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Although microarray analysis has provided information regarding the dynamics of gene expression
during development of the mouse lung, no extensive correlations have been made to the levels of
corresponding protein products. Here, we present a global survey of protein expression during mouse
lung organogenesis from embryonic day E13.5 until adulthood using gel-free two-dimensional liquid
chromatography coupled to shotgun tandem mass spectrometry (MudPIT). Mathematical modeling
of the proteomic profiles with parallel DNA microarray data identified large groups of gene products
with statistically significant correlation or divergence in coregulation of protein and transcript levels
during lung development. We also present an integrative analysis of mRNA and protein expression in
Nmyc loss- and gain-of-function mutants. This revealed a set of 90 positively and negatively regulated
putative target genes. These targets are evidence that Nmyc is a regulator of genes involved in mRNA
processing and a repressor of the imprinted gene Igf2r in the developing lung.
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Introduction

The mouse lung primordia are specified from the ventral
foregut endoderm at the 7–8 somite stage of the early embryo.
Specification occurs in responses to Fgf signals arising from the
cardiac mesoderm via Fgfr1 and 2 in the underlying definitive
endoderm (Serls et al, 2005). At E9.5, two buds of lung
epithelium protrude into the surrounding splanchnic meso-
derm in response to Fgf10 signaling (Bellusci et al, 1997b;
Arman et al, 1999; Sekine et al, 1999; Desai et al, 2006). The
pseudoglandular stage follows, during which the trachea,
mainstem bronchi and five major lung lobes are established.
The majority of stereo-specific branching of lung bronchi
occurs up to day 16.5. The branching process is thought to be
developmentally hard-wired, wherein multiple signaling
factors coordinately establish morphogenic signaling centers

where branching occurs. This process involves interplay of
morphogenic signals from the mesenchyme (Fgf10, Bmp4) and
the epithelium (Shh, Bmp4) as well as contributions from
Tgf-beta family members (reviewed in Cardoso and Lu, 2006).
Vascular endothelial growth factor (Vegf), a potent inducer of
vascular development (Kalinichenko et al, 2001; Ng et al,
2001), is expressed in the epithelium and promotes develop-
ment of the vasculature in synchrony with the bronchi and
bronchiole branching, such that major veins and arteries
follow the branching pattern of the bronchi. Terminal bronchi
develop over 24 h during the canalicular stage beginning at
E16.5. This process involves the terminal budding of the
epithelium into sacs, which are in tight apposition with the
mesoderm-derived vasculature. The period from E 17.5 until
postnatal day 5 is the terminal sac stage, which is characterized
by an increase in the number of terminal sacs and capillaries.
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The increase in capillary plexus appears to take place by
‘intussusceptive angiogenesis’, a process by which slender
transcapillary tissue pillars extend at regular intervals between
adjacent capillaries (Burri and Tarek, 1990; Patan et al, 1992).

The cells forming the terminal sacs next differentiate into
Type I and Type II alveolar cells. The majority of gas exchange is
mediated by Type I cells, whereas the Type II cells secrete lung
surfactant proteins. A subset of the Type II cells appear to be
stem cells for the generation of more alveolar Type I and Type II
cells. Despite this detailed knowledge of the main signaling
processes involved in mediating branching (reviewed in
Chuang and McMahon, 2003; Warburton et al, 2003; Bartram
and Speer, 2004; Cardoso and Lu, 2006) and morphology of
lung development, little is known about the gene products that
are downstream of these developmental signals.

Genetically engineered mouse mutant models using gene
knockout (Kimura et al, 1996; Sekine et al, 1999), conditional
alleles (Eblaghie et al, 2006), hypomorphic alleles (Moens
et al, 1992, 1993) or transgene misexpression (Bellusci et al,
1997a) have all been used to gain insight into the genetic
pathways controlling lung morphogenesis. However, the
majority of these analyses used a small number of cell-specific
markers that provided limited information regarding the full
complement of molecular components underlying individual
phenotypes, and did not reveal the full complexity of the
developmental synthesis. To circumvent these limitations,
three groups have published global microarray expression
analyses of normal lung development, examining expression
over time and comparing the proximal and distal parts of the
lung (Mariani et al, 2002; Bonner et al, 2003; Lu et al, 2004a).
However, the expression levels and localization of the
corresponding cognate proteins are still largely unknown.

Large-scale analysis of the proteome in an unbiased manner
is increasingly possible through developments in the applica-
tion of tandem mass spectrometry (MS) for highly sensitive
protein characterization. The advent of gel-free proteomic
profiling in particular (Wolters et al, 2001) has facilitated
large-scale, high-throughput shotgun peptide sequencing to
systematically investigate the proteome of mammalian cells
and tissues (Washburn et al, 2001; Florens et al, 2002; Koller
et al, 2002). The accurate determination of protein relative
abundance by replicate analysis, in combination with spectral
counting methods, has made proteomic datasets amenable to
comparative analysis using many of the same tools and
techniques developed for microarray studies (Liu et al, 2004;
Zybailov et al, 2005; Kislinger et al, 2006).

Our group has previously reported the development of a
proteomics investigation strategy for mouse (PRISM) based on
MudPIT, which markedly increases the depth of coverage via
sample prefractionation into organellar compartments (Kislin-
ger et al, 2003). Unlike other proteomic screening methods,
our fractionation procedure has the advantage that both tissue
and subcellular specificity can be assayed from the same
sample preparation (Kislinger et al, 2003, 2006). We have
reported the application of PRISM to exhaustively assess the
molecular composition of adult mouse tissues (brain, heart,
kidney, liver, lung and placenta) (Kislinger et al, 2006).
We have also developed a principled mathematical model to
compare protein and microarray expression profiles recorded
in parallel (Kislinger et al, 2006).

Here, we report the application of these techniques to a time-
course study of lung organogenesis at well-defined stages of
development. Comparison of the proteomic data with mRNA
expression profiles revealed a large number of gene products
with coordinately regulated expression. There was also a
smaller group of gene products with expression profiles
suggestive of post-translational or post-transcriptional control.
Having established a baseline of protein profiles during normal
lung development, we analyzed the proteome and transcrip-
tome of lungs from mice homozygous for a hypomorphic allele
of Nmyc, which encodes a basic helix–loop–helix leucine-
zipper protein shown to be critical for lung development
(Moens et al, 1992, 1993; Okubo et al, 2005). We compared the
resulting proteomic and transcriptomic patterns with an Nmyc
gain-of-function microarray data set published recently
(Okubo et al, 2005). Mining of the cognate expression profiles
identified plausible direct targets of Nmyc regulation, includ-
ing factors involved in mRNA splicing, nuclear export and
localization, which had not previously been linked to Nmyc.
Taken together, our findings support the view that Nmyc is a
key regulator of the transcriptional processing environment of
the undifferentiated lung epithelium.

Results

Efficient identification of proteins with restricted
spatial and temporal expression

We collected lung samples at six time points (E13.5, E16.5,
E18.5, P2, P14 and P56) from timed mating of ICR mice.
These time points cover many of the major phases of lung
development including pseudoglandular, canalicular, terminal
sac, alveologenesis and septation and growth towards fully
developed adult lungs. Sufficient tissues were collected at all
times to fractionate and analyze in duplicate (see Materials
and methods). Although we and others have shown that this
level of replicate sampling by shotgun LC-MS does not achieve
saturation of detection (Durr et al, 2004; Kislinger et al, 2006),
the quantity of tissues at the earliest time point (E13.5) was
limiting, with over 200 lungs required for two replicates of all
three fractions; nevertheless, coverage is estimated to be
between 75 and 80% (Kislinger et al, 2006). A total of 36
MudPITanalyses were performed, generating over 1.5 million
MS/MS spectra. These were sequence mapped against a
combined mouse and human protein database obtained from
SwissProt/Trembl (EBI release 40) using SEQUEST (Eng et al,
1994). Combined data sets have been used by us and others to
increase the protein identification rate of species with incom-
plete sequence coverage (Schirmer et al, 2003; Kislinger et al,
2006). Redundant cross species hits were removed by reciprocal
BLAST, ensuring only unique proteins are reported (Schirmer
et al, 2003; Kislinger et al, 2006). High-scoring peptide matches
were then collated into candidate parent proteins.

The data set was then stringently filtered by accepting only
those proteins with two or more independently collected
MS/MS spectra, each with a predicted X95% confidence
likelihood as determined using the STATQUEST probability
model (Kislinger et al, 2003, 2006). This resulted in the identi-
fication of 3330 proteins (Supplementary Table I). As our
search database contained an equal number of reversed decoy

Proteome of mouse lung development
B Cox et al

2 Molecular Systems Biology 2007 & 2007 EMBO and Nature Publishing Group



sequences, we were able to estimate the false discovery rate on
average to be B2.5% (ranging from 4.6 to 0.7% per fraction),
similar to previous studies (Kislinger et al, 2003, 2006). The
entire proteomic data set has been deposited in the public GEO
database at NCBI under the series GSE6108.

Quantification of protein levels

Protein relative abundance was estimated using the spectral
count method, which reflects the ratio of all matching MS/MS
spectra above the specified statistical filter for any given
protein per fraction (Liu et al, 2004). This technique was
shown to be linear over at least two orders of magnitude
(Liu et al, 2004). Furthermore, Washburn and colleagues
(Zybailov et al, 2005) have shown that the spectral counts
quantitative method performed as well or better than stable
isotope labeling-based quantitation methods when determin-
ing relative change calls. This method, however, was not
useful for the calculation of absolute protein abundance. As we
wished to detect the relative changes of protein expression as a
function of developmental time, absolute protein abundance is
not necessary and the spectral counting method is sufficient.

Cluster analysis of protein expression data

Two-dimensional hierarchical clustering of the entire data set
(Figure 1) resolved the proteins back to their organelle(s) of
origin. There was a statistically higher overlap of identified
proteins in adjacent chronological time points (data not

shown). This was observed strongest in the cytosolic fraction,
where the embryonic fractions grouped away from the postnatal
fractions (Figure 1). The nuclear and mitochondrial fractions
also show some separation of the early embryonic from later
embryonic and postnatal time points, although to a lesser
degree. These trends imply that the protein data have captured
cell biological and developmental relationships. Consistent with
this, we also observed statistically significant enrichment of
proteins with Gene Ontology (GO) functional and cellular
location terms specific to each of the three subcellular
compartments (Figure 1; Table I and Supplementary Table II).

The lung contains many specialized cellular structures such
as microvilli and cilia, as well as several subcellular structures
such as lamellar bodies and secretory vacuoles (Ten Have-
Opbroek, 1991). The fractionation conditions utilized here will
not separate these structures specifically and the detection of
their component proteins will be suboptimal. Nevertheless, we
do detect proteins such as ciliary dynein heavy chain 5 and 7
and subunits of vaculolar ATP synthase (subunits A, B, D and
G), the retromer complex (Vps29 and Vps35) and the ESCRT-II
complex (Vps36). This suggests that protein components of
these specialized structures should be detectable if more
optimized fractionation protocols are used.

Proteomics as a predictor of cellular location
by KNN

Large-scale proteomics experiments that employ cellular
fractionation can be used to annotate proteins to cellular

Figure 1 Double hierarchical cluster of all protein expression and subcellular fractions over six time points of lung development. Proteins are clustered along the
horizontal axis with time point subcellular fractions along the vertical. Protein data are scaled as arcsine(H) in yellow, with black representing no data measured.
Unguided double hierarchical clustering grouped subcellular fractions together in subclusters. Within the organelle subcluster, the developmental stages were generally
separated into early and later developmental time points. This figure shows that both cellular and developmental information are captured by protein profiling. Clustering
parameters were average linkage using an uncentered correlation similarity metric.
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locations (Foster et al, 2006; Kislinger et al, 2006). Similar
to our previous work, nearly two-thirds (2100/3336) of
the proteins were uniquely identified to single sub-
cellular fractions (Supplementary Figure 1). We next employed
machine learning to assign a probability score that a protein’s
observed subcellular location was the correct location.

We have previously shown the utility of K-nearest neighbor
(KNN) machine learning as a method for refined prediction of
protein subcellular localization (Kislinger et al, 2006). In our
current study, we used a Dense KNN derivative (Liu et al,
2003) since it exhibited better performance (data not shown).
The following three sets of data were required for this analysis:
a training set with positive and negative examples of the
desired outcome (e.g. known nuclear localized proteins), a test
set with positive and negative examples that had not been
used for training and the prediction set of the unknowns to
be determined. For each subcellular fraction, independent
training (total set size was 860 proteins, with 358 cytosolic
positives, 187 mitochondrion positives and 315 nuclear
positives) and test data sets were generated using SwissProt/
TREMBL (SP) annotation current as of Uniprot release 7.0
(Supplementary Table III). A summary of set sizes is displayed
in Table II. As these sets are not balanced, having more

negative than positive examples, we used a 10-fold cross-
validation procedure to ensure there was no bias during
training. We used area under the curve (AUC) to derive the
optimal value of K, which proved to be 15 for the KNN learner
in all training sets (data not shown).

Receiver operator characteristic (ROC) curves for the
training sets showed a high degree of specificity and sensitivity
(Supplementary Figure 2). The specificity, sensitivity and
precision were calculated by a confusion matrix (Lu et al,
2004b). Across all compartments, the mean sensitivity
was 0.82 (varying from 0.75 to 0.91), precision was 0.84
(0.83–0.86) and specificity was 0.94 (0.92–0.95). To gauge the
robustness of these predictions, we used a set of proteins with
GO cellular location terms for cytosol, mitochondria and
nucleus that did not have established SP localization terms as
the test set. The ROC curves for the test data set are displayed
along with the training ROC curves (Supplementary Figure 2)
and were largely comparable, even considering the different
annotation sources of the training and test data sets. The entire
data set, along with spectral counts, predicted localizations
and SP and GO annotations is provided in Supplementary
Table IV, whereas a summary is provided in Table II.

Of the 2230 proteins in the prediction set, nearly 60% (1288)
had predictions with 475% confidence; among these, nearly
80% (1001) represented novel localizations as they lacked
relevant GO and SP annotations. Setting the prediction at
a threshold of 75%, we then clustered the complete set
of protein fractions along with the putative SP and GO
annotations and our predictions for visual inspection. Good
overall agreement was apparent in the resulting clustergram
(Figure 2). Interesting patterns were also observed after
clustering even with those proteins with lower confidence
predictions (Figure 2), such as a large group of mitochondria-
localized proteins. Closer inspection of this cluster indicated
that the majority of these proteins occurred at a single
time point of the mitochondrial fractions and that they were
likewise coenriched with plasma membrane, ER, Golgi, as well
as many extracellular/secreted proteins.

As a further test of these predictions, we constructed and
sequence confirmed 12 expression plasmids with C-terminal
fusions to GFP, consisting of five nuclear, five mitochondrial
and two cytosolic predicted localized proteins. Each of these
proteins had a prediction greater than 75% and had no
literature confirmation of their cellular location by direct
in vivo or in vitro analysis. The plasmids were transfected into
human embryonic kidney cells (293T) cells and imaged 24 h
post infection by spinning disk confocal microscopy. Hoechst

Table I Enrichment of gene ontology terms to proteins clusters

Number P-value GO ID Term

Enriched to nuclear fraction
469 0 5634 Nucleus
224 0 6351 Transcription, DNA dependent
65 0 6325 Establishment and/or

maintenance of chromatin architecture
40 0 5681 Spliceosome complex
34 0 6281 DNA repair

Enriched to mitochondrial fraction
221 0 5739 Mitochondrion
65 0 6118 Electron transport
36 0.0001 5795 Golgi stack
34 0 5759 Mitochondrial matrix
32 0 5743 Mitochondrial inner membrane
30 0 6631 Fatty acid metabolism
16 0.0001 5789 Endoplasmic reticulum membrane

Enriched to cytsolic fraction
106 0.0013 5856 Cytoskeleton
102 0 5829 Cytosol
34 0 6512 Ubiquitin cycle
31 0 502 Proteasome complex (sensu Eukaryota)
25 0.0183 7264 Small GTPase-mediated signal transduction

Table II Summary of KNN prediction for subcellular location

Fraction Total number of
traininga

Number of training predicted
40.75a

% Number predicted
40.75a

% Number of novel
predictionsb

%

Cytosol 358 224 63 511 23 455 24
Mitochondrion 187 142 76 238 11 180 10
Nucleus 315 248 79 539 24 366 19
Total 860 614 71 1288 58 1001 53
Number no prediction 245 28 942 42 889 47

aExcludes 148 proteins with annotation to cytosol and nucleus or mitochondrion.
bExcludes all test set proteins with GO annotation for any of the three fractions.
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and Mito Tracker dye were used as a counter stain and to
assess colocalization (Figure 3). Three of five nuclear, three
of five of mitochondrial and both cytosolic proteins localized
to the predicted organelle. Interestingly, each of the three
nuclear proteins clearly labeled different regions of the nucleus
indicating that we have sampled a range of sub-organellar
compartments.

Integration with public genome-scale data sets

The integration of multiple large-scale data sets could be used
to mine information for hypothesis building. Three large-scale
data sets in particular are the mutant phenotype data from
Jackson Laboratories Informatics (www.informatics.jax.org),
protein interaction networks from OPHID (Brown and Jurisica,
2005) and mRNA profiles of lung development (Mariani et al,
2002).

Mutant phenotypes data

The Jackson Labs Informatics group maintains an up-to-date
database of all published mouse mutant lines and scores their
phenotypes with hierarchically related annotation terms
similar to the framework used by GO. We cross-referenced
our protein data to the list of mutant lines and annotated
a number of genes with known lung mutant phenotypes.
The phenotypes did not generally correlate with the putative
organellar localization of the detected proteins (data not

shown, Supplementary Table V). For example, broad terms
such as ‘abnormal lung morphology’ were found to span
proteins from all three subcellular factions (Supplementary
Table V). Similarly, there was little correlation for time and
phenotype as many genes expressed throughout development
of the lung are critical to development at different stages.
Therefore, by assessing the coexpression of known interacting
partners of these proteins with known mutant phenotypes, we
thought it possible to uncover connections between these
seemingly unrelated proteins.

Protein interaction networks

Examination of protein interaction networks may make it
possible to predict the participation of other physically
interacting proteins in developmental pathways based on
spatial-temporal coexpression. To investigate this, we exam-
ined a set of 10 proteins identified in this study known to
have the phenotype ‘abnormal alveolar morphology’: ADA_
MOUSE, CD81_MOUSE, DHI1_MOUSE, G3BP_MOUSE,
PRDX6_MOUSE, FBLN5_MOUSE, PSPC_MOUSE, MO4L1_
MOUSE, CO2A1_MOUSE and EGFR_MOUSE. An interaction
map based on the human homologues of these 10 proteins in
the OPHID database (http://ophid.utoronto.ca) (Brown and
Jurisica, 2005) (see Materials and methods) returned a list of
161 known interactions for ADA_MOUSE, CD81_MOUSE,
G3BP_MOUSE and EGFR_MOUSE, whereas the remaining
proteins had no known interactions in the database. The

Figure 2 Protein distributions in subcellular fractions are predictive of protein subcellular location in vivo. Shown is the same double hierarchical plot as in Figure 1,
with subcellular location annotation for nucleus, cytosol and mitochondria from SwissProt (SP) and GO. Also shown are the predictions (P40.75) of K-nearest
neighbors machine learning on SP annotations. All predictions less than 75% are black. Note the high degree of correspondence between the subcellular fractions
protein abundance, annotations and predictions.
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interactions were then filtered for those proteins likewise
detected in our proteomic screening, revealing a highly
interconnected map of 46 proteins linking three of the alveoli
phenotype gene products (CD81_MOUSE, G3BP_MOUSE
and EGFR_MOUSE) (Figure 4). Consistent with the biological
significance of this network, both EGFR and G3BP mutants
have similar strain-dependent alveolar phenotypes, support-
ing the functionality of the inferred link between them through
their interacting partners (Threadgill et al, 1995; Zekri et al,

2005). G3bp is linked to Egfr via Paxi (paxillin) and Tln1
(talin-1), both of which are involved in focal adhesion
complexes, suggesting that this structure may be involved in
alveologenesis.

Correlation of protein and microarray data

Microarray studies have shown the process of development to
involve highly dynamic gene regulation. Two microarray data

Figure 3 Colocalization of GFP fusions of predicted localized proteins. Protein fusions with GFP expressed in 293T cells imaged with spinning disk confocal
microscopy. Left column is the GFP channel (green), center column is the merge of Hoechst (blue) and MitoTracker CMXRos dye (red), with the nuclei and mitochondria
labeled respectively, and the right panel is the merged image. In all cases, clear colocalization of predicted compartment is observed. Note the variety of localization
patterns in the nucleus, indicating that a range of nuclear proteins were identified and tested.
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sets have shown this to be the case for lung development
(Mariani et al, 2002; Bonner et al, 2003). The data set from
the study published by You and co-workers (Bonner et al,
2003) has not been made publicly available and will not
be considered in this paper. Conversely, Mariani et al (2002)
released a complete data set covering 12 time points in mouse
lung development recorded using the Affymetrix Mu11K A and
B chip sets, allowing a high-resolution view of the temporal
control of transcription during embryonic to prenatal lung
organogenesis on through adulthood.

To ascertain the relationship between transcription and
translation during lung development, we mapped (see
Materials and methods) our protein data set against the
lung development microarray data of Mariani et al (2002). A
set of 1383 protein probe pairs were generated, with protein
levels monitored by spectral counts across each time point and
organelle, while mRNA levels were likewise estimated based
on probe intensity (Supplementary Table VI). The combined
data set was then clustered based on the gene expression
patterns so as to reveal the overall degree of correlation as well
as clusters of discordance in the global expression patterns
(Supplementary Figure 3).

Previous correlation analyses of protein and mRNA,
represented by either microarray or SAGE data, utilized simple
Pearson or Spearman correlation (Gygi et al, 1999; Griffin et al,
2002). Although these simpler methods revealed correlated
gene product relationships, they lacked a robust noise model
or method for determination of confidence of the correlation.

We opted, instead, for a probabilistic approach to model the
relationship between protein and mRNA (Kislinger et al,
2006). This has the advantage of treating the microarray data
with a Gaussian noise model and the protein data as a Poisson
distribution. As equivalent data points are required for the
correlation analysis, we created a table of protein data with all
cell fraction data summed for each time point and paired this
with microarray data that matched these time points. The
strength of the relationship between microarray and protein
data was determined and assigned a correlation score, while a
confidence score (P-value) was assigned by permutation
testing of randomized data. This allowed division of the data
into significantly (or insignificantly) correlating (‘inliers’) and
non-correlating (‘outliers’) gene product pairs.

Of the 1383 protein microarray data pairs, 643 were deemed
to be significant inliers, 30 were called significant outliers, 699
as insignificant inliers and 11 as insignificant outliers (Figures
5A–D and Supplementary Table VI). For the significant inliers,
we used K-means clustering (where K¼7 was based on a figure
of merit calculation; Yeung et al, 2001) to reveal correlated
subgroups exhibiting no apparent change in expression or
with dynamically changing expression levels from E13.5 to
adult (Figure 5A). We next examined these clusters for
evidence of functional coherence based on enrichment for
common GO functional terms (Figure 5A). For example, a
cluster of protein/mRNA pairs with correlated decreasing
expression, Cluster 4 (Figure 5A), was enriched in genes asso-
ciated with DNA replication, chromosome organization, and

Figure 4 Proteins with similar phenotypes when deleted in vivo form a highly interconnected protein interaction network. Shown is the protein–protein interaction
network of four proteins all annotated to have abnormal alveoli when deleted in vivo. Only proteins identified in this study are shown in the interaction network. The four
nucleating proteins are all ovals, whereas interactions are shown as circles. Lines connect proteins with annotated interactions based on data deposited at OPHID. Note
that three of the four form a connected network of proteins, possibly explaining their common alveolar phenotype.
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biogenesis (Po0.01 in all cases), genes that are critical to
tissue and cellular development and differentiation (Supple-
mentary Table VII). A cluster with relatively constant high
expression, Cluster 7 (Figure 5A), was enriched in components
of the ribosome and general metabolic/catabolic processes
such as glycolysis (Po0.01 in all cases), as might be expected
for housekeeping enzymes required for cellular homeostasis
and growth (Supplementary Table VIII).

Does poor correlation reflect post-transcriptional/
post-translational control?

We identified a small significant outlier group, wherein the
transcript and protein levels were statistically discordant.
Many of these outliers showed clear peaks of protein
expression from E18 to P2, whereas the corresponding mRNA
peaked much earlier at E14 and E16. This would suggest that
there is extensive temporal lag in the translation of some
mRNAs or accumulation of significant protein.

The insignificant inliers were subclustered by K means
(K¼5, based on figure of merit calculation), which revealed
highly regular mRNA expression but seemingly divergent
protein profiles (Figure 5B). Although not statistically coher-
ent, this group was nevertheless found to be enriched for
mitochondrial proteins, which have previously been shown to
have poor correlation at the mRNA level (Mootha et al, 2003;
Kislinger et al, 2006). Also detected were numerous membrane
proteins associated with the broad GO term establishment of
localization, such as components of the clathrin coat adapter
complex, which can be explained at least in part by biased,

incomplete proteomic coverage analysis of components
associated with the membrane and cytoskeletal systems.

Proteomic analysis of Nmyc mutant lungs

Mice homozygous for a null allele of Nmyc die mid-gestation,
precluding simple analysis of its molecular function during the
late stages of lung development (Sawai et al, 1991; Charron
et al, 1992). However, Nmyc is essential for normal lung
formation as pups homozygous for a hypomorphic allele fail to
breath and die in the early postnatal period (Moens et al, 1992,
1993). In this allele, the neomycin resistance gene was inserted
into the first intron of N-myc with a splice accepter, in such a
way that alternative splicing around this insertion resulted in
the generation of a normal N-myc transcript in addition to a
mutant truncated transcript. The lungs form these mice
exhibited reduced branching and were smaller than wild-
type or heterozygous littermates (Moens et al, 1992, 1993).
Moreover, a conditional deletion of the gene in lung epithelium
produces a profound lung phenotype, resulting in large sac like
structures with a thin mesenchyme (Okubo et al, 2005).

For this study, pups derived from crosses of mice hetero-
zygous for the hypomorphic Mycntm1Jrt allele (back crossed
onto ICR mice for several generations and herein referred to as
Nmyc9a) were surgically delivered at E18.5. The pups were
scored for color and rhythmic breathing, since homozygous
Nmyc9a mutants fail to breathe properly. Pups that failed to
breathe and quickly became listless were killed and their lungs
removed for proteomic analysis and tail clipping taken for PCR
genotyping. Enough material was collected to perform three
technical replicate MudPIT analyses of cytosolic and nuclear

Figure 5 Correlation analysis of protein and microarray data for lung developmental time course. Math modeling identified four subsets in the data sets: (A) significant
inliers, (B) insignificant inliers, (C) insignificant outliers and (D) significant outliers. Whereas inlier denotes a positive correlation score, outliers denote a negative
correlation score and significant indicates that the correlation is statistically different from the background (noise) model, whereas insignificant is not. Each subset was
then either clustered by K-means (A, B) or simply visualized due to the lower information content. Note that the significant inliers contains many clear patterns of dynamic
gene expression and those with static expression throughout development. The significant outliers shows several genes with off set protein and mRNA expression,
where the mRNA increases before the protein.
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fractions and two repeat runs of the mitochondrial fraction. As
a wild-type control we compared the Nmyc9a protein profiles
with our lung development protein data set. To equalize the
mutant and wild-type data sets, further experimental repli-
cates of the nuclear and cytosolic fractions for healthy normal
E18.5 lungs from normal ICR crosses (i.e. identical to those
used to profile normal development) were analyzed. These
data were merged with the original E18.5 duplicates from the
developmental profile and the added replicates correlated well
with the previous replicates in both cell fractions (data not
shown).

Slightly more proteins were identified in the wild-type
lungs (1808) versus the Nmyc9a lungs (1509) (Supplementary
Figure 4A), presumably due to perturbed, development in the
mutant. Overall, 882 proteins were uniquely identified in wild-
type lungs and 500 in Nmyc9a lungs (Supplementary Figure
4A). The nuclear fraction of wild-type lungs had the largest
discrepancy as compared with Nmyc9a lungs (443 versus
126 uniquely identified proteins) (Supplementary Figure 4A).
This data set is deposited at GEO under the series GSE6108.

Characterization of error in protein abundance
by spectral counts

Before assessing the apparent differences in relative levels of
protein abundance between the Nmyc9a and wild-type lungs,
we performed an analysis of the normal distribution of ratios
of spectral counts for replicates to assign a background error
model for spurious variance in quantitation (see Materials and
methods). As represented graphically in Supplementary Figure
4B, we determined that a fold expression ratio of greater than
three-fold up or down explains most of the residual variance
(B90% of the proteins are within this level of reproducibility),
irrespective of the spectral count intensity, indicating that even
potentially lower abundance proteins (low spectral counts) are
amenable to accurate determination of differential expression.
We calculated the relative levels of those proteins detected in
either Nmyc9a or wild-type at E18.5 in at least two of three
replicates of the cytosolic and nuclear fractions, and in two of
two of the mitochondrial samples.

Altered expression of proteins in Nmyc9a lungs

Of the 700 proteins quantified between Nmyc9a and wild-type
lungs, 170 proteins showed significantly (4three-fold) in-
creased expression in Nmyc9a lungs, including 77 that were
only detected in Nmyc9a, whereas 182 had decreased
expression (o0.33-fold), of which 42 were not detected in
Nmyc9a (Supplementary Figure 4C; Supplementary Table IX).
The overall distribution of spectral counts recorded for the
quantified group of proteins had a similar profile to the entire
data set (Supplementary Figure 4D).

A comparison of the proteins with increased or decreased
expression with wild-type mice was made against the entire
developmental protein profiling data set. Of 315 proteins
differentially regulated (37 proteins were not observed in the
developmental data set), nearly 60% were found to be
localized to the cytosol, over 23% to the nuclear and 17% to
the mitochondrial fractions. The majority of proteins with

decreased expression in Nmyc9a lungs were proteins with
constitutive expression profiles when compared with our lung
development data set (Supplementary Figure 4E). These
proteins were enriched for GO molecular functional terms
such as mRNA splicing and mRNA transport (Po0.01).
Conversely, the majority of proteins with increased expression
in Nmyc9a lungs were proteins with dynamic expression
profiles when compared with our lung development data set
(Supplementary Figure 4F). These proteins were enriched for
GO molecular function terms such as cell adhesion and
anatomical structure development (Po0.01).

Microarray analysis of Nmyc9a mutant lungs

To allow for a comparison of the protein data with
corresponding mRNA patterns, total RNA was isolated from
six mutant Nmyc9a lungs and six wild-type control lungs at
E18.5 and submitted for microarray expression analysis by
Affymetrix MOE430v2 chip (deposited at GEO, GSE6079). To
facilitate identifying possible direct targets genes of Nmyc, we
utilized another previously published microarray data set of
stage-matched lungs misexpressing Nmyc under the human
lung surfactant protein C promoter (SftpC-Nmyc) (Okubo et al,
2005) (GEO, GSE6077). In total, 441 proteins could be paired
with 1217 probe sets from both the Affymetrix MOE430 v2 chip
and the MOE430A chip (Supplementary Table X), allowing a
three-way comparison. Within this set, 257 proteins (paired to
451 probe sets) displayed differential mRNA and/or protein
abundance in either one or both of the loss- and gain-of-
function Nmyc mutants (Supplementary Table X).

Gene products wherein both the mRNA and protein
exhibited depressed expression in Nmyc9a lungs but increased
levels in SftpC-Nmyc lungs are strong candidates for being
direct targets of Nmyc transcriptional regulation. Conversely,
as Nmyc has also been reported to function as a transcriptional
repressor, we also looked for mRNA and protein showing
increased abundance in the Nmyc9a allele and decreased
mRNA in the SftpC-Nmyc lungs. This coordinate mining of
expression profiles revealed a list of 63 positive and one
negative potential targets of Nmyc regulation.

The positively regulated list was highly enriched (Po0.001)
in gene products associated with mRNA metabolism, includ-
ing splicing, nuclear export and localization, and contained
nucleolin and lactate dehydrogenase (Ldh), which are both
known targets of Nmyc (Patel et al, 2004), suggesting that the
other members in this group are genuine. The negatively
regulated target was spectrin beta 2.

It was noted that one of the redundant probe sets for
nucleolin showed a decrease in expression in the Nmyc9a
lungs, although it did not test as significant by the Affymetrix
statistical change call. However, the protein did show a
significant change in expression as did the same probe set in
SftpC-Nmyc lungs. We extended our mining to include those
with increased or decreased mRNA expression in Nmyc9a
lungs, even if it did not test as significant, as long as there was a
significant change in the Nmyc9a protein or SftpC-Nmyc
mRNA. The rationale is that the hypomorphic Nmyc9a
allele may not necessarily induce as robust a change in gene
regulation as observed with a null allele. This extended mining
strategy revealed a further 22 potentially positively regulated
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genes and four more potentially negatively regulated genes.
The combined results from the initial and extended mining
strategy are all displayed in Supplementary Table XI. The
potentially directly regulated data set is graphically displayed
as a heat map of mRNA or protein ratios (Figure 6). More
complex regulatory patterns were suggested by hierarchical
clustering of all the significantly differentially regulated gene
products detected in all the data sets (data not shown;
Supplementary Table X). This second positively regulated set
contained Nmyc downstream-regulated gene 1 (Ndrg1) and
was also significantly enriched in mRNA processing gene
products (Po0.01). Intriguingly, one positively regulated gene,
hepatoma-derived growth factor (Hdgf), was detected in the
cytoplasm of both Nymc9a and wild-type lungs, while nuclear
localized Hdgf was only detected in the wild-type lung. Hdgf
has been shown to be cytoplasmic and to translocate to the
nucleus where it can activate cell growth (Kishima et al, 2002).
The potentially negatively regulated data set included insulin-
like growth factor 2 receptor (Igf2r), mannose receptor C type 2
(Mrc2) and signal transducer and activator of transcription 3
(Stat3).

Discussion

Data mining can lead to genes with developmental
roles

As more large-scale microarray, and increasingly, protein data
sets are assembled and published, there is a growing resource
of information on lung development. A common criticism of
large-scale screens is that they lack a hypothesis or are overly
broad in scope. However, by combining resources, one is able
to ask focused questions of the data sets and select promising

candidate genes for mechanistic studies. We have presented
several examples throughout this work, including comparison
of protein and mRNA profiles and protein interaction
databases.

Machine learning was able to learn the profiles of known
nuclear, mitochondrial and cytosolic localized proteins and
calculate probabilities for proteins with no cellular location
annotation. Expression of GFP fusions of proteins with novel
cellular location prediction held up in the majority of cases
(eight of 12 fusion proteins expressed) when expressed in 293T
cells. Aside from failure of the KNN algorithm prediction,
failure of the protein to localize as predicted could be due to
the differences in the in vivo cellular environment of lungs
versus in vitro cell culture. As well, the presence of GFP on the
C-terminus may affect the ability of the proteins to be properly
localized.

In an examination of the interaction partners of lung
proteins with known alveolar developmental phenotypes, we
were able to link three into an interaction cluster. In this
analysis, G3bp was found to be linked to Paxi (paxillin) and
Tln1 (talin-1), both of which are involved in focal adhesion
complex linking the cytoskeleton and plasma membrane
as well as responding to signaling environments. Paxi and
Tln1 interact with integrin alpha 5 (Ita5) and Tenascin (Tena)
linking them to Egfr. Null mutations of either paxillin or talin-1
result in early embryonic lethality: talin-1-null embryos have
an earlier phenotype at gastrulation (Monkley et al, 2000),
whereas paxillin-null embryos exhibit a later phenotype with
absent hearts and abnormal somites (Hagel et al, 2002). For
this reason, the role of talin-1 or paxillin in alveologenesis is as
yet unexplored, but perhaps by use of conditional alleles of
paxillin or talin-1 their function in alveologenesis may be
uncovered. Nevertheless, our data suggest a possible role for
G3bp regulation of the focal adhesion complex in the
development of the alveolar structures. The focal adhesion
complex is also involved in vascular development and it is
possible that the observed protein expression is derived from
the lung vascular tissue; however, there is a tight association
with vascular and alveolar development and a defect in either
can affect the other.

Dynamic gene regulation during development

With so much expression data at hand, we could examine the
relationship between the mRNA and corresponding protein
levels. In our current analysis, the microarray data set was
generated on an older chip containing fewer probe sets
(B11000 compared with the current Affymetrix MOE430 2
chip with B40 000) such that there were many proteins with
no corresponding mRNA probe set. There are several caveats
to this analysis. First, mammalian genes are often differen-
tially spliced to produce specific variants, which can confound
attempts to map to the cognate protein product. It is also
possible that differences are a reflection of variables in the
genetic background of the mice used for this study and those
for the microarray. Despite these caveats, there were still over
1300 pairs of gene products with sufficient information for
correlative analysis.

After taking into account the reliability of the experimental
measurements, we were able to cross-compare the protein and

Figure 6 mRNA and protein regulation in Nmyc loss- and gain-of-function
mutant E18.5 lungs. Combined protein and microarray that tested as being
significantly regulated was separated into direct and indirect classes based on
the expected profiles of positive, where both transcript and protein are reduced in
the loss of function mutant and the transcript is increased in the gain of function
mutant and negative, with the opposite profile to positive. Based on these
profiles, 90 protein microarray pairs were extracted and are organized with
the potential positive targets followed by the four negative targets at the bottom of
the figure.
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microarray patterns using a more robust statistical modeling
method. The high-confidence correlated gene product group
(significant inliers) revealed subgroups exhibiting either
dynamic or stable expression profiles during lung organo-
genesis enriched with anticipated gene products. The more
interesting groups of gene products were the non-correlating
groups as these may be enriched for genes that undergo post-
transcriptional or post-translational control. We note several
data pairs that appear to have a delayed translation; however,
it is not possible without further experimental evidence to
conclude if this is a post-translational or post-transcriptional
mechanism.

In the list of insignificant correlating pairs, we note many
groups of proteins enrich to general terms such as localization,
metabolism and mitochondria. Mitochondrial proteins have
been shown by us and others to have a poor correlation to
mRNA levels, and there is evidence that the mitochondrial
localized protein cytochrome c is under post-transcriptional
control (Kawai et al, 2006). It will be difficult to further test
post-transcriptional or post-translational events in our data
sets due to the use of in vivo tissue. The treatment of tissue
in vivo with transcription and translation inhibitors to test
rates of production and turnover of mRNA and protein would
be difficult. It may be possible to substitute a cell-based system
or organ culture system, but the behavior of mRNA and protein
regulation in vitro may not faithfully recapitulate in vivo
dynamics.

Other model organisms such as Drosophila have many
genes known to be regulated at the post-transcriptional and
post-translational levels (reviewed in Lipshitz and Smibert,
2000). Future studies in these model systems may help
establish better mathematical models, which are needed
to facilitate prediction of post-transcriptional or post-
translational control mechanisms from combined proteomics
and microarray data.

Differential expression of proteins in Nmyc mutant
lungs

The ability to test the developmental role of a gene by loss and
gain of function mutants is a powerful tool. It is therefore
of great value to have the ability to measure the molecular
changes in protein and transcript expression to more fully
characterize the biochemical function of a gene in develop-
ment. We used the available gain- and loss-of-function alleles
of the transcription factor Nmyc to study its role in lung
development in great molecular detail. Nmyc is a basic helix–
loop–helix leucine-zipper transcription factor known to
function as a transcriptional activator and a repressor (Cole
and McMahon, 1999; Patel et al, 2004). Nmyc has been noted
to be overexpressed in many cancer cell types and to confer a
selective advantage for rates of cell division when over-
expressed (Brodeur et al, 1985; Schwab et al, 1985). Mice
homozygous for null alleles of Nmyc die in early gestation,
while a hypomorphic allele has been shown to cause a severe
lung phenotype (Sawai et al, 1991; Charron et al, 1992; Moens
et al, 1992, 1993). Recently, a conditional allele of Nmyc
has been used to completely delete it from the lung epithelium,
revealing an even stronger phenotype in the lung (Okubo et al,

2005). Misexpression of Nmyc with the SftpC promoter has
revealed a role in maintaining the undifferentiated state of
multipotent epithelial progenitor cells (Okubo et al, 2005).

By combining the complementary hypomorphic and mis-
expression microarray data sets and the protein data of the
hypomorphic allele, we mined gene products with opposite
regulation in the two different Nmyc genotypes compared with
wild-type. This data set included several known direct
targets of Nmyc regulation and is now a great source for
future studies involving transcription factor motif identifica-
tion and chromatin immunoprecipitation. Of the potential
positive targets of Nmyc, we noted some correspondence to
previously described target proteins involved in ribosome
biogenesis, protein synthesis and DNA replication (Boon et al,
2001) and reviewed in Patel et al (2004), including Nucleolin
(Murakami et al, 1991a, b). Nmyc has also been shown to
regulate genes involved in the cell cycle (Boon et al, 2001;
Okubo et al, 2005).

We have observed a large number of gene products that
are potentially positively regulated targets of Nmyc. These
gene products were enriched in mRNA processing factors that
spanned a wide range of activities. For example, there were
two ATP-dependent helicases, four factors annotated as
involved in mRNA splicing, one suggested to be involved
in the regulation of the U4/U6�U5 tri-snRNP complex, one
potential translation elongation factor and two potential
mRNA nuclear export factors. The exact role of these factors
cannot be discerned as many have only electronic annotation
based on the presence of protein domains with associated
functions, such as RNA binding motifs. These novel mRNA
processing factors may regulate a specific subset of mRNAs
and may not be part of the general splicing/translation
machinery. It will be of great interest to further characterize
and identify the targets of these mRNA processing factors.

Our data suggest that Nmyc maintains the undifferentiated
state of the distal epithelial cells of the lung not by
directly regulating other multipotentcy genes but largely
through the positive regulation of the mRNA processing
factors that may maintain the active translation and splicing
of multipotentcy genes. This is partially supported by our
observation that proteins with an increased expression in
Nmyc9a were enriched for structural and cell adhesion
functions that are typically more robustly expressed at later
stages in development or in association with mature differ-
entiated cell types.

We also identified a small number of potential negative
targets of Nmyc regulation with a variety of functions. One
target was Stat3, a TF often activated in a variety of human
cancers, including lung (reviewed in Bromberg, 2002),
although previous specific deletion of Stat3 in the lung epithe-
lium resulted in no obvious developmental defect (Hokuto
et al, 2004). Igf2r also appeared to be negatively regulated.
Igf2r is a negative regulator of Igf2 signaling and embryos with
a null mutation in Igf2r are 30% larger and present defects
in alveologenesis, a process which generates terminally
differentiated epithelial cell types (Wang et al, 1994). Igf2r
is an imprinted gene (Barlow et al, 1991), regulated by
the expression of the non-coding transcript Air (Sleutels et al,
2002). The question of whether Nmyc has a role on the
imprinting status of Igf2r may be interesting to investigate
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in future work. Mrc2, which also appears negatively regulated,
is involved in regulation of extracellular matrix, specifically
collagen (East et al, 2003) and matrix metalloproteinases
(Engelholm et al, 2001). ECM remodeling is a process that is
dynamically regulated during lung development (reviewed in
Suki et al, 2005) and is correlated with regulation of cell
signaling environments and cell differentiation.

In conclusion, Nmyc appears to play a role in regulating the
environment of the undifferentiated epithelium. Internally
Nmyc may positively regulate many novel mRNA processing
factors, ranging from splicing, nuclear export and translation
elongation factors. Nmyc may also negatively regulate a
suppressor of Igf2 signaling and the deposition of collagen and
secretion of MMP involved in ECM remodeling.

Improvements to detection limits and sample
preparation enable analysis of embryonic tissues

Although the basic MudPIT procedure has undergone sub-
stantive improvements in terms of instrumentation, analytical
methodologies and analysis algorithms, the procedure still
does not achieve the apparent detection sensitivity or coverage
reported for DNA microarray technologies. Nevertheless, it
has still afforded an in-depth probing of the proteome of
mammalian tissue systems (Washburn et al, 2001; Florens
et al, 2002; Koller et al, 2002). Using high-throughput
screening techniques such as tandem MS, a biological system
like lung can potentially be interrogated to identify its core
components and their respective interactions and modifica-
tions (Washburn et al, 2001; Wolters et al, 2001; Ballif et al,
2004).

The application of proteomics to developmental biology
presents several critical challenges, however. The first
issue pertains to the often limiting amounts of material that
can be gathered for proteomic analysis. In our case, this
limited our MudPIT analysis to only two technical replicates,
which, although below the theoretical saturation of detec-
tion, putatively achieve 475% coverage of the detectable
proteome. This imposes constraints on the analysis of the
data. Reassuringly, the majority of the protein profiles
were not deemed to be statistically uncorrelated with the
corresponding mRNA transcript levels as measured by
microarray.

Another challenge is the accurate assessment of changes in
protein abundance over time. The use of spectral counting as a
means to measure relative protein levels between samples
appears to have worked well in this study. With the
development of more sensitive techniques and instrumenta-
tion, it should be possible to increase our sampling efficiency
and overall confidence in protein quantitation for small sample
sizes.

Materials and methods

Mouse tissues

Mouse tissues were derived from ICR timed mated mice. Timing of
conception was designated by assigning noon of the day of plug
formation as day 0.5. Pregnant animals were killed and uteri dissected
to obtain individual embryos from which lung tissue was derived. A
minimum of 0.5 g or more lung tissue was used in all cases, which

required approximately 50 pairs of lungs at E13.5, 24 at E16.5 and at
later stages, we homogenized lungs from a minimum of two litters
(B24 pairs of lungs) but isolated protein extracts from an aliquot of the
homogenate equivalent to 4 g of lung tissue. Protein extracts were
made form four separate isolations of lung tissues. Nmyc9a mice back
crossed to ICR and heterozygous for the hypomorphic allele were
timed mated and litters delivered on day 18.5. The uterus was removed
and the pups dissected from the uterus. The yolk sac and amnion were
carefully removed. The placental vein and artery were left intact while
the pup was dried with Kim wipes, then they were cut and the pups
moved under a heat lamp for warmth. The pups’ mouths and noses
were frequently blotted to remove any mucus that was expelled. They
were also gently rubbed to stimulate breathing. After 30 min, pups that
had failed to breath or had become listless were killed, a tail clipping
removed for genotyping as described in Moens et al (1992) and lungs
removed and processed for protein. Geneotyping was performed using
the following primer pairs: for Nmyc wild-type allele NmycA GGTAGT
CGC GCT AGT AAG AGC and NmycB GGC GTG GGC AGC AGC TCA
AAC and for Nmyc9a hypomorphic allele NmycB and NmycC (neo)
GGA GAA CCT GCG TGC AAT CC. Lung samples were processed
individually into nuclear, mitochondria and cytosol fractions and
stored at �701C until confirmed by genotyping to be homozygous for
the mutant allele and then pooled before preparation for MS.

Tissue fractionation

The tissue fractionation was performed as described (Cox and Emili,
2006; Kislinger et al, 2006). Briefly, lung tissue was rinsed twice in ice-
cold phosphate-buffered saline and homogenized in ice-cold lysis
buffer containing 250 mM sucrose, 50 mM Tris–HCl (pH 7.4), 5 mM
MgCl2, 1 mM DDT and 1 mM PMSF using a tight fitting Teflon pestle.
The lysate was centrifuged in a bench-top centrifuge at 800 g for
15 min; the supernatant served as source for cytosol, mitochondria and
microsomes. The pellet, which contains the nuclei was rehomogenized
in lysis buffer and centrifuged as above. The nuclei were resuspended
in 2 M sucrose buffer (2 M sucrose, 50 mM Tris–HCl (pH 7.4), 5 mM
MgCl2, 1 mM DDTand 1 mM PMSF) and pelleted by ultracentrifugation
at 80 000 g in a SW40Ti (Beckman) for 35 min. Mitochondria were
isolated from the crude cytoplasmic fraction by bench-top centrifuga-
tion at 6000 g for 15 min. The mitochondrial pellet was washed and
pelleted twice in lysis buffer. The cytosolic fraction was obtained after
removal of the microsomal fraction by ultracentrifugation at 100 000 g
in a SW60Ti (Beckman) for 1 h.

Organelle protein extraction

Nuclear proteins were extracted by resuspending the isolated nuclei in
five volumes of 20 mM HEPES (pH 7.9), 1.5 mM MgCl2, 0.42 M NaCl,
0.2 mM EDTA, 0.1% Triton X-100 and 25% glycerol for 30 min with
gentle shaking at 41C. The nuclei were lysed by 10 passages through an
18-gauge needle and debris were removed by microcentrifugation at
13 000 r.p.m. The supernatant served as nuclear fraction. Mitochon-
drial proteins were isolated by incubating the mitochondria in a
hypotonic lysis buffer (10 mM HEPES, pH 7.9) for 30 min on ice, briefly
sonicated and debris pelleted at 13 000 r.p.m. for 30 min.

Protein digestion and MudPIT analysis

An aliquot of 150mg of total protein from each fraction was precipitated
overnight with five volumes of ice-cold acetone followed by
centrifugation at 13 000 r.p.m. for 20 min. The protein pellet was
solubilized in 8 M urea, 50 mM Tris–HCl (pH 8.5) and 1 mM DTT for 1 h
followed by carboxyamidomethylation with 5 mM iodoacetamide for
1 h at 371C. The samples were then diluted to 4 M urea with 100 mM
ammonium bicarbonate (pH 8.5) and digested overnight with
endoproteinase Lys-C at 371C. The next day, the mixture was further
diluted to 2 M urea with 50 mM ammonium bicarbonate (pH 8.5)
supplemented with CaCl2 to a final concentration of 1 mM and
incubated overnight with Porozyme trypsin beads at 301C with
rotation. The resulting peptide mixture was solid phase-extracted
with SPEC-Plus C18 cartridges according to the manufacture’s
instruction and stored at �701C.
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Mass spectrometry

A fully automated 12-cycle, 24 h MudPIT chromatographic procedure
was set up essentially as described previously (Washburn et al, 2001).
Briefly, an HPLC quaternary pump was interfaced with an LCQ DECA
XP ion trap tandem mass spectrometer (ThermoFinnigan, San Jose,
CA). A 100mm inner diameter fused silica capillary microcolumn
(Polymicro Technologies, Phoenix, AZ) was pulled to a fine tip using
a P-2000 laser puller (Sutter Instruments, Novato, CA) and packed
with 10 cm of 5-mm Zorbax Eclipse XDB-C18 resin (Agilent Technol-
ogies, Mississagua, Ontario, Canada) and then with 6 cm of
5-mm Partisphere strong cation exchange resin (Whatman). Samples
were loaded manually onto separate columns using a pressure vessel.
The chromatography was carried out as described by Wolters et al
(2001).

Protein identification and validation

The SEQUEST program (a kind gift from J Eng and J Yates III) was used
to search peptide spectra essentially as described previously using a
minimally redundant mouse/human protein sequence database (EBI
database) (Eng et al, 1994; Kislinger et al, 2003). The statistical
confidence of identified proteins was validated by the use of an in-
house algorithm (STATQUEST as described earlier; Kislinger et al,
2003).

Quantitative analysis and data clustering

The profiles were clustered based on the Spearman rank correlation
metric with average linkage using the freeware program Cluster 3.0
based on the original Cluster program (Eisen et al, 1998). Hierarchical
clustering was performed using average linkage and the uncentered
correlation metric. K-means clustering also used uncentered correla-
tion metric and K was determined by a figure of merit calculation
(Yeung et al, 2001). The resulting clusters were visualized in heat-map
format using Java TreeView based on the original TreeView (Eisen
et al, 1998). Spectral counts were normalized essentially as previously
described (Cox et al, 2005). Relative protein abundance was inferred
using the normalized spectral counts as a semiquantitative metric after
arcsine(H) transformation of the data. Arcsine(H) transformation has
the advantage over log transformation as zeros transform into zeros.
Further, for proteins with low spectral counts, statistically insignificant
changes in counts across experimental conditions can give a false
impression of large changes in expression levels when data has been
transformed as log ratios.

Cloning and expression of GFP fusions

Plasmids with cDNAs of interest were ordered as transformed bacterial
glycerol stocks from Open Biosystems (Pycr2, MMM1013-63668;
Ssu72, MMM1013-65805; Sltm, MMM1013-66003; 0710008K08Rik,
MMM1013-7513094; Serpina1b, MMM1013-7513091; A730098D12Rik,
MHS1010-9205573; Tfg, MMM1013-7510551; Echdc2, MMM1013-
7513730; Cyb5r3, MMM1013-7513899; Thrap3, EMM1002-8537;
BC018371, MMM1013-9200793; Rbm3, MMM1013-98478344). Primers
were designed to amplify the open reading frame from the ATG to the
last amino-acid codon, removing the stop codon. Restriction sites were
added to the primers to facilitate cloning into the GFP fusion vector
(pEGFP-N1, Clonetech). PCR was preformed with a high-fidelity PCR
kit (BD Biosciences, Advantage 2) and PCR products were TA cloned
into pCR2.1-TOPO vector (Invitrogen). Sequence verified clones were
then subcloned into the fusion vector and checked by restriction
digestion and PCR to verify the insert. 293T were plated 24 h before
transfection on to 35 mm glass bottom culture dishes (MatTek, P35G-0-
10-C) to achieve 50�80% confluence by the following day. Cell were
grown in DMEM (Gibco, 11960) supplemented with L-glutamine,
sodium pyruvate, penicillin, streptomycin and 10% fetal bovine
serum (Wisent, 080150, lot 11514). Approximately 1.5mg of a plasmid
containing a GFP fusion construct was transfected using FuGENE 6
(Roche, 11814443001) as per the product instructions. The cells were
cultured for a further 24 h before imaging. Approximately 30 min

before imaging the cells were labeled with 5ml Hoechst 33342 and
0.4 ml Mito Tracker Red CMXRos dye (Molecular Probes, I34154) The
cells were live imaged on a Zeiss Axiovert 200 M inverted microscope
fitted with a Volocity spinning disk confocal system. Channels were
sequentially scanned and collected for each fluorophore using a � 63
oil-immersion objective.

Mathematical modeling

SwissProt/Trembl (SPTR) IDs from the protein data set were mapped
to the Mu11K chip set via the Affymetrix website (www.affymetrix.-
com/analysis/index.affx) in order to relate the two data sets. All
redundantly matching microarray probe sets were included with the
protein. The model for comparison of protein data and microarray data
was as previously described (Kislinger et al, 2006). K-means clustering
of the correlated data sets was selected after applying a figure of merit
to determine the optimal rage of clusters (K) for each group.

Protein–protein interaction analysis

Human homologues of selected target genes were mapped to SwissProt
(build 49.1) to query the protein–protein interaction database, OPHID
(REF); (http://ophid.utoronto.ca). OPHID comprises 11109 proteins
and 57081 interactions, of which 33 713 are known and 23 368 are
predicted interologs from Mus musculus, D. melanogaster, Caenor-
habditis elegans, and Saccharomyces cerevisiae. Visualization of the
resulting network (49 proteins, 107 interactions) was achieved using
NAViG@Tor (http://ophid.utoronto.ca/navigator).

KNN prediction of subcellular localization and
annotation of organelle localization

The algorithm first gathered the K nearest neighbors for a given
target protein based on the minimum Euclidean distance in
the observed compartment profiles relative to a reference training
set, and then predicted target localization based on a majority vote
(Liu et al, 2003). As the training sets were unbalanced a 10-fold,
cross-validation procedure was used as there were a greater number
of negative than positive examples. The optimal number of neighbors
(K¼15) was chosen by testing a range values for K from 9 to 20.
A confidence score indicating the probability of a prediction
was generated based the proportion of votes for the winning
class. Classifier specificity, sensitivity, accuracy and precision were
evaluated by AUC analysis (Liu et al, 2003). AUC curves are the ratio of
the perfect learner (i.e. where all positives are perfectly predicted and
all negatives are excluded) and the actual learner. The actual learner
was assessed with ROC plots. An AUC score of 1.0 would be a perfect
learner, whereas 0.5 would be random guessing. Precision, sensitivity
and specificity were calculated using previously published methods
(Lu et al, 2004b).

Background error for protein quantitation

Triplicate analyses of E18 lung mitochondria were analyze to
generate a replicate sample set of proteins that were detected in
all three replicates and quantified by spectral counts. From the
triplicates, a distribution of duplicates was generated using all
combinations of pairs of triplicates (total of three combinations).
The duplicates were then summed to get an experimental value. Ratios
of the experimental values were calculated in all combinations (total of
three combinations) to generate a distribution of ratios. Ratios were
sorted into bins ranging from o0.2- to 45-fold by single-fold
increments (1.1–2, 2.1–3, etc) and graphed to empirically determine
the background error for determination of ratios in the replicate
samples.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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