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Abstract
Propose  Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two 
different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is char-
acteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy 
against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during 
specific stages of adipocyte development.
Methods  Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of 
adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action 
of these compounds in human or animal cell lines as well as animal models.
Results  Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific 
stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids 
demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes.
Conclusion  The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as 
induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibi-
tion of clonal expansion, and cell-cycle arrest.
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TGF-β	� Transforming growth factorβ
ECG	� Epicatechin gallate
EGC	� Epigallocatechin
LXR-alpha	� Liver X receptor-alpha
hA-MSCs	� Human adipose tissue-derived mesenchy-

mal stem
JNK	� C-Jun N-terminal kinase
HFD	� High fat diet
MAP	� Mitogen-activated protein
AICAR​	� 5-Amino-imidazole-4-carboxamide riboside
JAK	� Janus-activated kinase
miRNA	� MicroRNA
Wnt	� Wingless-type MMTV integration site 

family
AMPK	� AMP-activated protein kinase
SFRP1	� Secreted frizzled-related protein 1
Dkk1	� Dickkopf-1
PPARG​	� Peroxisome proliferator-activated 

receptor-gamma
SREBP1	� Sterol regulatory element-binding protein 1
FGFs	� Fibroblast growth factors
RUNX2	� Run-related transcription factor 2
PKB	� Protein kinase B
TNF-α	� Tumor necrosis factor-alpha

Introduction

Obesity, which can be defined as increased body mass index 
(greater than 30 kg/m2), has been identified as a risk fac-
tor for the pathogenesis of many chronic diseases includ-
ing cancer, hypertension, osteoarthritis, and cardiovascular 
diseases. It is also closely linked with metabolic disorders 
including insulin resistance and type 2 diabetes mellitus 
(T2DM) [1]. Obesity has been considered the fastest grow-
ing epidemic worldwide. According to the World Health 
Organization, in year 2014, more than 1.9 billion adults were 
overweight of which over 600 million were obese [2]. In the 
United States, the prevalence of adult obesity is greater than 
one-third (34.9%) of the population [3].

In obesity, the increase in adipose tissue mass arise via 
two main distinct mechanisms, increasing adipocyte number 
(hyperplasia) and/or increasing adipocyte volume (hypertro-
phy) [4, 5]. Hypertrophy occurs in overweight individuals 
and prolonged period of weight gain in adulthood leads to 
hyperplasia. Hyperplasia is mostly associated with severity 
of obesity and is the characteristic of morbidly obese indi-
viduals [6]. Hyperplasia takes place through adipogenesis 
that involves a cascade of transcriptional factors and cell-
cycle proteins which leads to development of mature adipo-
cyte [7]. This process can be divided into three main phases: 
growth arrest, clonal expansion, and terminal differentiation. 
Inhibition of adipocyte differentiation by interrupting any 

of these stages may serve as potential therapeutic strategy 
against adipogenesis and hence obesity.

Pharmaceutical approaches for weight management 
include altering metabolism, appetite, or fat absorption. 
Currently available drugs such as central nervous system 
stimulants, or peripherally acting anti-obesity drugs, are 
associated with several adverse effects such as hyperthyroid-
ism, palpitations, anxiety, insomnia, and diarrhea [8]. The 
development of new and safe anti-obesity agent has become 
a necessity. Several studies have shown the potential of natu-
ral products to counteract obesity. Flavonoids represent the 
most researched groups of phytochemicals with regards to 
their effects on weight management. Studies have shown 
fruits and vegetables rich in several flavonoid subclasses, 
particularly flavonols, anthocyanins, and flavones are asso-
ciated with less weight gain. A study which assessed the 
associations between habitual consumption of all flavonoid 
subclasses and weight gain among 124,086 American men 
and women over a period of 24 years showed higher intake 
of foods rich in flavonols, flavan-3-ols, anthocyanins, and 
flavonoid polymers may contribute to weight maintenance in 
adulthood after adjustment for changes in other lifestyle fac-
tors such as diet, smoking status, and physical activity [9].
Several other studies on human and rodents provide evidence 
that flavonoids can cause suppression of appetite[10–12], 
increase glucose uptake in muscle [13], decrease fat absorp-
tion [14], and inhibit adipogenesis [15, 16].

A prospective cohort study indicates that obesity is asso-
ciated with shorten life expectancy and indeed this study 
divulges that obesity in adulthood is a powerful predictor 
of death at older ages [17]. Flavonoids have been reported 
to affect health and life span of various model organisms 
through different mechanisms including energy-restriction 
like effects [18]. In this context, some of the molecular tar-
gets of the anti-adipogenic effects of flavonoids which over-
lap with some energy-restriction mimetics could be in part 
explain their lifespan extending properties [18].

This review summarizes the mechanisms of adipogenesis 
and highlights the anti-adipogenic effect of flavonoids and 
their corresponding underlying mechanisms of actions.

Overview of adipogenesis

Adipogenesis occurs in two differentiation stages in which 
an undifferentiated multipotent mesenchymal stem cell 
transforms into a ‘determined’ or ‘committed’ preadipo-
cyte, which then undergoes a secondary differentiation 
stage to become a lipid laden adipocyte [19, 20]. Dur-
ing the determination stage, multipotent mesenchymal 
stem cells (MSCs) differentiate and convert to committed 
preadipocytes under the influence of hormones, insulin, 
and growth factors [19]. Subsequent stage is mitotic clonal 
expansion in which growth-arrested preadipocytes undergo 
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several rounds of mitotic division which is a necessary 
step in the adipocyte differentiation program [21]. Follow-
ing mitotic clonal expansion, the preadipocytes leave the 
cell cycle and undergo terminal differentiation, lose their 
fibroblastic morphology, accumulate cytoplasmic triglyc-
eride, and acquire the metabolic features of mature adipo-
cytes. Adipocyte-specific genes are also highly expressed 
by mature adipocytes [19]. Adipocyte differentiation is 
closely regulated by a cascade of transcription factors, 
amongst which peroxisome proliferator-activated recep-
tor gamma (PPARG) and CAAT/enhancer-binding proteins 
(C/EBPs) are key players of adipocyte fate.

Furthermore, to achieve successful transformation to 
mature adipocytes, fibroblastic preadipocytes undergo 
transformation into spherical cell shape [22, 23]. Pro-
teolytic degradation of the stromal extracellular matrix 
(ECM) of preadipocyte by the plasminogen cascade is 
essential for changes in cell morphology, the expression 
of adipocyte-specific genes, and lipid accumulation [24]. 
Following changes in ECM, C/EBPα, and PPARG are then 
activated [25].

Role of transcription factors in adipogenesis

Adipogenesis is tightly controlled by the activity of tran-
scription factors which activate or repress each other in a 
sequential manner. The key transcription factors that are 
involved in adipogenesis include C/EBP family members 
(C/EBPα, C/EBPβ, and C/EBPδ) and PPARG. At large, adi-
pogenic program is driven by at least two waves of transcrip-
tion factors. Adipogenic stimuli (hormones, growth factors, 
and cytokine) initiated the first wave which amongst others 
includes C/EBPβ and C/EBPβδ. These proteins subsequently 
induce expression of the second wave of transcription fac-
tors of which PPARG and C/EBPα are the most important 
(Fig. 1). These two central adipogenic regulators positively 
control each other and cooperate to orchestrate expression 
of the full adipogenic program [7].

In addition to the above, an array of other important 
transcription factors function as regulators of adipogenesis. 
Krüppel-like factors (KLFs) are expressed in adipose tissue 
and are either activators or repressors of transcription. KL4, 
KLF5, KLF6, KLF9, and KLF15 are positive regulators of 
adipogenesis [26]. KLF5 which is induced early during 

Fig. 1   Adipogenesis network. The process of adipogenesis begin with 
the activation of transcription factors, C/EBPβ and C/EBPδ. These 
transcription factors function during the early adipogenesis program 
to regulate the expression of the two master regulators of adipogen-
esis, PPAR-γ and C/EBPα. The expression of adipogenic genes is 
regulated by binding of PPARG as a heterodimer with RXRα, where 
C/EBPα and C/EBPβ occupy the C/EBP response elements. Several 
other important transcriptional factors play a role in control of adipo-
genesis. Some transcriptional factors including KLF5 and CREB have 

a positive role in adipogenesis, whereas other transcriptional factors 
such as KLF2 and GATA2/3 suppress adipogenesis. C/EBP CCAT/
enhancer-binding protein, PPARG​ peroxisome proliferator-activated 
receptor-gamma, ERK extracellular signal-regulated kinase, KLFs 
Kruppel-like factors, CREB cyclic AMP response element-binding 
protein, FOXO1 forkhead box O1, TCF/LEF T-cell factor/lymphoid 
enhancer factor, MAPK mitogen-activated protein kinase, Wnt wing-
less-type MMTV integration site family, PKA protein kinase A, GR 
glucocorticoid receptor, DR1 direct repeat type 1 element
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adipogenesis by C/EBPβ and C/EBPδ activates the Pparg2 
promoter [27]. KLF6 suppresses the expression of preadipo-
cyte factor-1 (Pref-1) which is known to inhibit adipogenesis 
[28]. Other proadipogenic transcription factors include sterol 
regulatory element-binding protein 1 (SREBP1) and cyclic 
AMP response element-binding protein (CREB). SREBP1 
promotes early adipocyte differentiation and can induce 
expression of PPARG and facilitates fatty acid metabolism 
[29], while the expression of CREB in preadipocytes is nec-
essary to induce adipocyte differentiation. Accordingly, the 
absence of CREB inhibits adipocytes differentiation [30, 
31].

Signals that repress adipocyte development may have pro-
found implications for human health. Amongst the myriad 
of transcription factors that are known to be repressors of 
adipocyte differentiation are several members of the KLF 
(KLF2 and KLF7) [32, 33], globin transcription factor 
(GATA2 and GATA3), and forkhead (Forkhead Box O1 
(FOXO1) and Forkhead Box A2 (FOXA2)) families. GATA2 
and GATA3 are known to inhibit terminal differentiation via 
repressing transcription of PPARG [34].

Role of transcription cofactors in adipogenesis

Transcription cofactors are proteins that interact with tran-
scription factors and may affect transcription of specific 
genes in a positive or negative manner and thus play an 
important role in adipogenesis. Amongst the transcription 
co-activators, thyroid receptor-associated protein complex 
220 (TRAP220) is a known binding partner of PPARG, the 
absence of which prevents adipocyte differentiation [35]. 
Other significant co-activators include TATA-binding pro-
tein-associated factor-8 (TAF8) which is upregulated during 
adipogenesis [36]. Hitherto and several other cofactors have 
been identified to play a role in preadipocyte differentiation 
that contribute to the intricacies of adipogenesis. The cyc-
lin D3-cyclin-dependent kinase-6 complex can bind to and 
phosphorylate PPARG, and eventually leads to induction of 
preadipocyte differentiation [37]. Cyclin-dependent kinase 
4 (CDK4) has also been reported to activate PPARG via its 
kinase domain [38].

By contrast, some cofactors may act as inhibitors of adi-
pogenesis. For instance, cyclin D1 and transcriptional co-
activator with PDZ-binding motif (TAZ) suppress PPARG 
activity and block adipocyte differentiation [39]. Some co-
repressors recruit histone deacetylases (HDACs) to target 
promoters, which in turn result in blockade of transcription. 
Mammalian sirtuin 1 (SIRT1) with HDAC activity interacts 
with PPARG and therefore inhibits preadipocyte differentia-
tion. Furthermore, nuclear receptor co-repressors (NCoR) 
and silencing mediator of retinoid and thyroid hormone 
receptors can also act as anti-adipogenics [40].

Cell‑cycle proteins

Cyclin-dependent kinases (Cdks) regulate the progression 
of preadipocytes through the cell division cycle [41]. Cdks 
when activated phosphorylate retinoblastoma family (Rb) 
members, including the retinoblastoma protein p130 and 
p107. This leads to the release of E2 promoter-binding fac-
tors (E2Fs) from inhibitory interaction with Rb, enabling 
E2F family to activate transcription of genes that allows the 
cells to enter S phase [42]. Cyclins are documented to be 
downstream targets of c-Myc protein, which has been shown 
to activate cell cycle and induces DNA synthesis in serum-
starved 3T3-L1 cells [43]. Nonetheless, overexpression of 
c-Myc inhibits differentiation of preadipocytes possibly by 
inhibiting the cell to enter into a distinct predifferentiation 
stage in G0/G1[44]. During conversion from G1 to S stage, 
p38 mitogen-activated protein kinases (MAPKs), extracel-
lular signal-regulated kinase (ERK), and glycogen synthase 
kinase-3B (GSK3B) phosphorylate and activate C/EBPβ 
which eventually leads to expression of Pparg and Cebpα 
[45].

Role of microRNAs in adipogenesis

MicroRNAs (miRNAs) are small non-coding RNAs that 
regulate different biological processes at post-translational 
modification state [46]. In addition, they play a role in a 
variety of human diseases such as obesity and diabetes mel-
litus [47]. The miRNA profile of human adipose tissue has 
been demonstrated to be different in obese patients [48–50]. 
One of the major functions of miRNAs in adipose tissue 
is to inhibit or stimulate the differentiation of adipocytes. 
There are numerous inhibitory and promoting miRNAs that 
contribute to the regulation of adipogenesis, in the com-
mitment stage and in terminal differentiation (Fig. 2). The 
expression pattern of 70 miRNAs has been shown to be 
either upregulated or downregulated during adipogenesis 
in subcutaneous fat cells [49]. In mouse embryonic stem 
cells, 129 miRNAs expression are altered at distinct time 
points during conversion of mesodermal progenitor cells 
to mature adipocyte [51, 52]. MiR-103 is upregulated in 
rodents epididymal adipocytes during adipogenesis and its 
ectopic expression increase triglyceride accumulation in the 
early stage of adipogenesis [53]. However, the expression of 
miR-103 remains unchanged during adipogenesis in human 
subcutaneous adipocytes [49]. The reason for the lack of 
inconsistencies between studies is not known but could be 
due to differences in fat depots in mice and humans.

MiR-30 family is upregulated during adipogenesis, and it 
increases adipogenesis via targeting run-related transcription 
factor 2 (RUNX2) [54]. RUNX2 is an osteogenesis regulator 
that promotes adipocytes differentiation when it is down-
regulated. Similarly, miR-204 directly targets RUNX2. 
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Overexpression of miR-204 in MSCs promotes adipogen-
esis, whereas its inhibition favors osteogenesis [55, 56]. The 
miR 17–92 cluster is highly expressed during clonal expan-
sion in preadipocytes and enhances adipogenesis through 
inhibiting the tumor suppressor, Rb2/p130 during the early 
clonal expansion of preadipocytes [51, 52].

MiRNAs known to inhibit adipogenesis include miR-27, 
miR-30, microRNA Let-7, and miR-448. Forced expression 
of miR-27 suppresses adipogenesis in multipotent adipose-
derived stem cells and 3T3-L1 cell line [57, 58] by directly 
targeting Pparg and Cebpα mRNA [59], whilst miR-130 
targets Pparg. Others such as microRNA Let-7 inhibit clonal 
expansion and terminal differentiation in 3T3-L1 cells [60], 
and miR-448 is reported to inhibit adipogenesis by targeting 
KLF5 [61].

MiRNAs have also been demonstrated to modulate adipo-
genesis by targeting Wnt pathway. Wnt proteins are factors 
in the external environment that can affect the differentia-
tion potential of preadipocytes. MiRNA microarray results 
revealed increased expression of 18 miRNAs including miR-
148a, miR-210, miR-194, and miR-322 that repress Wnt 
signaling and thus increase adipogenesis [46]. Conversely, 

29 miRNAs including miR-27, miR-181, and miR-344 were 
identified to activate Wnt pathway and suppress adipogen-
esis [46].

Role of circadian genes in adipogenesis

It has been documented that in human adipose tissue 
explants, the circadian genes can oscillate independently of 
the central nervous system which may regulate the timing 
of clock-controlled genes such as Pparg. Several proteins 
including nocturnin, period circadian protein homolog 3 
(PER3), and brain and muscle Arnt-like protein-1 (BMAL1) 
that are involved in the regulation of circadian rhythm can 
influence adipogenesis. Nocturnin, which is a circadian reg-
ulated gene, has been reported to facilitate adipogenesis in 
3T3-L1 cells via stimulation of PPARG nuclear translocation 
[62], whereas PER3 was shown to have a negative role in dif-
ferentiation of MSCs to adipocytes; and besides, the protein 
can form a complex with PPARG which inhibits PPARG-
mediated transcriptional activation via Pparg response 
elements [63]. Similarly, BMAL1 is a negative regulator 
of adipogenesis. BMAL1 deficiency in mice embryonic 

Fig. 2   MiRNAs in adipogenesis. MiRNAs influence adipogenesis 
during determination phase, which is the conversion of mesenchymal 
stem cell to preadipocytes, clonal expansion, and terminal differen-
tiation of preadipocyte to mature adipocyte. MAPK mitogen-activated 
protein kinase, ERK extracellular signal-regulated kinase, MSC mes-
enchymal stem cell, cAMP cyclic adenosine monophosphate, CREB 

cAMP response element-binding, WNT wingless and INT-1, TCF 
T-cell-specific transcription factor, PPAR peroxisome proliferator-
activated receptor, C/EBP CCAAT/enhancer-binding protein, KLF 
Kruppel-like factor, IRS insulin receptor substrate, PKB protein 
kinase B, GSK glycogen synthase kinase 3
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fibroblast cells results in increased expression of Cebpβ and 
Pparg, and these adipogenic markers are increased even 
before induction of adipogenesis which suggests spontane-
ous differentiation of these cells with complete deficiency of 
BMAL1. BMAL1 has been shown to suppress adipogenesis 
by direct transcriptional regulation of genes of the Wnt sign-
aling pathway [64]. However, another study showed conflict-
ing results, Bmal1 knockout C3H10T1/2 cells failed to be 
differentiated into mature adipocytes [65].

Other factors in regulation of adipogenesis

In addition to the role of transcriptional factors, preadipocyte 
differentiation may be influenced by a number of hormones, 
growth factors and cytokine. Insulin, insulin-like growth fac-
tor-1 (IGF-1), thyroid hormones, mineralocorticoids, gluco-
corticoids (GCs), and PPARG agonists have important role 
in promoting adipogenesis. Insulin is an important positive 
regulator of adipogenesis [66]. Downstream molecules of 
the insulin signaling cascades such as phosphatidylinositol-3 
kinase (PI3K), mammalian target of rapamycin (mTOR), 
and protein kinase B (PKB) are essential for preadipocyte 
differentiation [67, 68]. Thyroid hormone (T3), which plays 
a vital role in the control of metabolic homeostasis, pro-
motes adipogenesis via thyroid receptor α1-induced lipo-
genic gene expression [69]. Likewise, GCs, which are posi-
tive regulator of adipogenesis, promote differentiation of 
preadipocytes by increasing the expression of Cebpδ and 
Pparg. Fibroblast growth factors (FGFs) including FGF1, 
FGF2, and FGF10 have been shown to have proadipogenic 
activity, since neutralization of these fibroblast growth fac-
tors can block adipogenesis [70–72].

Contrariwise, various extranuclear factors are shown to 
be negative regulators of adipogenesis. The wingless-type 
MMTV integration site family (Wnt) acts through autocrine 
or paracrine manner to regulate cell growth and cell fate in 
many cell types. Wnt signaling proceeds through canoni-
cal (β-catenin) or non-canonical pathways. In the canonical 
pathway, binding of Wnt to frizzled receptors on the cell 
surface causes the translocation of β-catenin to the nucleus 
where it interacts with the T-cell factor/lymphoid enhancer 
factor (TCF/LEF) transcription factors to inhibit adipogen-
esis through blockade of C/EBPδ and PPARG [73, 74]. In 
myometrial tissue, the absence of β-catenin leads to its con-
version to adipose tissue, which highlights the importance of 
Wnt-β-catenin pathway in regulation of adipogenesis [32]. 
Suggestion has been put forward that the receptors that ini-
tiate the Wnt reside on primary cilia on adipocyte surface. 
This is based on the fact that the increased adipogenesis 
observed in obese patients with the inherited ciliopathy Bar-
det–Biedl syndrome may be due to impaired cilia forma-
tion which leads to increased expression of PPARG [75]. 
Transforming growth factor β (TGF-β) is another negative 

regulator of adipocyte differentiation. TGF-β inhibits adi-
pogenesis through Smad3 which interacts with C/EBPβ and 
C/EBPδ and represses C/EBP transcription activity [76]. 
Besides, it may also suppress adipogenesis via induction of 
c-Myc expression [77]. A soluble form of preadipocyte fac-
tor 1 (Pref-1) was shown to reduce adipose tissue mass and 
this factor negatively regulates adipogenesis via interaction 
with Notch [78]. Finally, proinflammatory cytokines inhibit 
adipogenesis via activation of several intracellular signal-
ing pathways. Proinflammatory cytokines were proven to 
decrease PPARG and C/EBPα expression in preadipocytes 
and block insulin action [78–80].

Conceivably, PPARG plays a major role in adipogenesis 
and most of the above factors that influence adipogenesis 
play their positive or negative role in adipogenesis by ulti-
mately targeting PPARG, and hence, in the next section, we 
look at PPARG more closely.

PPARG as a master key of adipogenesis

PPARG which is abundantly expressed in adipose tissue is 
a master key of adipogenesis [81, 82] and contributes to 
whole-body insulin sensitivity and glucose homeostasis 
[81]. Activation of PPARG by ligands such as fatty acids and 
the antidiabetic drugs, and thiazolidinediones (TZDs) lead 
to adipocyte differentiation and fatty acid storage. Therefore, 
intake of high fat food exposes people to prolonged high 
level of fatty acid (PPARG ligand), which most likely results 
in obesity [83].

Given that PPARG is an essential regulator of adipogen-
esis, it has been the target of anti-obesity research. PPARG 
can be either modulated directly, or indirectly by targeting 
its upstream factors or pathways which ultimately affect 
the activity of this crucial regulator of adipogenesis. In this 
regard, the expression or activity of PPARG can be sup-
pressed through inhibition of C/EBPβ, the increased expres-
sion of GATA2 and GATA3, regulation of mitogen-activated 
protein kinase (MAPK), and the activation of the Wnt/β-
catenin pathway. Another group of proteins that may play a 
regulatory role in PPARG transcriptional activity are the sir-
tuins (SIRT), especially SIRT1. SIRT1, an NAD+-dependent 
deacetylase, impaired adipogenesis by directly acting as a 
PPARG co-repressor, thus, counteracting obesity [84, 85]. 
Still, PPARG may possibly be regulated by post-translational 
modifications including phosphorylation which, in theory, 
is a distinct feature that can be subjected for cell- or tissue-
specific modulation of this molecule [86, 87]. Phosphoryla-
tion of PPARG at Ser273 by CDK5 has been reported to 
selectively decrease expression of a subset of PPARG-tar-
get genes in adipocytes and pharmacological inhibition of 
Ser273 phosphorylation confers insulin sensitizing effects 
[88]. Nonetheless, Ser273 phosphorylation does not affect 
regulation of adipogenesis by PPARG, suggesting that the 
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antidiabetic and proadipogenic roles can be independently 
manipulated by pharmacological agents.

Dietary flavonoids

Flavonoids are a class of plant secondary metabolites that 
are widely distributed in a variety of vegetables and fruits 
[89]. Flavonoids have a wide range of biological functions, 
including coloration of flowers, protection against ultraviolet 

radiation and phytopathogens, signaling during nodulation, 
and auxin transport [90, 91]. Dietary flavonoids have been 
shown to possess an array of pharmacological activities 
including anti-inflammatory, antithrombotic, antitumor, anti-
viral, anti-atherosclerotic, antidiabetic, and anti-adipogenic 
effects [92–98].

Chemically, flavonoids have the basic structure of a 
15-carbon skeleton consisting of two aromatic rings (A and 
B rings) connected through a heterocyclic pyrane ring (C 
ring) (Fig. 3). Flavonoids encompass a number of subclasses 
which are classified based on the level of oxidation and pat-
tern of substitution of the C ring. The six diet-derived flavo-
noid subclasses include isoflavones, flavan-3-ols, anthocya-
nidins, flavanones, flavones, and flavonols [99, 100]. Each 
subclass consist of individual compounds, characterized 
based on specific hydroxylation and conjugation patterns 
[99]. The classification of dietary flavonoids, their chemi-
cal structures, individual compounds, and dietary source of 
these subgroups are shown in Table 1.

The structure of flavonoids reveals useful information on 
their anti-adipogenic effect. A comparative study investi-
gated the anti-adipogenic effect of 44 flavonoids in 3T3-L1 
cells and concluded that flavonols with a methoxy group at 
the 3-position possess the strongest anti-adipogenic effect. 
In addition, the presence of methoxy groups at the B ring 
contributes to the anti-adipogenic effect of flavonols. On the Fig. 3   Basic structure of flavonoids

Table 1   Flavonoid subclasses and their dietary sources

Flavonoids C ring functional group Dietary source Compound Chemical formula

Anthocyanidins 3-Hydroxy Cherry, berries, and red wine Cyanidin
Delphinidin
Malvidin
Pelargonidin
Petunidin
Peonidin

C15H11O6+
C27H31O17+
C17H15O7+
C15H11O5+
C16H13O7+(Cl−)
C16H13O6+

Flavones 4-Oxo Carrots, olive oil, peppers, rosemary 
peppermint, and celery

Apigenin
Luteolin

C15H10O5
C15H10O6

Flavan-3-ols 3-Hydroxy
3-O-gallate

Tea, chocolate and cocoa (+)-Catechin
(+)-Gallocatechin
(−)-Epicatechin-

3-gallate
(−)-Epigallocatechin-

3-gallate

C15H14O6
C15H14O7
C22H18O10
C22H18O11

Flavonols 3-Hydroxy, 4-Oxo Onion, olive oil, and berries Fisetin
Isorhamnetin
Kaempferol
Myricetin
Quercetin

C15H10O6
C16H12O7
C15H10O6
C15H10O8

Flavanones 4-Oxo Citrus fruits Hesperetin
Naringenin

C16H14O6
C16H14O5

Isoflavones 4-Oxo Soy bean and leguminous plants Daidzein
Genistein
Glycitein
Biochanin A
Formononentin

C15H10O4
C15H10O5
C16H12O5
C16H12O5
C16H12O4
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contrary, flavonoids with hydroxy groups show little or no 
anti-adipogenic effect [101].

Interventional studies in adipocyte 
development by dietary flavonoids

Anthocyanidins

Anthocyanidins are common plant pigments which are pre-
sent in many fruits, vegetables, and red wine. To date, about 
635 anthocyanin compounds have been identified [102]. 
Cyanidin, peonidin, malvidin, delphinidin, pelargonidin, 
and petunidin are the most common anthocyanidins [103]. 
Human and animal studies have indicated the anti-obesity 
effect of anthocyanins [92, 103] which have recently attract 
attention as potential novel anti-adipogenic agents. Cyanidin 
has been reported to reduce adipogenesis in 3T3-L1 cells 
by interfering with extracellular matrix and also decreasing 
carbohydrate response element-binding protein (ChREBP) 
expression level [93]. Anthocyanins derived from black 
soybean such as cyanidin-3-O-glucoside, delphinidin-3-O-
glucoside, and petunidin-3-O-glucoside have been shown to 
reduce preadipocyte differentiation through suppression of 
PPARG [94]. Extracts from Oryza sativa L. containing cya-
nidin-3-O-glucoside and peonidin-3-O-glucoside have been 
demonstrated to inhibit the differentiation of mesenchymal 
C3H10T1/2 cells to preadipocytes [104]. However, a more 
recent study showed treatment of preadipocytes with black 
soybean cyanidin-3-glucoside alone paradoxically increases 
the expression of Pparg and Cebpαand induces adipogen-
esis [95]. The discrepancy may be explained by the syner-
gistic anti-adipogenic effects of other anthocyanins present 
in black soybean extract in the former study [105], where 
treatment of preadipocytes with the combination of these 
compounds results in inhibition of adipogenesis. Other pos-
sible anti-adipogenic mechanism of anthocyanidins such as 
cyanidin-3-O-glucoside and peonidin-3-O-glucoside include 
activation of Wnt-specific target genes such as Axin2, Cyclin 
d1, and Wisp2 [104].

Flavones

Flavones are present in many herbs including parsley and 
celery. Apigenin and luteolin are the main dietary flavones 
[96]. Flavones have shown promising effects in inhibiting 
adipogenesis. For instance, apigenin suppresses adipo-
genesis in 3T3-L1 cells via activation of AMP-activated 
protein kinase (AMPK) pathway [97]. Activation of this 
pathway has been suggested to inhibit clonal expansion 
phase and thus adipocyte differentiation [98]. Indeed, api-
genin arrests the cell cycle at the G0/G1 phase which is 
associated with reduced cyclin D1 and CDK4 expression. 

Moreover, the exposure of these cells to apigenin reduces 
expression of PPARG and C/EBPβ [106]. The reduction 
of C/EBPβ was shown to be due to upregulation of C/
EBP inhibitors such as C/EBP homologous protein and 
the phospho-liver-enriched inhibitory protein isoform of 
C/EBPβ [107]. Similarly, luteolin inhibits adipogenesis by 
attenuating the expression of C/EBPα and PPARG. Nota-
bly, the PPAR agonist, rosiglitazone-induced adipogenic 
differentiation in preadipocytes is inhibited by luteolin 
[108].

Flavan‑3‑ols

Flavan-3-ols are widely distributed in human diet and have 
been shown to be the dominant flavonoid intake by the U.S. 
adults compared to other flavonoid subclasses [109]. Flavan-
3-ols can be found in many fruits including cocoa and tea. 
The main flavan-3-ols in fruits and cocoa are catechin and 
epicatechin. Epicatechin gallate (ECG), epigallocatechin 
(EGC), gallocatechin, and epigallocatechin gallate (EGCG) 
are mainly present in tea [110]. Many studies demonstrated 
that catechin possesses anti-adipogenic effect. Tea catechin, 
in particular (−)-catechin 3-gallate and (−)-epigallocatechin, 
have been shown to suppress adipogenesis in 3T3-L1 cells 
via downregulation of PPARG2, C/EBPα, and GLUT4 
[111]. However, (−)-catechin derived from green tea has 
been shown to induce adipocyte differentiation in human 
bone marrow mesenchymal stem cells (hBM-MSCs) via 
stimulation of transcriptional activity of PPARG. In addi-
tion, the level of adipogenic markers such as adiponectin 
(Adipoq), fatty acid-binding protein 4 (Fabp4), and lipopro-
tein lipase (Lpl) are markedly increased. Nevertheless, its 
stereoisomer (+)-catechin does not show any proadipogenic 
effect which suggests the possibility of a direct pharmaco-
logical target regulated by (−)-catechin [105].

EGCG, the most abundant catechin in green tea, inhib-
its adipogenesis by reducing the expression of PPARG, 
C/EBPα, FABP4, and fatty acid synthase while increas-
ing the level of β-catenin in the nucleus. Knocking down 
of β-catenin using siRNA recovers the expression of these 
adipogenic markers and attenuates the anti-adipogenic 
effect of EGCG suggesting Wnt/β-catenin pathway as the 
anti-adipogenic mechanism of EGCG [112]. EGCG has 
also been shown to increase apoptosis in mature adipocytes 
without affecting viability of preadipocytes [113]. However, 
contradictory result has been obtained with EGCG; Sakuri 
et al. claimed that EGCG enhances the expression of the 
genes involved in adipocyte differentiation. The expression 
of Pparg1, Pparg2, Cebps, and Ppargc1a was shown to be 
increased by EGCG treatment. Nonetheless, these effects 
are only observed at the early and not late stages of adipo-
genesis [104].
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Flavonols

Flavonols are the most widely distributed flavonoids in 
the plant kingdom with the exception of algae and fungi. 
Quercetin, kaempferol, isorhamnetin, fisetin, and myricetin 
are the main dietary flavonols that can be found in berries, 
onions, and olive oil. A number of dietary flavonols investi-
gated showed anti-adipogenic effects by interruption of both 
the conversion of mesenchymal cells to preadipocytes and 
the differentiation of preadipocytes to mature adipocytes. 
In vitro studies have indicated that isorhamnetin treatment 
of preadipocytes results in downregulation of Pparg and 
Cebpα without affecting regulation of Cebpβ and Cebpδ. 
In addition, this flavonol decreases expression of PPARG-
target genes such as liver X receptor-alpha (Lxr-α), Lpl, and 
Fabp4 suggesting PPARG inhibition as a possible mecha-
nism underlying the anti-adipogenic effect of isorhamnetin 
[114]. Another study conducted by the same group showed 
that isorhamnetin inhibits differentiation of human adipose 
tissue-derived mesenchymal stem (hA-MSCs) cells to pread-
ipocytes, wherein it downregulates the mRNA levels of Wnt 
antagonist such as secreted frizzled-related protein 1 (Sfrp1) 
and dickkopf-1 (Dkk1). Furthermore, isorhamnetin stabi-
lizes β-catenin which suggests Wnt signaling pathway as 
the mechanism responsible for isorhamnetin anti-adipogenic 
effect in mesenchymal stem cells [115]. Myricetin inhibits 
hA-MSCs differentiation to preadipocytes and significantly 
reduces Pparg, Cebpα, and Fabp gene expression [116]. 
Besides inhibiting mesenchymal stem cell differentiation, 
Wang et al. demonstrated the anti-adipogenic effect of myri-
cetin on preadipocyte differentiation. Myricetin-treated 3T3-
L1 cells downregulates transcription factors such as Pparg, 
Cebpα, Cebpβ, Lpl, Fabp4, Glut4, and Srebp-1c. Other anti-
adipogenic targets of myricetin include inhibition of ERK 
and c-Jun N-terminal kinase (JNK) phosphorylation dur-
ing the differentiation process [117]. Microarray analysis 
revealed that kaemperol decreases expression of adipogenic 
transcription factors and triglyceride synthesis-related genes 
and, conversely, increases gene involved in lipolysis [106]. 
Many transcriptional factors such as C/EBPβ, KLF4, and 
KLF5 are downregulated by kaempferol treatment, while 
negative regulators of adipogenesis such as KLF2 and Pref-1 
are upregulated during the early adipogenesis [118]. As with 
many flavonoids, the anti-adipogenic mechanisms of kaemp-
ferol are several. Kaempferol also prevents adipocyte differ-
entiation by inhibiting cell-cycle progression via regulation 
of cyclins. In addition, kaempferol treatment during early 
adipogenesis inhibits phosphorylation of AKT and mTOR 
signaling pathways. Fisetin was reported to induce cell-cycle 
arrest in preadipocytes by suppressing cell-cycle regulatory 
proteins such as cyclin A, cyclin D1, and CDK4 expres-
sion [119]. Nonetheless, another study reported that fisetin 
reduces adipogenesis by suppression of mTORC1 activity, 

wherein the flavonol inhibits mTOR phosphorylation and 
its downstream molecules such as p70 ribosomal S6 kinase 
which in turn decreases Cebpα gene expression [120, 121]. 
Rhamnetin blocks adipocyte differentiation during the early 
stage of adipogenesis program by inhibition of clonal expan-
sion. The expression level of adipogenic transcription factors 
in the presence of rhamnetin also declines during the early 
adipogenesis [122].

A comparative study investigated and compared the 
inhibitory effects of flavonoids (rutin, naringenin, hesperi-
din, quercetin, naringin, and resveratrol) on adipocyte dif-
ferentiation, as indicated by the decreases in triglyceride 
accumulation and GPDH activity [123]. In this study, rutin, 
a flavonol glycoside, exhibits the highest anti-adipogenic 
effect characterized by downregulation of adipogenic tran-
scription factors and leptin, and upregulation of adiponec-
tin [124]. Choi et al. investigated the anti-adipogenic effect 
of rutin in preadipocytes and HFD-induced obese animals. 
The results indicates that rutin decreases the expression of 
key adipogenic transcription factors. Experimental animals 
which received rutin gain less body weight and have lower 
blood cholesterol [125]. However, rutin was shown to be 
slowly and poorly absorbed in human [126] as it has to be 
hydrolysed by the intestinal microflora. These findings may 
limit the effectiveness of rutin as anti-adipogenic agent fol-
lowing dietary consumption.

Several mechanisms contribute to the anti-adipogenic 
effect of quercetin. Exposure of mouse preadipocytes to 
quercetin leads to activation of AMPKα and β1 and phos-
phorylation of their substrate, acetyl-CoA carboxylase. In 
addition, quercetin reduces adipocyte differentiation by 
inhibiting clonal expansion during the early adipogenesis 
via suppression of cyclin A [127]. A recent study indicated 
that quercetin prevents differentiation of OP9 mouse stromal 
cells into mature adipocytes through downregulation of adi-
pogenic transcription factors, FABP4, LPL, and upregula-
tion of adipose triglyceride and hormone sensitive lipases 
[128]. Quercetin may reduce adipose tissue mass not only 
by inhibiting adipogenesis, but this flavonol also induces 
apoptosis in mature adipocytes by modulating mitogen-
activated protein (MAP) kinases, in particular ERKs and 
JNK pathway [129].

Flavanones

Flavanones are a subclass of dietary flavonoids that are 
found to be rich in citrus fruits. The major dietary flavanones 
are naringin and hesperidin [110]. Although naringin and 
hesperidin have shown promising effects in preventing obe-
sity, limited studies have been conducted to investigate the 
anti-adipogenic effect of these flavanones.

Hesperetin, an aglycone of hesperidin, inhibits adipo-
genesis in hBM-MSCs by reducing resistin (Retn), Adipoq, 
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Fabp4, Pparg, Stat5a, Lpl, and tumor necrosis factor-alpha 
(Tnf-α) expression, while increasing proapoptotic genes 
such as Bcl and Bax in preadipocytes. This study suggests 
inhibition of adipocyte differentiation in hBM-MSCs and 
induction of apoptosis in preadipocytes responsible for the 
anti-adipogenic effect of hesperetin [130].

Isoflavones

Dietary isoflavones are present in legumes, soy bean, and 
soy foods. As with many natural products, isoflavones such 
as genistein and daidzein can target more than one pathways 
in the development of adipocytes. Cultured human adipose-
derived mesenchymal cells (hAD-MSCs) treated with gen-
istein or daidzein maintain their fibroblast-like appearance 
and express Oct-4, the stem cell marker indicating the dif-
ferentiation of these cells into preadipocytes is interrupted. 
Once the cells become committed to adipose lineage, gen-
istein demonstrates anti-adipogenic effect by inhibition of 
Pparg, Srebp-1c, and Glut 4 during intermediate phase of 
the adipogenesis program. Microarray result indicated that 
activation of Wnt pathway through estrogen receptor (ER)-
dependent pathways including ERK/JNK signaling and LEF/
TCF4 co-activators are amongst the mechanisms underlying 
the anti-adipogenic effect of genistein [131]. Recent studies 
have shown that hypoxic suppressions of adipocyte differen-
tiation are associated with AMPK activation which, in turn, 
can impair mitotic clonal expansion during the early adi-
pogenesis. In this context, genistein has been demonstrated 
to induce reactive oxygen species (ROS), which eventually 
leads to activation of AMPK and inhibition of mitotic clonal 
expansion. Furthermore, genistein was shown to activate 
AMPK comparable to 5-amino-imidazole-4-carboxamide 
riboside (AICAR), a known activator of AMPK. Both gen-
istein and daidzein also stimulate lipolysis [131]. Another 
study investigated the underlying mechanisms responsible 
for the anti-adipogenic effect of genistein. Genestein has 
been demonstrated to stimulate lipolysis by preventing the 
inhibitory effect of dexamethasone on eNOS expression 
and NO release in 3T3-L1 cells. In addition, pretreatment 
of preadipocytes with genistein has been reported to inhibit 
fatty acid synthase and suppress p38; expression of fatty acid 
synthase is associated with activation of p38 [119]. Indeed, 
phosphorylation of p38 mitogen-activated protein kinase is 
required for adipocyte differentiation during the early adipo-
genesis, wherein treatment of preadipocytes with p38 inhibi-
tors suppressed adipogenesis [120]. Genistein also affects 
other pathway during adipocyte development; this flavonoid 
inhibits janus-activated kinase (JAK) 2 to attenuate the effect 
of growth hormones in promoting adipogenesis [121]. In 
addition, genistein was shown to suppress adipogenesis by 
induction of apoptosis in mature adipocytes [132, 133].

Recently, SIRTs, specifically SIRT1, have become a focus 
of intense anti-obesity research [134]. The NAD+-depend-
ent deacetylase SIRT1 has been shown to maintain proper 
metabolic functions in many tissues to protect against obe-
sity [84]. As a matter of fact, SIRT1 inhibits adipogenesis 
by repressing the transcriptional activity of PPARG [85]. 
Furthermore, mice with adipose tissue-specific SIRT1 dele-
tion exhibit greater adiposity and metabolic dysregulation, 
including insulin resistance [135]. Other study investigated 
the role of SIRT1 in curbing adipocyte hyperplasia; SIRT1 
knockdown results in hyperplastic, small, and inflamed adi-
pocytes that appear to be dysfunctional metabolically and 
physiologically [136]. This study demonstrated that reduced 
levels of SIRT1 cause c-Myc to become hyperacetylated, 
which leads to higher preadipocyte proliferation potential 
and enhanced adipocyte mitotic clonal expansion during 
differentiation, which eventually results in dysfunctional 
hyperplastic adipocytes. Indeed, SIRT1 levels are reduced 
in mice-fed high fat diet which triggers inflammation-
induced cleavage and inactivation of SIRT1 [135]. In this 
context, some of the anti-adipogenic effects of flavonoids 
mentioned above may very well be due to their actions on 
SIRT1; quercetin and apigenin have been shown to increase 
NAD + levels which leads to activation of SIRT1 [137]. It 
has been reported that resveratrol inhibits human preadipo-
cyte proliferation and adipogenesis in a SIRT1-dependent 
manner [116]. Fisetin suppresses the early stages of adipo-
genesis through SIRT1-mediated deacetylation of PPARγ 
and FoxO1, and enhances the association of SIRT1 with the 
PPARγ promoter, leading to suppression of PPARγ tran-
scriptional activity [117].

Collectively, flavonoids exert their beneficial effects 
against adipogenesis through multiple pathways (Table 2). 
Although these findings are encouraging, most of their anti-
adipogenic effects are identified from cellular models of adi-
pogenesis and remains to be validated in vivo or in human 
cells. We must also keep in mind that much of these data 
are based on rodent models which cannot always be directly 
extrapolated to clinical effects. However, such studies elu-
cidate different molecular mechanisms by which flavonoids, 
either as individual treatments or in combination, might be 
effective in prevention of adipocyte differentiation and ulti-
mately obesity.

Final remarks and conclusion

Prolonged excessive energy intake without an increase in 
energy expenditure promotes the increase in adipocyte size 
and number. Hyperplasia is triggered by a network of signal-
ing factors that induce conversion of MSCs to preadipocytes 
which then differentiate into mature adipocytes. Interrupting 
adipogenesis at any stage of adipocyte differentiation may 
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serve as potential therapeutic strategy against adipogenesis 
and obesity. In this context, dietary flavonoids have become 
the subject of increasing scientific interest due to their effects 
on adipogenesis. The anti-adipogenic effects of flavonoids 
are mainly via their effect on a number of molecular tar-
gets and regulation of several pathways such as induction of 
apoptosis [123], suppression of key adipogenic transcription 
factors [94, 95, 114, 144], activation of AMPK [97, 129], 
and Wnt [115, 138] pathways, inhibition of clonal expansion 
[147, 153, 155], cell-cycle arrest, and modulation of insulin 
signaling cascade [118], suggesting flavonoids as effective 
inhibitors of adipogenesis during determination and terminal 
differentiation stages.

Although these data are encouraging, further investiga-
tion is essential to gain insight into the molecular mecha-
nisms that connect extranuclear and nuclear mediators of 
adipogenesis. Even though most of the studies have shown 
that flavonoids suppress the key adipogenic regulators such 
as PPARG and C/EBPα, the upstream mechanisms which 
led to suppression of these master regulators of adipogenesis 
are not fully investigated. In addition, the effect of flavonoids 
in areas such as microRNAs and circadian clock need to be 
more explored.

Strategies to develop flavonoids as treatment or as sup-
plementary treatment of obesity will have to consider the 
pharmacokinetic aspects of the molecules, as well. We 
have to bear in mind that the in vitro evidence of flavo-
noids in suppressing adipogenesis might be somewhat of 
limited impact due to the fact that in vivo flavonoids are 
extensively metabolized to molecules with different struc-
tures and activities and, therefore, may preclude their use in 
humans [127]. Flavonoids are substrates for conjugating and 
hydrolyzing enzymes in the small intestine, liver, and colon. 
Conjugation of flavonoids first occurs in the small intestine 
followed by the liver where they are further metabolized and 
the produced glucuronides and sulfate derivatives facilitate 
their excretion via urine and bile. The compounds that are 
not absorbed in the intestine will reach the colon and be 
subjected to structural modifications by colonic microflora. 
The flavonoid glucuronides that re-enter the enterohepatic 
circulation through bile excretion are hydrolyzed by the 
gut microbiota to aglycones that can further be catabolized 
to low-molecular-weight compounds that can readily be 
absorbed [128]. This bacterial conversion of flavonoids may 
have potential health consequences for the host. Therefore, 
the differences in intestinal microbiota composition among 
different species may result in different profiles of flavonoid 
metabolites with different bioactivity [156]. This emphasizes 
the importance of studying the pharmacokinetic profile of 
the various flavonoids in human subjects.

It is also important to determine the amount of flavonoids 
or bioactive compounds in foods or dietary supplement as 
well as their bioavailability. Despite the health benefits of Ta
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flavonoids, the bioavailability of flavonoids is generally low 
and can vary drastically among different flavonoid classes 
as well as among compounds in a particular class. Flavo-
noids with complex structures and larger molecular weights 
may even have lower bioavailability [128]. In human diet, 
the concentration of flavonoids may be too low to generate 
adequate efficacy for their health benefits including anti-
adipogenic properties. During the past few decades, dietary 
supplements have become increasingly popular as an alter-
native source to flavonoid-rich fruits and vegetables [157]. 
Even though consuming supplements can ensure us that we 
are getting our daily dose of flavonoids, toxicity issues as 
well as nutrient–drug interactions should be the subject of 
concern. Furthermore, the health promoting effects of some 
of dietary flavonoids are due to the synergistic effects of 
other flavonoids or compounds present in the food. There-
fore, this complex mixture of secondary plant metabolites 
cannot be simply replaced by purified molecules as dietary 
supplements. Further investigations on the synergistic effects 
of flavonoids on adipogenesis are required. There is also 
a need for more studies assessing flavonoid absorption, 
organ- or tissue-specific distribution, and accumulation. 
Specifically, the availability of flavonoids or active metabo-
lites to adipose tissues depends, amongst others, on the lipid 
solubility of the substance. Flavonoids possessing a number 
of unsubstituted hydroxyl group and glycosides are polar 
and water-soluble. There is a negative correlation between 
the number of hydroxyl groups and the lipophilicity of fla-
vonoids. Although most flavonoids are water-soluble, they 
possess some lipophilicity, as well. It is well known that fla-
vonoid aglycones are only slightly soluble in water and show 
lipophilic properties. This lipophilic behavior of flavonoid 
aglycones may allow the uptake of flavonoids by adipose tis-
sue. For instant, quercetin and its metabolites (isorhamnetin 
and tamarixetin) in their aglycone form were found in vari-
able amount in most tissues in rat including white adipose 
tissue [132]. However, the lowest concentration was found 
in adipose tissue and brain [132]. Nevertheless, long-term 
intake of flavonoid-rich diet or supplements may result in 
adequate absorption and accumulation of anti-adipogenic 
concentration of flavonoids in adipose tissues.

Even though flavonoids have shown promising effect 
on inhibiting adipogenesis under experimental condi-
tions, low bioavailability of some flavonoids needs to be 
enhanced for full exploitation of their benefits in preven-
tion of adipogenesis. Therefore, more investigations on 
the appropriate dose of flavonoid in supplements and also 
methods to improve bioavailability and thus efficacy of 
certain flavonoids are warranted.
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