 1 Visual perception of handwritten digits and visual objects under two representational similarity analysis (RSA) scenarios using
human brain activations, a convolutional neural network (CNN), and human visual category/class perception. (a) Construction of a neural
representational dissimilarity matrix (RDM) consisting of neural activations measured for the 10 handwritten digits and six objects images via
fMRI. (b) Construction of (i) an RDM for each layer of the CNN trained to classify the 16 classes and (ii) an RDM that encodes the category/class
visual perception of humans. (c) RSA using the neural RDM with (i) the RDM for the CNN model and (ii) the RDM for the category/class visual
perception of humans. Fc, fully connected layer; Output, output layer.
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(1 s) was delivered to participants, followed by a 2 s fixation cross.

The same stimulus duration and interval used for the unimodal condi-

tions were used for the multimodal images with the sound. Partici-

pants were instructed to press an MR-compatible button response

pad (Current Design, https://www.curdes.com) when the “0” image

or sound stimulus was presented to maintain their level of alertness

throughout the experiment.

A projector system (PROPixx; https://vpixx.com/products/

propixx) with a mirror in the head coil and optional vision correction

glasses (Mediglasses; https://www.crsltd.com) were used during the

visual presentation stage. An MR-compatible active noise canceling

auditory headset (OptoACTIVE Slim Optical ANC Headphones;

https://www.optoacoustics.com) was used to deliver the sound. The

MATLAB environment (version R2017b) was used to execute the

experimental paradigm during fMRI acquisition and record the partici-

pants' responses. Three participants were excluded due to technical

glitches in the stimulus presentation computer and the button

response pad. Five participants were excluded due to poor task per-

formance (>3 missed “0” stimuli from a total of 36 stimuli), mainly due

to drowsiness. As a result, we used the fMRI data acquired from the

remaining 15 participants.

2.6 | fMRI preprocessing

We employed a standard preprocessing pipeline with the “afni_proc.
py” command from Analysis of Functional Neuroimages (AFNI) soft-

ware (http://afni.nimh.nih.gov/afni) consisting of despiking, slice tim-

ing correction, realignment, the co-registration of fMRI volumes to an

individual anatomical volume, spatial normalization to Montreal Neu-

rological Institute (MNI) space, spatial smoothing using a 3D Gaussian

kernel with an 8 mm full-width at half-maximum (FWHM), and scaling

to set the mean BOLD intensity of each voxel to 100. The prepro-

cessed fMRI data were analyzed using a general linear model (GLM) at

an individual level. There were 192 regressors for each of the

192 task-related trials in one fMRI run. Six head motion parameters

obtained from the preprocessing step with their derivatives, temporal

drift artifacts modeled using up to five polynomial orders, and three

principal components (PCs) extracted from the WM and CSF based on

aCompCor (Behzadi et al., 2007) were also added as nuisance regres-

sors (23 in total) to the GLM to account for non-neural artifacts in the

BOLD signals. Neural activations from each trial were estimated from

the beta values of the GLM across the whole brain. As a result, there

were 192 beta-valued whole-brain maps available for the images only,

sounds only, and multimodal images with sound for each participant.

In this study, we used 192 beta-valued maps obtained from the

image-only condition (i.e., 12 images for each of the 16 classes) per

participant to investigate the neural representations of handwritten

digits and visual objects.

2.7 | Training of the CNN model for the
recognition of handwritten digits and visual objects

We used a pretrained VGG16-based CNN model to set the initial

weights for our CNN model with 13 convolutional (Conv) layers

(https://www.robots.ox.ac.uk/�vgg/research/very_deep/)

(Simonyan & Zisserman, 2015). The final Conv layer of our CNN

model was connected to a fully connected (Fc) layer with 1024 nodes

followed by 16 output nodes in the output layer to recognize the

16 classes across the 10 digits and six objects. We used the rectified

linear unit as an activation function for all hidden nodes. Cross-

entropy between a target one-hot vector and predicted output vector

in the output layer was used as the cost function to fine-tune the

parameters of our CNN model. The TensorFlow library (version

1.15.0) was used to implement the CNN model. An adaptive moment

estimation (Adam) optimizer was used (Kingma & Ba, 2017). The

learning rate was initialized at 10�5 and exponentially decreased by

0.96 every 10 epochs. We applied dropout with a probability of 0.5 to

the output of the Fc layer. Alternative to VGG16, we additionally

trained AlexNet (Krizhevsky et al., 2017) and ResNet-50 (He

et al., 2016). Please refer to the Section “Generalization on alternative

CNN models” in Supplementary Materials for details.

We used MNIST (n = 60,000 images) and ImageNet (n = 234,329

images) data from the original training dataset for the training of our

CNN model (Table S1). Each image was resampled to 224 � 224

F IGURE 2 Experimental paradigm for fMRI data acquisition. Ten handwritten digits and six visual objects are presented as visual stimuli for
the image modality trials. Sound waveforms corresponding to the visual stimuli are presented as sound stimuli for the sound modality trials. In the
image + sound modality trials, images with corresponding sound stimuli are presented to participants as a multimodal condition. Participants are
instructed to press a button whenever they see and/or hear the “0” digit to maintain their alertness throughout the experiment. Please refer to
the Sections 2.4 and 2.5 for details
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pixels, and the grayscale MNIST image was copied to each of the

three RGB channels to match the dimensions of the CNN input for

the color image. To reduce the degree of potential overfitting, we

used a data augmentation scheme to increase the number of training

samples per class by applying varying degrees of shift and scaling to

the original training images. More specifically, cropping, horizontal

mirroring, and color jittering (Krizhevsky et al., 2017) were used for

the object images (Simonyan & Zisserman, 2015) and rotation

(between �15� and 15�), translation (between �8% and 8%), and scal-

ing (between factors of 1 and 1.08) were used for the digit images

(Shorten & Khoshgoftaar, 2019). Once the data augmentation

schemes were applied, the difference in the number of training sam-

ples across the categories and classes (i.e., class imbalance problem)

was mitigated by applying sub-sampling of the number of images for

each class at each epoch in the training phase. Specifically, the num-

ber of training samples for each category was same as 96,660

(i.e., 16,110 for each of the six object classes, and 9666 for each of

the 10 digit classes) in each epoch.

2.8 | Evaluation of the trained CNN model

We evaluated the performance of our trained CNN model using the

validation data provided by ImageNet and MNIST (Table S1). We also

assessed our trained CNN model in terms of (a) representative input

patterns that maximized each of the hidden nodes and output nodes

and (b) feature representation in each of the layers. First, the repre-

sentative input pattern for each hidden node was estimated using the

activation maximization (AM) method (Erhan et al., 2009). Specifically,

the input pattern that maximized the activation of the target hidden

node was estimated from a random noise pattern by applying a gradi-

ent ascent scheme. Several techniques were used to enhance the cor-

responding feature representations, such as Gaussian blurring using

DeepDraw (https://github.com/auduno/deepdraw), which is based on

the DeepDream code by Google Research (https://github.com/

google/deepdream). High-dimensional feature representations in each

layer were also interpreted in the 2D plane using t-distributed sto-

chastic neighbor embedding (t-SNE) conducted via Barnes-Hut

approximation (Van der Maaten & Hinton, 2008).

2.9 | RSA of visual category/class perception from
the CNN

We conducted whole-brain searchlight RSA using the neural RDM

and the RDM of feature representations for each of the CNN layers

to examine the neural representations from the CNN model. In detail,

the 12 beta-valued GLM maps obtained from each of the 12 image

stimuli per class at an individual level were averaged. A multivoxel pat-

tern of neural activations from the center voxel in a searchlight area

was then obtained in a spherical region with a three-voxel radius

(123 voxels), including the center voxel. Consequently, we con-

structed a neural RDM for the center voxel using the 16 vectors of

123 � 1 multivoxel patterns across the 16 classes, in which the Pear-

son's correlation coefficient (CC) r was used for a dissimilarity mea-

sure (i.e., 1 – r; minimum of 0 and a maximum of 2).

We obtained the RDM for each layer of the CNN using the corre-

sponding features of the input image. The dimensions of the feature

vector that was 1D concatenated across all features obtained from all

Conv filters for one input image in each of the CNN layers was very

large (i.e., from 100,352 to 3,211,264). Thus, we applied a dimension

reduction method using principal component analysis (PCA). The num-

ber of PCs that preserved 90% of the variance of all feature represen-

tations from the 192 images across all 16 classes were obtained for

each layer. Table S2 summarizes the dimensions of the 1D

concatenated features in each CNN layer and the minimum number

of PCs that preserved at least 90% of the explained variance. We then

averaged the 12 sets of dimension-reduced features for 12 images

per class in each CNN layer. Consequently, an RDM of feature repre-

sentations across the 16 classes was constructed for each CNN layer

using the dissimilarity measure based on Pearson's CCs (i.e., 1 – r) cal-

culated across all pairs of the average dimension-reduced feature vec-

tors from the 16 classes.

We conducted searchlight RSA using (a) the RDM for each layer

of our CNN model and (b) the neural RDM obtained from each center

voxel by moving the center voxel across the whole brain. To this end,

Spearman's rank correlation (ρ) was used as a similarity measure

between the neural RDM for each voxel and the RDM for each of the

CNN layers. Fisher's z-transform was applied to the ρ values across

the whole brain for each subject. A voxel-wise one-sample t-test was

employed using the z-transformed ρ values across the 15 subjects for

group inference. Multiple comparison correction of the resulting p-

value was applied using random permutations (n = 5000). More spe-

cifically, multivoxel patterns with randomized voxel indices were used

to construct a neural RDM using an individual beta-valued map fol-

lowed by RSA with the RDM for the CNN layers based on Spearman's

rank correlation. The resulting ρ values across the 15 subjects were

Fisher's z-transformed and subject to the one-sample t-test. Thus, we

obtained a null distribution of t-statistics to correct the p-value

obtained from the RSA using intact voxel indices in the multivoxel

pattern. As a result, the clusters that exhibited significant similarity

(corrected p < 0.05) between the neural RDM and the RDM for each

CNN layer were determined from cluster-size correction with a mini-

mum of 15 voxels.

We identified the label of the CNN layers that showed the largest

t-scores across all CNN layers for each of the voxels in the significant

clusters as a summary map of the RSA. We referred to this map across

the whole brain as the CNN layer assignment map and visualized it as

a flat cortical map using Pycortex (Gao et al., 2015) (https://github.

com/gallantlab/pycortex). We employed independent component

analysis (ICA) to parcellate the whole brain area based on the func-

tional information as measured from a BOLD time series (Smith

et al., 2009), in which 100 independent components were estimated.

We labeled the functionally parcellated regions based on Glasser's

360 multimodal parcellations (Glasser et al., 2016) and the Human

Brainnetome Atlas (Fan et al., 2016). We visualized the clusters and
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the labeled functional boundaries on the cortical surface using Pycor-

tex. Fine-grained information on the strength of the association

between the CNN layer and the neural activations was analyzed using

bar graphs across the CNN layers for each of the significant clusters

in the CNN layer assignment map. We also performed the RSA using

individual beta-valued maps obtained from preprocessed fMRI data

without spatial smoothing. We conducted the group inference using

the resulting individual RSA maps via the one-sample t-test. Alterna-

tively, the individual RSA maps were spatially smoothed with 4 mm

FWHM before the t-test. Please see the supplementary materials,

“RSA using unsmoothed beta-valued brain maps” for the details.

2.10 | RSA of visual category/class perception
from humans

We also conducted whole-brain searchlight RSA using RDMs that

could potentially encode human visual category/class perception

across the ten handwritten digits and six visual objects. To this end,

we prepared five sets of 16 � 16 RDMs as shown in Figure 1b that

encoded (i) handwritten digit perception (i.e., ones in the RDM ele-

ments across the ten digits, otherwise zeros), (ii) magnitude informa-

tion for the digits (i.e., lower [1, 2, 3] vs. higher [7, 8, 9]), (iii) visual

object perception (ones in the RDM elements across the six objects,

otherwise zeros), (iv) animacy information for the objects

(i.e., animate [bird, cat, and dog] vs. inanimate [bed, house, and tree]),

and (v) the perception of the digits in comparison to the objects

(ones in the RDM elements between the digits and objects, other-

wise zeros). Consequently, the RSA was conducted using the neural

RDM for each voxel and the RDM codes to identify the ROIs encod-

ing each concept in holistic geometric space across 16 classes. As

with the searchlight RSA for the CNN model, we calculated the

voxel-wise Spearman's rank correlation (ρ) between the neural RDM

and the RDM codes at an individual level. One-sample t-tests were

then used with the Fisher's z-transformed ρ values from all of the

15 participants for group inference. Multiple comparison correction of

the p-values was employed using random permutations (n = 10,000)

followed by a cluster-level threshold with a minimum of 20 connected

voxels (using “3dClusterize” in AFNI with the “edges touching” option
and with a corrected p <0.05). The resulting voxel clusters were

defined as ROIs. We also obtained the individual RSA maps from

unsmoothed beta-values followed by group inference via the one-

sample t-test using (a) individual RSA maps and (b) spatially smoothed

individual RSA maps with 4mm FWHM. Please see the supplementary

materials, “RSA using unsmoothed beta-valued brain maps” for the

details.

Although we assigned [1,2,3] and [7,8,9] for the grouping of lower

and higher digits, the grouping cannot be uniquely determined. Thus,

we also constructed the RDMs using other groups of the lower and

higher digits from the digit “5” by excluding the digit “0.” Now, there

were four digits in each of the two groups (i.e., [1,2,3,4] for lower and

[6,7,8,9] for higher). Following that, the magnitude RDMs were con-

structed based on all the 16 combinatorial conditions (i.e., three digits

selected for each of the lower and higher magnitude groups), and a

subsequent RSA was performed. The resulting 16 RSA maps in each

subject were averaged and one-sample t-test was performed using

the average RSA maps across the 15 participants, followed by multiple

comparison correction. In addition, we also investigated the neural

representations of the digit versus object condition using an alterna-

tive set of six object classes to evaluate the generalizability of our

findings. Please refer to the supplementary materials, “RSA using an

alternative set of six objects” for the detailed methods and results.

2.11 | Links between the trained CNN model and
the visual category/class perception of humans

We examined the potential links between the two RSA perspectives

obtained from the CNN model and the visual perception of humans.

First, we evaluated the degree of visual perception of humans in the

trained CNN model using the cosine similarity between the RDM for

each of the CNN layers and the RDM for each visual category/class

perception of humans (Figure 1b). We also conducted RSA between

the neural RDMs in the ROIs found from the category/class percep-

tion codes of humans and the RDM for each layer of the CNN model.

Only the dissimilar elements in the RDM (bottom of Figure 1b) that

encodes the category/class perception of interest (i.e., across digits,

magnitude of digits, across objects, animacy of objects, and digits

vs. objects) were used for this RSA. The similarity between the neural

RDM in the ROIs and the RDM for each CNN layer was calculated

using Spearman's rank correlation ρ. One-sample t-tests were applied

to z-transformed ρ values across 15 participants for group inference.

We averaged positive t-scores within each ROI to reveal the relation-

ship between the ROIs representing the visual perception of humans

and each of the CNN layers.

3 | RESULTS

3.1 | Evaluation of the trained CNN model

The average training accuracy and average validation accuracy across

the 16 classes were 99.8% and 99.2%, respectively. Figure S1 shows

the confusion matrix of classification for the validation data. Figure 3a

illustrates the estimated input patterns that maximized each of the

three randomly selected nodes for each layer of the trained CNN

model, which illustrates the hierarchical processing of the visual infor-

mation across the layers. Figure 3b shows the estimated input pat-

terns from the AM of each output node that visualized each of the

16 classes. Figure 4 visualizes the t-SNE plots of the feature represen-

tations in the CNN layers, including the input and output layers. The

t-SNE plots clearly show that specific information regarding classes

was obtained from the Fc and output layers rather than from the

Conv layers. Based on the degree of separation across the 16 classes

in the t-SNE representations, we divided the CNN Conv layers into

lower (Conv 1 and Conv 2), intermediate (Conv 3–10), and higher
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(Conv 11–13) layers. We defined the Fc and output layers of the CNN

as the classification layers.

3.2 | Neural representations from the perspective
of the trained CNN model

Figure 5 shows the CNN layer assignment map across the whole brain

and bar graphs denoting the similarity between the neural activations

and feature representations in each CNN layer at the group level.

Overall, it is worth noting that the maximum association between the

CNN layer and human brain activations showed a hierarchy within the

visual areas and across the whole brain from the visual to the frontal

areas (Figure 5a). In the lower Conv layers, the feature representations

exhibited their maximum association with the neural activations in the

right somatomotor areas (M1/S1) and the right middle temporal

(MT) complex and its neighboring visual areas, including the lateral

occipital (LO) complex (MT+/LO complex) (Figure 5b). The right MT

F IGURE 3 Evaluation of the trained CNN model. (a) Estimated input patterns are obtained using the activation maximization (AM) approach,
in which the estimated input pattern indicates the most representative patterns for the corresponding convolutional layer (Conv) filters or nodes
of the fully connected (Fc) layer. For the visualization, Conv filters and nodes at the Fc layer are randomly selected. (b) Estimated input patterns
from the AM applied to each of the 16 output nodes. Output, output layer.
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+/LO complex was also derived from the two alternative models

(i.e., AlexNet and ResNet-50; Figures S15b and S18b). In the interme-

diate Conv layers, the feature representations had their most signifi-

cant association mainly with neural activations in the left early visual

cortices (EVCs; from the V1 to V4), the bilateral superior parietal cor-

tex (SPC), the posterior cingulate cortex (PCC), and the bilateral dorsal

stream visual cortex and bilateral MT+/LO complex (Figure 5c). These

areas were also observed for the other two alternative CNN models

(Figures S15c and S18c). In the higher Conv layers, the feature repre-

sentations were strongly associated with higher-level visual associa-

tion areas such as the MT+/LO complex, ventral stream visual cortex,

left inferior parietal cortex, and right SPC (Figure 5d). It is also notable

that the right IPC and M1/S1, bilateral medioventral occipital cortex

(MVOcC), and left middle cingulate cortex (MCC) were also associated

with the higher Conv layers. The association with the relevant brain

regions was more distinct in the classification layers (Figure 5e). The

association of the MVOcC and MCC with the Fc layer of the CNN

was more evident than with Conv 13. The right ventral stream visual

cortex, right EVC, left SPC, left orbitofrontal cortex (OFC), and right

MPFC exhibited a significant association with the output layer. The

degree of similarity across the CNN layers at the group level is sum-

marized for each of the separate clusters in Figures S2–S5. For the

two alternative CNN models, higher layers were distinguished from

the intermediate layers in the ventral stream visual cortex and IPC in

the assignment map (Figures S15d and S18d). The assignment maps

of classification layers from the two alternative models were less con-

sistent than the previous layers (Figures S15e and S18e). Neverthe-

less, the two alternative models and VGG16 included SPC, PCC,

and MPFC.

The RSA results using the unsmoothed beta-values presented

strikingly similar neural representations compared to the RSA results

using the smoothed beta-values (Figures 5 vs. S9). The spatial smooth-

ing of the individual RSA results represented a slightly blurred group

inference compared to the individual RSA results without spatial

smoothing; however, the overall representations were quite consis-

tent (Figures S9 vs. S11). A hierarchy within the visual areas and

across the whole brain, from visual to frontal areas, was commonly

observed for the smoothed and unsmoothed individual RSA maps

(Figures S9a and S11a). The left EVCs and bilateral stream visual cor-

tex were not only observed in the intermediate Conv layers but also

F IGURE 4 t-SNE plots of the
feature representations for each
CNN layer across the 16 classes
of handwritten digit and visual
object images. Conv,
convolutional layer; Fc, fully
connected layer; Output, output
layer.
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in the lower Conv layers when analyzed using unsmoothed beta-

values (Figures S9b,c and S11b,c). Most of the areas assigned to the

intermediate Conv layers from the smoothed beta-values except the

PCC were also observed for the results using unsmoothed beta-values

(Figures S9c and S11c). The right EVCs and IPCs were additionally

found to be associated with the intermediate Conv layers. In the

higher Conv layers, the relevant brain regions, including the higher-

order visual association areas, were consistent in addition to the

emergence of bilateral DLPFC (Figures S9d and S11d). A bilateral

rather than a unilateral association was found in some areas such as

MCC and M1/S1. However, brain regions from the classification

layers (i.e., Fc and output layers) were rather distinguished from each

other depending on the spatial smoothing (Figures S9e and S11e).

Although the MVOcC, right ventral stream visual cortex, right EVC,

and left OFC showed an association regardless of the smoothing, left

MCC and SPC were no longer observed for the unsmoothed beta-

values. The right MPFC and bilateral PCC were not found for the

smoothed individual RSA maps.

F IGURE 5 CNN layer assignment map and bar graphs indicating the similarity between the neural activations and feature representations for
each of the CNN layers. (a) Layer assignment map across all CNN layers. (b) Assignment map for the lower Conv layers (i.e., Conv 1 and 2) and bar
graphs of the similarity scores for the ROIs obtained from each of the CNN layers (significant cases, corrected p < 0.05 using 5000 random
permutations, are color-coded; error bars indicate the standard error across participants). (c) Assignment map and bar graphs of the similarity scores
for the intermediate conv layers. (d) Results for the higher conv layers. (e) Results for the classification layers. A, anterior; CNN, convolutional neural
networks; Conv, convolutional layer; DLPFC, dorsolateral prefrontal cortex; Dorsal, dorsal stream visual cortex; EAC, early auditory cortex; EVC,
early visual cortex; Fc, fully connected layer; I, inferior; IFC, inferior frontal cortex; IPC, inferior parietal cortex; L, left; M1/S1, primary motor cortex
and primary somatosensory cortex; MCC, middle cingulate cortex; MPFC, medial prefrontal cortex; MT+/LOC, middle temporal (MT) complex and
its neighboring visual areas including lateral occipital (LO) complex; MVOcC, medioventral occipital cortex; OFC, orbitofrontal cortex; Output, output
layer; P, posterior; PCC, posterior cingulate cortex; POC/FOC, posterior opercular cortex and frontal opercular cortex; R, right; S, superior; SPC,
superior parietal cortex; TPOJ/AAC, temporo-parieto-occipital junction and auditory association cortex; Ventral, ventral stream visual cortex.

2026 LEE ET AL.



3.3 | Neural representations of concepts across
categories/classes from humans

Figure 6 presents the brain regions identified from the RSA using the

neural activations and the RDM codes that encoded human visual per-

ception. From the handwritten digit recognition, multiple ROIs across

the whole brain, such as the visual and associated areas (i.e., right EVC,

right IPC, bilateral MVOcC/precuneus), left auditory association cortex

(AAC), and frontal areas (i.e., bilateral MPFC/dorsolateral prefrontal cor-

tex [DLPFC]/MCC and left OFC/frontal opercular cortex [FOC]), were

identified (Figure 6a). From the visual object recognition, the left EVC,

left MT+/LO complex, left EAC, and bilateral PCC were identified,

along with the left M1/S1 and bilateral SPC (Figure 6b). In the percep-

tion of digits versus objects (Figure 6c), the identified ROIs included the

EVC, dorsal/ventral stream visual cortex, MT+/LO complex, IPC,

M1/S1, and left PCC, which is markedly similar to the CNN layer

F IGURE 6 Regions-of-interest (ROIs) that encode the visual category/class perception of humans across five different conditions (Figure 1b).
In the summary representation, mapping priority is given to the animacy, object, magnitude, digit, and digit versus object conditions in order when
there is an overlapping voxel. A, anterior; DLPFC, dorsolateral prefrontal cortex; Dorsal, dorsal stream visual cortex; EAC, early auditory cortex;
EVC, early visual cortex; I, inferior; IFC, inferior frontal cortex; IPC, inferior parietal cortex; L, left; M1/S1, primary motor cortex and primary
somatosensory cortex; MCC, middle cingulate cortex; MPFC, medial prefrontal cortex; MT+/LOC, middle temporal (MT) complex and its

neighboring visual areas including lateral occipital (LO) complex; MVOcC, medioventral occipital cortex; NFA, number form area (Grotheer,
Herrmann, et al., 2016); OFC, orbitofrontal cortex; P, posterior; PCC, posterior cingulate cortex; POC/FOC, posterior opercular cortex and frontal
opercular cortex; pSTS, posterior superior temporal sulcus; R, right; S, superior; SPC, superior parietal cortex; TPOJ/AAC, temporo-parieto-
occipital junction and auditory association cortex; Ventral, ventral stream visual cortex.
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assignment map (Figure 5a). In the perception of the magnitude of the

digits, the bilateral SPC, a middle part of right OFC, and a superior part

of left OFC were included when compared to the digit recognition.

Bilateral MVOcC, SPC, OFC, and the left temporal pole (in the TPOJ/

AAC) were commonly found from both the contrast of [1,2,3] versus

[7,8,9] and all the combinatorial groupings of lower and higher digits

(i.e., a three-digits subset from [1,2,3,4] vs. a three-digits subset from

[6,7,8,9]) (Figure S8). In the perception of the animacy of the objects, it

is notable that not only the right MT+/LO complex but also the left

superior temporal sulcus (STS) was additionally found when compared

to object recognition (Figure 6e). Figure 6f summarizes all the represen-

tations, while Tables 1–3 present information for the ROIs.

The representations of human visual perception using

unsmoothed beta-values were matched to those of smoothed beta-

values (Figures 6, S10, and S12). Among the five RDM codes for

human visual perception, the neural representations of digit recogni-

tion exhibited the most significant differences in the identified ROIs

depending on spatial smoothing of the beta values (Figures S10a and

S12a). Visual association areas (including right EVC, right IPC, and

bilateral MVOcC), left AAC and the frontal areas (including bilateral

MPFC, left DLPFC, and left OFC/FOC) were consistently found to be

important. The newly identified areas included visual areas such as left

EVC and bilateral ventral/dorsal stream visual cortex, left IPC, and

right POC/FOC. The neural representations of object recognition

TABLE 1 Detailed information for the regions-of-interest (ROIs; Figure 6a,d) identified for the digit recognition and digit magnitude
conditions

Cluster Size Foci (x, y, z mm) t-score Sub-cluster with percentage (%) overlap

Digit recognition

AAC, FOC, OFC (L) 132 31.5, �25.5, �22.5 5.19 STG (L; 39%), OrG (L; 39%), MTG (L; 5%),

IFG (L; 5%), INS (L; 1%)

IPC (R) 103 �37.5, +55.5, +37.5 5.75 IPL (R; 86%), SPL (R; 2%)

EVC (R) 86 �22.5, +88.5, �7.5 8.37 LOcC (R; 81%), FuG (R; 8%), MVOcC (R; 7%)

MVOcC, PCC (R) 82 �28.5, +52.5, +7.5 5.70 MVOcC (R; 51%), Pcun (R; 34%)

MVOcC (L) 68 +25.5, +58.5, +4.5 4.05 MVOcC (L; 69%), Pcun (L; 13%), CG (L; 6%)

DLPFC (L) 46 +31.5, �13.5, +52.5 5.23 MFG (L; 85%)

MPFC (B) 45 +1.5, �43.5, +43.5 5.46 SFG (L; 71%), SFG (R; 20%)

MCC (B) 36 �10.5, +13.5, +49.5 4.30 SFG (R; 28%), PCL (R; 25%), SFG (L; 22%),

CG (R; 11%), PCL (L; 6%)

DLPFC, SFG (L) 33 +19.5, �61.5, +25.5 3.62 SFG (L; 58%), MFG (L; 30%)

MPFC (R) 32 �10.5, �37.5, �7.5 4.21 OrG (R; 81%), CG (R; 12%)

DLPFC (R) 25 �28.5, �13.5, +46.5 3.70 MFG (R; 60%), SFG (R; 28%)

Magnitude of digits

MCC, SPC, PCC (B) 196 �4.5, 37.5, 43.5 2.50 Pcun (L; 51%), CG (R; 19%), Pcun (R; 11%), PCL (L; 8%),

SPL (L; 3%), CG (L; 2%), PCL (R; 1%), PoG (L; 1%)

MVOcC, PCC (R) 98 �22.5, +64.5, +4.5 2.34 MVOcC (R; 46%), Pcun (R; 44%)

MVOcC, PCC (L) 72 +25.5, +58.5, +4.5 1.94 Pcun (L; 47%), MVOcC (L; 42%), CG (L; 10%)

OFC (L) 62 +28.5, �52.5, +7.5 2.15 MFG (L; 84%), SFG (L; 5%)

FOC (L) 56 +49.5, �1.5, �10.5 2.17 STG (L; 52%), INS (L; 36%)

DLPFC (L) 51 +34.5, �4.5, +55.5 2.07 MFG (L; 78%), PrG (L; 4%)

AAC, STG (L) 47 +40.5, +1.5, �22.5 2.25 STG (L; 57%), MTG (L; 15%), ITG (L; 4%)

OrG (R) 45 �34.5, �25.5, �13.5 1.87 OrG (R; 76%), STG (R; 7%), INS (R; 2%)

OFC (R) 37 �28.5, �52.5, �13.5 3.04 MFG (R; 46%), OrG (R; 43%)

IPC (R) 31 �37.5, +55.5, +37.5 3.66 IPL (R; 71%), SPL (R; 3%)

CG (B) 20 �7.5, �1.5, +28.5 2.02 CG (L; 50%), CG (R; 25%)

Note: Searchlight-based representational similarity analysis (RSA) was used on the multivoxel patterns of the neural activations and representational

dissimilarity matrix (RDM) codes that represent the visual category/class perception of humans. We obtained labels for the (sub-)clusters from the

Brainnetome atlas (https://atlas.brainnetome.org).

Abbreviations: AAC, auditory association cortex; B, bilateral; CG, cingulate gyrus; DLPFC, dorsolateral prefrontal cortex; EVC, early visual cortex; FOC,

frontal opercular cortex; FuG, fusiform gyrus; IFG, inferior frontal gyrus; INS, insular cortex; IPC, inferior parietal cortex; IPL, inferior parietal lobule; ITG,

inferior temporal gyrus; L, left; LOcC, lateral occipital cortex; MCC, middle cingulate cortex; MFG, middle frontal gyrus; MPFC, medial prefrontal cortex;

MTG, middle temporal gyrus; MVOcC, medioventral occipital cortex; OFC, orbitofrontal cortex; OrG, orbital gyrus; PCC, posterior cingulate cortex; PCL,

paracentral lobule; Pcun, precuneus; PoG, postcentral gyrus; PrG, precentral gyrus; R, right; SFG, superior frontal gyrus; SPC, superior parietal cortex; SPL,

superior parietal lobule; STG, superior temporal gyrus.
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were similarly observed from ROIs in EVC, MT+/LO complex, M1/S1,

SPC, and left EAC (Figures S10b and S12b). The ROIs in the bilateral

PCC disappeared, whereas the ones in the bilateral MCC appeared. In

the perception of digits versus objects, the associated brain regions

were almost identical (Figures S10c and S12c). In the perception of

the magnitude of the digits compared to the digit recognition, ROIs in

the bilateral SPC were preserved, whereas the ones in the right OFC

were not (Figures S10d and S12d). In the perception of the animacy

of the objects, the right MT+/LO complex was still found in contrast

to object recognition while the left STS disappeared (Figures S10e

and S12e).

3.4 | Relationship between the trained CNN model
and human visual category/class perception

Figure 7 shows the cosine similarity of the visual category/class per-

ception of humans with each of the CNN layers. Overall, the CNN

model had higher similarity with human visual perception as the layers

moved toward the output layer except for the categorization of digits

versus objects, whose similarity monotonically decreased from lower

to higher Conv and classification layers.

Figure 8 summarizes the similarity scores for the neural represen-

tations of the ROIs identified from the visual category/class

TABLE 2 Detailed information on the regions-of-interest (ROIs; Figure 6b,e) identified for the object recognition and object animacy
conditions

Cluster Size Foci (x, y, z mm) Peak t-score Sub-cluster with percentage (%) overlap

Object recognition

EVC, MT+/LOC, ITG, TPOJ (L) 262 +55.5, +52.5, +7.5 3.45 LOcC (L; 26%), pSTS (L; 23%), ITG (L; 13%),

STG (L; 13%), IPL (L; 13%), MTG (L; 10%)

AAC, EAC, POC (L) 154 +55.5, +19.5, +7.5 3.53 PoG (L; 37%), STG (L; 28%), PrG (L; 18%), INS (L; 16%)

SPC (R) 143 �13.5, +70.5, +52.5 2.38 SPL (R; 48%), LOcC (R; 17%), Pcun (R; 12%), IPL (R; 4%)

DLPFC (R) 118 �25.5, �49.5, +28.5 2.95 MFG (R; 93%)

PCC (B) 83 +1.5, +43.5, +25.5 2.59 CG (L; 51%), Pcun (L; 23%), CG (R; 19%), Pcun (R; 1%)

M1/S1, SPC, IPC (L) 55 +40.5, +37.5, +58.5 1.56 PoG (L; 73%), IPL (L; 5%)

DLPFC, MPFC (R) 49 �19.5, �28.5, +61.5 1.92 SFG (R; 71%)

SPC (L) 40 +4.5, +70.5, +61.5 1.65 SPL (L; 42%), Pcun (L; 12%)

OFC (L) 37 +43.5, �58.5, �7.5 2.40 MFG (L; 78%), OrG (L; 3%)

AAC (R) 35 �58.5, +19.5, �13.5 1.29 MTG (R; 89%), STG (R; 3%)

STG, OFC (R) 29 �28.5, �22.5, �25.5 1.79 STG (R; 66%), INS (R; 10%)

IFC (L) 20 +34.5, �4.5, +25.5 1.79 MFG (L; 55%), PrG (L; 20%), IFG (L; 15%)

Animacy of objects

EVC, MT+/LOC, ITG, TPOJ (L) 355 +34.5, +97.5, +1.5 3.84 LOcC (L; 49%), ITG (L; 15%), pSTS (L; 11%), MTG (L; 10%),

STG (L; 9%), IPL (L; 3%)

SPC (B), IPC (R) 256 �34.5, +79.5, +46.5 2.46 SPL (R; 29%), LOcC (R; 14%), Pcun (R; 13%), SPL (L; 11%),

Pcun (L; 9%), IPL (R; 2%)

AAC, EAC, POC (L) 142 +43.5, +19.5, +7.5 2.43 STG (L; 35%), PoG (L; 34%), INS (L; 20%), PrG (L; 11%)

EVC, MT+/LOC (R) 116 �37.5, +91.5, �4.5 3.87 LOcC (R; 99%), MTG (R; 1%)

M1/S1, SPC, IPC (L) 104 +34.5, +52.5, +70.5 1.98 PoG (L; 37%), SPL (L; 20%), IPL (R; 5%)

PCC (B) 77 +4.5, +55.5, +28.5 2.53 CG (L; 56%), Pcun (L; 25%), CG (R; 14%)

DLPFC (R) 32 �25.5, �49.5, +28.5 2.72 MFG (R; 91%)

AAC (L) 30 +55.5, �4.5, �22.5 1.41 MTG (L; 70%), STG (L; 27%)

MCC (L, R) 28 �13.5, +49.5, +64.5 2.03 Pcun (R; 36%), PCL (R; 32%), PCL (L; 14%), SPL (R; 7%)

DLPFC (R) 24 �46.5, �13.5, +55.5 1.63 MFG (R; 58%)

OFC (L) 21 +43.5, �58.5, �7.5 1.68 MFG (L; 81%)

Note: Please refer to Table 1 for more detailed information on the cluster labeling.

Abbreviations: AAC, auditory association cortex; B, bilateral; CG, cingulate gyrus; DLPFC, dorsolateral prefrontal cortex; EAC, early auditory cortex; EVC,

early visual cortex; IFC, inferior frontal cortex; IFG, inferior frontal gyrus; INS, insular cortex; IPC, inferior parietal cortex; IPL, inferior parietal lobule; ITG,

inferior temporal gyrus; L, left; LOcC, lateral occipital cortex; M1/S1, Primary motor cortex and primary somatosensory cortex; MCC, middle cingulate

cortex; MFG, middle frontal gyrus; MPFC, medial prefrontal cortex; MT+/LOC, middle temporal (MT) complex and its neighboring visual area including

lateral occipital (LO) complex; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; OrG, orbital gyrus; PCC, posterior cingulate cortex; PCL, paracentral

lobule; Pcun, precuneus; POC, posterior opercular cortex; PoG, postcentral gyrus; PrG, precentral gyrus; pSTS, posterior superior temporal sulcus; R, right;

SFG, superior frontal gyrus; SPC, superior parietal cortex; SPL, superior parietal lobule; STG, superior temporal gyrus; TPOJ, temporo-parieto-occipital

junction.
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perception of humans and the feature representations for the CNN

layers for each of the specific conditions of interest. Despite the

broadly similar trends for the specific conditions of interest, the

degree of association across the CNN layers for a specific condition

varied across the ROIs. Of the ROIs representing digit perception, the

right IPC/EVC/DLPFC and bilateral MCC/MPFC exhibited stronger

overall associations compared to the AAC and MVOcC (Figure 8a).

Generally, a decrease from lower to higher layers was noticeable for

the IPC, EVC, MPFC, and DLPFC. Of the ROIs representing object

perception, the higher visual areas such as the MT+/LO complex, ITG,

and temporo-parieto-occipital junction (TPOJ) demonstrated a strong

and consistently positive association with the CNN layers, particularly

the intermediate Conv and classification layers (Figure 8b). The PCC,

M1/S1, and OFC also exhibited a similar trend. For the digits versus

objects condition, the largest cluster, which included the bilateral EVC

and associated visual areas across the medial, dorsal, and ventral

stream along with the left PCC, showed a strong association with the

CNN layers, particularly the intermediate layers (Figure 8c). For the

TABLE 3 Detailed information on the regions-of-interest (ROIs; Figure 6c) identified for the digit versus object condition

Cluster Size Foci (x, y, z mm)

Peak

t-score Sub-cluster with percentage (%) overlap

Digit versus object

EVC, MT+/LOC, Ventral, ITG, Dorsal, MVOcC,

IPC, SPC (B)

2846 �1.5, +76.5, +4.5 10.52 LOcC (L; 20%), LOcC (R; 17%), MVOcC (R; 11%),

MVOcC (L; 10%), FuG (L; 8%), IPL (L; 6%), FuG (R;

5%), IPL (R; 5%), SPL (R; 4%), ITG (L; 2%), ITG (R;

2%), SPL (L; 2%), MTG (L; 1%), MTG (R; 1%)

IPC, SPC, M1/S1 (R) 308 �28.5, +40.5, +52.5 3.95 IPL (R; 41%), PoG (R; 40%), SPL (R; 8%), PrG (R; 1%)

Ventral (R) 79 �22.5, +40.5, �19.5 4.20 FuG (R; 81%), PhG (R; 8%), MVOcC (R; 5%)

PCC (L) 34 +10.5, +52.5, +34.5 3.46 Pcun (L; 65%), CG (L; 32%)

M1/S1, IPC (L) 33 +52.5, +25.5, +58.5 3.35 PoG (L; 70%), IPL (L; 21%)

SPC (L) 30 +40.5, +31.5, +43.5 3.56 IPL (L; 50%), PoG (L; 40%), SPL (L; 7%)

Note: Please refer to Table 1 for more detailed information on the cluster labeling.

Abbreviations: B, bilateral; CG, cingulate gyrus; Dorsal, dorsal stream visual cortex; EVC, early visual cortex; FuG, fusiform gyrus; IPC, inferior parietal

cortex; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; ITG, inferior temporal gyrus; L, left; LOcC, lateral occipital cortex; M1/S1, primary motor

cortex and primary somatosensory cortex; MT+/LOC, middle temporal (MT) complex and its neighboring visual area including lateral occipital (LO)

complex; MTG, middle temporal gyrus; MVOcC, medioventral occipital cortex; PCC, posterior cingulate cortex; Pcun, precuneus; PhG, parahippocampal

gyrus; PoG, postcentral gyrus; PrG, precentral gyrus; R, right; SPC, superior parietal cortex; SPL, superior parietal lobule; Ventral, ventral stream visual

cortex.

F IGURE 7 Cosine similarity between the RDM for the CNN layers and the RDM for human visual perception across the 16 classes of the
digit and object. The mean and standard deviation across participants are illustrated. CNN, convolutional neural networks; Fc, fully connected
layer; Output, output layer.
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magnitude of digits, most of the ROIs had a strong connection with

the higher Conv and classification layers, including the bilateral

MCC/SPC/PCC/MVOcC, right IPC, and bilateral OFC (Figure 8d). For

the ROIs of associated with the animacy condition, a strong associa-

tion with the classification layers of the CNN was particularly evident

for the EVC/MT+/LO/TPOJ complex and its neighbors, the M1/S1,

SPC, IPC, and MCC (Figure 8e).

4 | DISCUSSION

4.1 | Summary of the study

We investigated the neural representations of handwritten digits and

visual objects for a CNN model trained to classify the corresponding

visual stimuli. The neural activations for the visual stimuli were

F IGURE 8 RSA using (i) the neural RDM within the ROIs identified from the visual category/class perception of humans and (ii) the RDM for
each layer of the trained CNN model. Searchlight RSA is conducted for each of the voxels in the ROI. The voxels with positive t-scores from
group inference are summarized with their mean t-score and standard error of the mean for each ROI. AAC, auditory association cortex; AAC,
auditory association cortex; B, bilateral; CG, cingulate gyrus; CNN, convolutional neural networks; DLPFC, dorsolateral prefrontal cortex; Dorsal,
dorsal stream visual cortex; EAC, early auditory cortex; EVC, early visual cortex; Fc, fully connected layer; FOC, frontal opercular cortex; IFC,
inferior frontal cortex; IPC, inferior parietal cortex; ITG, inferior temporal gyrus; L, left; M1/S1, primary motor cortex and primary somatosensory
cortex; MCC, middle cingulate cortex; MPFC, medial prefrontal cortex; MT+/LOC, middle temporal (MT) complex and its neighboring visual areas
including lateral occipital (LO) complex; MVOcC, medioventral occipital cortex; OFC, orbitofrontal cortex; OrG, orbital gyrus; Output, output
layer; PCC, posterior cingulate cortex; POC, posterior opercular cortex; R, right; SFG, superior frontal gyrus; SPC, superior parietal cortex; STG,
superior temporal gyrus; TPOJ, temporo-parieto-occipital junction; Ventral, ventral stream visual cortex.
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measured using fMRI. RSA was used to map the neural representa-

tions across the whole brain using feature representations in the CNN

layers via holistic geometric space across all the paired classes from

digit and/or object categories. Neural representations from the human

visual perception of these classes were also obtained using hypotheti-

cal RDM codes and compared with the CNN model. We found that

the neural representations from the CNN model substantially mapped

onto the visual areas and their associated areas, along with a portion

of the parietal area (Figure 5a). The representations overlapped mainly

with the representations for digit perception in comparison to those

for object perception in humans (Figure 6c). In terms of the neural

representations from the visual perception of humans, additional

regions were mapped across the whole brain, such as the OFC, MPFC,

and DLPFC for digit perception and digit magnitude, and the left pos-

terior opercular cortex and frontal opercular cortex (POC/FOC),

TPOJ/AAC, and right DLPFC for object perception and animacy

(Figures 6 and S6).

4.2 | Interpretation of the neural representations
from the CNN model

The VGG16-based CNN model was pre-trained to recognize visual

objects and fine-tuned to classify 10 additional handwritten digits.

The activation maximization map for each of the 16 output nodes por-

trayed clear digit and object categories, indicating that the fine-tuned

model had successfully learned to recognize novel digit and object

stimuli (Figure 3b). As compared to the 99.2% classification accuracy

of VGG16, the accuracies of AlexNet and ResNet-50 were slightly

lower (i.e., 97.0% and 97.1%, respectively). This might be due to simi-

lar hyperparameters (e.g., mini-batch size, learning rate annealing, or

dropout rate) of the corresponding models and VGG16. Optimizing

hyperparameters of the alternative CNN model may further improve

the classification performance. t-SNE plots of the feature representa-

tions for each of the fine-tuned VGG16-based CNN layers exhibited a

hierarchical organization (Figure 4). Interestingly, the initially sepa-

rated feature representations for the visual objects and handwritten

digits (Conv 1 and Conv 2) were intermixed in the intermediate Conv

layers. The t-SNE representations for digits in the lower Conv layers

maintained distinct patterns across all ten digits that were similar to

the input features. Numerosity representation in the hand areas has

been reported (Anobile et al., 2021) which may explain the maximum

similarity between the feature representations in the lower Conv

layers and neural representations in the M1/S1. The maximum associ-

ation between the neural representations in the MT+/LO complex

and Conv 2 may be related to differences in the complexity of the

image patterns between objects and digits.

The separation between the two sets of categories (i.e., digits

vs. objects) appeared in the higher Conv layers (Figure 4). Further-

more, the corresponding feature representations across the 10 digits

were more evident, with signs of separation across the six objects,

suggesting that the visual features of these 16 classes solidified in the

higher Conv layers of the trained CNN. The associated ROIs whose

neural representations were maximally associated with the feature

representations for the higher Conv layers were mainly identified in

the higher-order visual areas such as the dorsal/medial/ventral stream

visual association areas and the MT+ and LO complex regions

(Figure 5d). The ventral visual stream includes the posterior infero-

temporal complex (ITC) and fusiform face complex (FFC) (Glasser

et al., 2016). The ITC has been associated with face, object, and scene

perception (Conway, 2018) and the ventral part of the ITC has been

linked to visual number symbols, such as Arabic numerals (Hannagan

et al., 2015). It is also worth noting that there was a significant associ-

ation between the MT+/LO complex and higher Conv layers. We

confirmed that the identified clusters in the MT+/LO complex

(Figure 5d) included both the MT+ and LO complex. The MT+ and its

neighboring areas, which are known to be sensitive to visual motion,

(Gaglianese et al., 2017; Maunsell & Van Essen, 1983) are also associ-

ated with the sensitivity to eye movements (Dukelow et al., 2001).

This may have impacted this study due to the supposedly high pursuit

eye movements for the object condition when compared to the digit

condition. The appearance of the LO complex, representing object

recognition, (Grill-Spector et al., 2001) is possibly due to the distinct

contrast between the objects and digits in the higher Conv layers.

Fully separated feature representations across all digit and object

classes were obtained from the classification layers of the CNN

(Figure 4). The maximally associated brain regions were mainly identi-

fied from the right higher-order visual areas, the ventral stream of the

visual association areas, PCC, left SPC, bilateral MCC, and bilateral

MPFC (Figure 5e). Notably, the clusters in the PCC, MPFC, and OFC

exhibited solid and unique associations with the classification layers

when compared with the higher Conv layers (Figure S5), suggesting

that these higher-order cognitive areas processed specific conceptual

information across the 16 classes. We observed that the left hemi-

sphere showed a prominent hierarchical structure from the lower to

the higher layers compared to the right hemisphere. On the right

hemisphere, the EVCs were mainly assigned to the classification layers

(Figure 5e). One potential cause may be due to the difference of the

low-level features between the digits and objects (i.e., line-drawings

for the digits and color images with background scene for objects).

Thus, the EVCs may be highly associated with the feature representa-

tion of higher CNN layers. Alternatively, it might be due to a large

individual variability. When we inspected the association with CNN

layers for each of the 15 subjects rather than the group result, many

subjects showed an assignment in the EVCs, with the lower to inter-

mediate layers (Figure S7). However, the varying spatial locations in

the EVC across the subjects might have failed to reflect in the group

inference. Interestingly, the association of the EVC with the classifica-

tion layers was varying depending on whether the spatial smoothing

was applied before the t-test or not (Figures S9 and S11), and was not

evident from an alternative CNN model, ResNet-50.

When the results were obtained using unsmoothed beta-valued

maps, the layer assignment map on the whole brain was remarkably

similar, mostly preserved in the higher layers but the difference was

mainly found in the early layers (Figures 5 vs. S9 and S11). We attri-

bute the change of the whole-brain map from the searchlight RSA to
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spatially noisy beta-valued maps when the spatial smoothing was not

applied. The searchlight area included voxels in the range of three-

voxel radius sphere (i.e., the maximum distance of 12 mm within a

sphere) to obtain multivoxel pattern of neural activations. Thus, an

application of spatial smoothing using Gaussian kernel with an 8 mm

FWHMmight have substantially altered the neural RDM.

There was an overall similarity of the RSA mapping using two sets

of VGG16 models for 16 classes classification that was trained using

two sets of six object classes. Specifically, there was the relatively

large mapping of brain regions from the higher Conv layer and classifi-

cation layers in comparison to the lower and intermediate Conv layers

(Figures 5 vs. S21).

4.3 | Interpretation of the neural representations
from human visual category/class perception

4.3.1 | Digits and their magnitude

ROIs were found bilaterally in the MVOcC overlapping with the ante-

rior part of V1, not only from the digit recognition but also from their

magnitude. Notably, the ROIs were retained from the magnitude con-

trast when alternative groups of lower and higher numbers were used

to define a magnitude. In this analysis, the complexity of visual fea-

tures may also be different between the lower ([1, 2, 3]) and higher

([7, 8, 9]) magnitude groups. However, the complexity of visual fea-

ture of the digit “4” is relatively more complex than the visual features

of “1” or “2” and seems comparable to that of digits “6,” “7,” or “9.”
Thus, our analysis using the groupings of the lower ([1, 2, 3, 4]) and

higher ([6, 7, 8, 9]) digits might have alleviated this potential con-

founding issue on visual feature complexity for the magnitude com-

parison condition. Nonetheless, the finding of the primary visual

cortex in the magnitude perception, across our adopted groupings of

numbers, may suggest that there is a potential difference in visual fea-

ture complexity between the groups of the high-magnitude and low-

magnitude numbers.

We also identified the DLPFC, which is potentially related to

number processing (Nieder, 2016). In our experimental setting, partici-

pants had to consistently remain attentive to the digits in order to

press the button when the presented digit was “0.” Thus, the cogni-

tive process required to recognize “0” from among the set of ten

digits may produce neural activations in the frontal areas, including

the MPFC and DLPFC, in the digit recognition condition (Figure 6a).

The regions associated exclusively with the magnitude percep-

tion, and not the digit recognition, included the SPC and a superior

part of the left OFC across various sets of groupings of digit magni-

tudes. The intraparietal sulcus (IPS), the horizontal area dividing the

IPC and SPC, has been reported to be a numeric information-

processing region in both human and nonhuman primates (Ashkenazi

et al., 2008; Eger et al., 2003; Isaacs et al., 2001; Nieder, 2016; Piazza

et al., 2007; Vallentin et al., 2012). Similarly, the perception of numeri-

cal magnitude or quantity is mainly associated with the right IPS, par-

ticularly when Arabic numerals are used (Ansari et al., 2007;

Arsalidou & Taylor, 2011). The IPS is the first region to process num-

ber information in the neural number network that includes the parie-

tal region and the lateral prefrontal cortex (Nieder, 2016). Given the

results of previous studies, human perception of both digit recognition

and the magnitude of digits explain the association with the IPS in our

findings. In another study, the inferior parietal lobule (BA 40) was sig-

nificantly associated with number calculation tasks in children,

extending further to parts of the inferior parietal sulcus in the right

hemisphere and the parietal cortex in the left hemisphere (Arsalidou

et al., 2018). The ROI in the superior part of the left OFC (as we

defined the boundary) was adjacent to the prefrontal cortex, which

was reported to have association neurons for numerical symbols in

rhesus monkeys (Diester & Nieder, 2007).

4.3.2 | Objects and their animacy

Although the object perception and animacy condition codes had very

similar representations overall, the right MT+ and LO complex were

identified for the object animacy condition but not with the object

recognition condition (Figure 6b,e). This may be because of the cluster

in the MT+ complex, which has been associated with visual motion

(Gaglianese et al., 2017; Maunsell & Van Essen, 1983). The identifica-

tion of the MT+ area only in the animacy condition may be because

of visual motion imagery (Goebel et al., 1998) because the participants

may have evoked motion imagery during the perception of the ani-

mate objects (i.e., bird, cat, and dog) but not with the inanimate

objects (i.e., bed, house, and tree).

It is widely known that the V5/MT+ area is associated with a

general motion, whereas the posterior part of STS is more selective to

a biological motion (Beauchamp, 2015; Beauchamp et al., 2003; Deen

et al., 2015; Pelphrey et al., 2003). The images of the classes for ani-

macy condition (i.e., bird, cat, and dog) may derive biological motions,

which justifies the observation in STS for the animacy perception of

objects.

4.4 | Digits versus objects

The ROIs identified from the RDM code for visual category percep-

tion contrasting digits and objects (Figure 6c) were strikingly similar to

the CNN layer assignment map (Figure 5a), particularly with the brain

regions assigned from the Conv layers (Figure 5b–d). Most of the

brain regions assigned from the classification layers of the CNN

(Figure 5e) were not identified in the ROIs relevant to the visual per-

ception of digits versus objects (Figure S6a,b). This finding was consis-

tent with the t-SNE plots of the feature representations for the Conv

layers. Each of the 16 classes across the digits and objects showed

distinct representations only in the classification layers (Figure 4).

The sensorimotor numerosity system is located close to neural

representations associated with hand/digit movement related to

counting numbers and numerosity representation, which enables the

mediation of the psychophysical interaction between the two systems
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(Anobile et al., 2021). We also found clusters in the M1/S1 areas,

including parts of the SPC/IPC, possibly due to the contrast between

digit and object recognition (Figure 6c). Many studies have demon-

strated that the visual number form area is located in the right pITG,

(Daitch et al., 2016; Grotheer et al., 2018; Grotheer, Ambrus, &

Kovács, 2016; Grotheer, Herrmann, & Kovács, 2016; Shum

et al., 2013; Yeo et al., 2017, 2020) which was confirmed by our neu-

ral representations (Figure 6c).

We used gray-scale images for the digit category and color

images for the object category. The primary and higher-order visual

areas observed in our findings (Figure 6c) may be related to the color

perception of the human brain, which includes a color-processing

stream that begins from the retina to the early visual areas such as the

V1 and V2 (Shapley & Hawken, 2011; Zeki & Marini, 1998) and the

higher-order visual areas including the V4 and V8 areas (Grill-

Spector & Malach, 2004; Hadjikhani et al., 1998).

4.4.1 | Unsmoothed beta-values

The representation of human visual perception using unsmoothed

beta-values were noisier than the representation using smoothed

beta-values; however, they presented substantially similar locations of

ROIs (Figures S10 and S12). Particularly, the representations from the

visual category perception contrasting digits to objects were mostly

consistent.

4.4.2 | Generalization on a new set of six objects
from another dataset

When neural RDMs were constructed using beta-valued brain maps

of bear, beetle, car, flower, monkey, and pen in BOLD5000, the neural

representations were partly reproduced but showed a large difference

(Figures S22 vs. 6). Overall, a substantial association was found in the

MPFC and the anterior to middle part of STS. The TPOJ and OFC

were commonly found for the object recognition condition

(Figures 6b and S22b). The right DLPFC was observed in common for

the perception of animacy (Figures 6e and S22c). For the visual per-

ception of digits versus objects, the ROIs spanned the whole brain

including the replicated findings in EVC, MT+/LO complex, dorsal/

ventral stream visual cortex, MVOcC, PCC, SPC, and M1/S1

(Figures 6c and S22a). It was notable that the discrepancy of the RSA

mapping using the RDM codes for human perception of the object

recognition and animacy although the RSA mapping of digits versus

objects was commonly included the visual and its associative areas.

This could be due to the limitation of our alternative RSA which used

the BOLD5000 dataset for the object classes while our dataset was

used for the digit classes. Our core assumption was that the neural

RDM constructed with heterogenous subjects would maintain the

holistic geometric representations across the 16 classes. However,

the various confounding factors such as heterogeneities of MRI scan-

ners, imaging parameters, and preprocessing options might have

caused the less degree of replication between the two sets of the RSA

mapping results. Future study is warranted in this context.

4.5 | Interpretation of the ROIs for human visual
perception and from the CNN model

The cosine similarity between the RDM for human category/class per-

ception and the RDM for the CNN layers monotonically increased as

the layers became deeper (Figure 7). This suggests that the CNN

model classified the information on the digits and their magnitude and

on the objects and their animacy hierarchically from the lower to

higher Conv layers. The categorization between digits and objects

seemed to be established relatively early in the lower Conv layers.

Fine-grained information was obtained from the similarity between

the neural RDM for the ROIs from the category/class perception of

humans and the RDM for the CNN layers (Figure 8). The generally

decreasing pattern of the similarity from the ROIs related to digit rec-

ognition (which is similar to the trend shown in Figure 7c) might be

possible because these ROIs were identified from the main contrast

of digits (dissimilar across digits) versus objects (similar across objects)

(bottom of Figure 1b). The ROIs for object recognition in humans

appeared to be more strongly connected to the object recognition in

the CNN model, as evidenced by the strong association for the

EVC/MT+/LO complex and its neighboring areas (Figure 8b) (Grill-

Spector et al., 2001).

The ROIs identified from the distinction between digits and

objects had a high similarity with the feature representations in the

intermediate and higher Conv layers, particularly for the EVC and dor-

sal/medial/ventral visual areas, PCC, M1/S1, and IPC (Figure 8c). The

neural representations for human visual category/class perception

(Figure S6c) were more widely distributed across the whole brain than

was the CNN layer assignment map (Figure S6a). Notably, the DLPFC,

OFC, IFC, POC/FOC, and TPOJ/AAC had a significant association

with human visual category/class perception. At the same time, many

of these representations were obscured in the CNN, possibly because

this model only processes visual stimuli-related information from the

input images to maximize classification performance in the output

layer. On the other hand, the RDM codes that imitated human per-

ception may have enabled the identification of neural representations

for explicit information of a class and implicit high-level cognitive pro-

cesses relevant to the condition of interest.

4.6 | Utility of brain-encoding studies using neural
network models

Neural network-based models are capable of state-of-the-art perfor-

mance in object recognition, with a CNN outperforming alternative

models for 1000 visual object recognition tasks in 2012 (Krizhevsky

et al., 2012) and surpassing human-level performance in a visual

object recognition task (He et al., 2015). It appears that no other com-

putational models are capable of outperforming deep neural network
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(DNN)-based models in sensory perception tasks, which suggests that

DNN models are valuable computational models for understanding

human brain perception (Kell & McDermott, 2019). A growing body of

research has utilized DNN models to understand neural representa-

tions within the human brain as measured using non-invasive fMRI

(Cross et al., 2020; Jain & Huth, 2018; Kell et al., 2018). Investigations

of brain-encoding models have also extended their focus from visual

perception to sound/auditory perception (Kell et al., 2018), sentiment

analysis using language processing models (Jain & Huth, 2018), and

higher-order cognitive tasks (Saxe et al., 2020). Neural representations

of the action and decision-making processes of humans during game-

playing scenarios have also been investigated using a deep reinforce-

ment learning model (Cross et al., 2020). However, artificial general

intelligence using DNN-based computational models is still in its

infancy, and there is significant room for improvement in imitating

human-level intelligence (Jordan, 2019). We believe that brain-

encoding research identifying neural representations from computa-

tional models for cognitive processes, including sensory information

perception and the systematic comparison with human perception,

provides an invaluable systematic framework for the development of

human-inspired computational models (Hassabis et al., 2017). For

example, similarly to our analyses to compare the CNN models

(i.e., AlexNet, ResNet-50, and VGG16) with the human visual percep-

tion, we can also conduct the similarity mapping between computa-

tional models and cognitive processes of the human brain.

Consequently, network architectures and/or hyperparameters can be

adjusted to find the most suitable computational models that resem-

ble the information processing of the human brain.

4.7 | Potential weaknesses and future work

Our hypothetical RDM codes for the visual category/class percep-

tion of humans may inherently be limited in terms of accommodat-

ing a broad range of human perception across our adopted

handwritten digit and visual object classes. Constructing the codes

for human perception based on the participants' behavioral data

may provide a rich set of perceptual codes that account for higher-

level cognitive processes (Bracci et al., 2019; Contini et al., 2020;

Kim et al., 2020; King et al., 2019). Our CNN model was trained to

recognize all 16 digit and object classes in a single output layer.

Alternatively, dual-task CNN architecture used to distinguish

speech perception from music perception (Kell et al., 2018) can be

gainfully employed in our experimental setting for the visual per-

ception of digits and objects. It would be interesting for future work

to systematically compare the neural representations for digit and

object perception across various architectures for CNN-based com-

puter vision models. An extended analysis using alternative CNN-

based classification models was conducted using AlexNet and

ResNet-50, in addition to VGG16. We noticed that even if the

architecture and the number of layers were different across the

CNN models, the hierarchical neural representations across the

layers were markedly similar (Figures 5 and S15 and S18). This may

suggest that our findings can be generalizable to CNN-based

models which is warranted in a future study.

We used handwritten digits and visual objects as visual stimuli.

Future studies can thus investigate the neural representations for

visual perception for (a) handwritten digits compared to typed digits

and (b) natural objects compared to artificial objects by collecting

additional datasets. The low-level visual difference between digits and

objects (e.g., drawing vs. picture; background) could limit the interpre-

tation of our findings, which showed a considerable association in the

early visual processing areas. Thus, it would be worthwhile to perform

the similar analyses using closely matched visual stimuli using line-

drawings such as the Google's QuickDraw (https://quickdraw.

withgoogle.com/; https://githubd.com/googlecreativelab/quickdraw-

dataset) or sketch of the visual scene (Lee et al., 2021, 2022).

Symbolic characters/letters are the building block of language.

The associated neural representations can be investigated using CNN-

based computational models to recognize characters/alphabets and

associated neural activations. The visual pattern recognition of charac-

ters/letters can be further extended to understanding the neural rep-

resentations of words based on visual perception. Alternatively, the

words can be represented as embedding vectors based on the contex-

tual information of the words included in a set of sentences (Devlin

et al., 2018; Mikolov et al., 2013; Pennington et al., 2014). Embedding

vectors of words have been gainfully employed to understand the

contextual information of sentences using a DNN with LSTM units

(Jain & Huth, 2018). It is important for future research to systemati-

cally compare the neural representations from (a) neural net-based

models that can recognize the meaning of words based on visual

stimuli-driven perception and (b) neural net-based models that can

recognize the meaning of words based on their numerically embedded

vectors. This investigation may provide insight into the construction

of an optimal computational model to understand words that stem

from the associated human perception. We can also extend this line

of study to the neural representations of sentences, which may bene-

fit the development of computational models that can better under-

stand the concrete and contextual meaning of sentences.

The dissimilarity metric to define the neural RDM and the RDM

of the CNN layers (or, human visual perception) was calculated based

on 1—Pearson's correlation coefficient. Alternatively, Euclidean dis-

tance or Mahalanobis distance can be adopted as a dissimilarity mea-

sure (Kriegeskorte et al., 2008), which may alter the RSA results. For

example, the absolute difference of activations largely affects the dis-

similarity value when the Euclidean distance is used. The reliability

can also be affected by the dissimilarity metrics (Walther et al., 2016).

We set the radius of a spherical searchlight area as three-voxel size.

Alternatively, a two-voxel size radius is also often adopted for the

searchlight multivoxel patterns. For example, Bulthé and colleagues

used two-voxel radius for multi-voxel pattern analysis to represent

the symbolic numbers in the cortex (Bulthé et al., 2014). The different

size of radius for searchlight analysis was also compared, in which a

smaller searchlight radius provides a greater spatial selectivity than a

larger radius (Coutanche et al., 2011; Oosterhof et al., 2011). We also

conducted the RSA using two-voxel size radius instead of three,
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however, the RSA result was comparable to the RSA result of three-

voxel radius (data not shown). The explained variance criterion for

dimensionality reduction (i.e., 90% in our study) is another hyperpara-

meter that may alter the results. The potential variability of the RSA

results depending on these hyperparameters warrants a future

investigation.

5 | CONCLUSION

We investigated the neural representations of visual perception

across ten handwritten digits and six visual objects from two distinct

perspectives: (a) a CNN model that almost perfectly recognized the

16 classes and (b) the hypothetical visual category/class perception of

humans. Digit perception is an essential process for the human brain

in terms of visual symbolic letter processing. Object perception is also

crucial for understanding straightforward concepts in a visual scene.

Our findings suggest that our adopted CNN model successfully

reflected visual category/class perception across heterogeneous stim-

uli (i.e., abstract symbols and concrete objects). However, the corre-

sponding neural representation was lacking, particularly in the higher

cognitive processing areas of the human brain across the prefrontal,

parietal, and temporal regions. The example dataset and the codes

used to analyze the dataset and visualize the results are publicly avail-

able from our GitHub repository (https://github.com/bsplku/ISL_

RSA_DigitObject_Visual). Recognition of visual stimuli, including sym-

bolic digits and concrete objects, is crucial to understanding the core

concepts of a visual scene, particularly for use in, for example, image

caption models. We could utilize an ecologically motivated image

dataset (Mehrer et al., 2020) to better understand an image caption

model in comparison with the human brain. We believe that investi-

gating the neural representations from computer vision models and

their applications, such as in image captioning systems, would provide

valuable insight into the development of human-inspired computa-

tional models.
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