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Abstract
Point-of-care (POC) real-time polymerase chain reaction (PCR) has become one of the most important technologies for many
fields such as pathogen detection and water-quality monitoring. POC real-time PCR usually adopts chips with small-volume
chambers for portability, which is more likely to produce complex noise that seriously affects the accuracy. Such complex
noises are difficult to be eliminated by the traditional fixed area algorithm that is most commonly used at present because they
usually have random shape, location, and brightness. To address this problem, we proposed a novel image analysis method,
Dynamic Deep Learning Noise Elimination Method (DIPLOID), in this paper. Our new method could recognize and output
the mask of the interference by Mask R-CNN, and then subtract the interference and select the maximum valid contiguous
area for brightness analysis by dynamic programming. Compared with the traditional method, DIPLOID increased the
accuracy, sensitivity, and specificity from 57.9 to 94.6%, 49.1 to 93.9%, and 65.9 to 95.2%, respectively. DIPLOID has great
anti-interference, robustness, and sensitivity, which can reduce the impact of complex noise as much as possible from the
aspect of the algorithm. As shown in the experiments of this paper, our method significantly improved the accuracy to over
94% under the complex noise situation, which could make the POC real-time PCR have greater potential in the future.
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Introduction

With the global pandemic of the Coronavirus Disease 2019
(Covid-19), the point-of-care (POC) real-time polymerase
chain reaction (PCR) that based on microfluidic chips
is becoming an important detection method because of
its portability and rapidity, which also has many other
application scenarios such as community testing [1, 2],
veterinary testing [3], and water quality detection [4]. POC
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PCR can greatly reduce the cost of transporting samples and
allow testing, diagnosis, and treatment to be conveniently
performed in the same location, which is important for
controlling the spread of epidemics [5, 6]. However, because
the POC real-time PCR is usually designed with small
volume chambers for portability and flexibility, and the
liquid often requires external power to drive and heat [7].
So it is more likely to cause pressure variation, temperature
changes, and mass transport on the surface because of
the limited vertical space, which may lead to a variety
of interference problems such as bubbles, self-luminous
debris, and light spots [8, 9]. The bubble problem is one
of the most critical factors affecting the accuracy of the
PCR because it not only influences the brightness value
of a large area [10] but also may lead to a series of
problems such as liquid leakage and evaporation, so it may
increase the probability of producing other complex noises
[8]. And complex noise is very likely to affect the accuracy
of detection results, resulting in false-positive or false-
negative results [11]. To solve these problems, researchers
have spent a lot of effort to improve the hardware of PCR
detectors, such as utilizing the gas barrier [12] or using
the interface cladding technique on chips to reduce the
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generation of bubbles [8]. However, these hardware-based
improvements are expensive and increase the difficulty of
the chip fabrication [13, 14].

In fact, the effect of complex noises can be reduced as
much as possible by powerful algorithms at a lower cost,
as long as they do not affect the brightness variation of
all areas within chambers. Different analysis methods may
produce completely different results for these complicated
problems. At present, industry and academia mainly rely on
the traditional algorithm that calculates average brightness
with predetermined fixed area for PCR Image Analysis [15,
16]. The fixed calculated area pattern makes this method
to be less robust if there is complex noise in the selected
area, it may dramatically affect the brightness and cause
false-positive or false-negative results directly because
the complex noise has great randomness in brightness,
location, and occurrence time [10, 15]. Actually, with the
development of deep neural networks in the field of image
processing, many complicated problems such as irregular
noise and target recognition, which are hard to be solved
by traditional algorithms can be effectively handled now
[17, 18]. As a deep neural network with the functions
of target recognition and segmentation, Mask R-CNN has
been widely used for many fields such as radar image
recognition [19], diseases detection [20], and ship detection
[21]. But such an effective method has not been introduced
into the field of noise recognition for real-time PCR.
Therefore, we proposed a novel Dynamic Deep Learning
Noise Elimination Method (DIPLOID) in this paper. Our
new method is based on Mask R-CNN and dynamic
optimal area selection algorithm (DANA). DIPLOID could
automatically recognize and eliminate complicated noises
and dynamically select the optimal calculating region.

With the growing problems such as infectious diseases
and environmental pollution, the importance of POC
devices is daily increasing. It has great application potential
for areas such as isolation facilities, customs, and reservoir
[22–24]. And accuracy is one of the most important
requirements of POC devices. DIPLOID would identify
impurities by Mask R-CNN first, then remove impurities
and use threshold segmentation to select the preliminary
affected area by DANA algorithm, and finally used dynamic
programming to select the largest continuous area to
calculate the average brightness. With these measurements,
DIPLOID could significantly increase the accuracy for
experiment images that own impurity interference. As
shown in the experiments of this paper, our method
increased the accuracy from 57.9 to 94.6% compared with
the traditional method. Besides, it decreased the False
Positive Rate (FPR) from 34.1 to 4.8% and reduced the
False Negative Rate (FNR) from 50.9 to 6.1%, respectively.
Compared with the traditional algorithm, the performance
improvement of our method is very significant. In addition,

our method is more sensitive to brightness variety and
more robust to noise interference. So it can improve the
accuracy of POC real-time PCR, and make the portable PCR
a broader application prospect.

Materials andmethods

Materials

Data preparation

In this study, we tested the performance of our method
using the standard pathogen RNA sample (COVID-19) and
real DNA sample (Escherichia coli ATCC 8739). COVID-
19 Nucleic Acid Detection Kit (Fluorescent RT-PCR) was
purchased from Jiangsu Diagnostics Biotechnology Co Ltd
(202103003EN, China). The standard sample, Certified
Reference Material of 2019 Novel Corona Virus (2019-
nCoV) Ribonucleic Acid Genome (SN:2020-02, GBW(E)
091099, National Institute of Metrology, China) consists
of 8.04×102 copy/μL E gene, 6.89 ×102 copy/μL ORFlab
gene, and 1.36×103 copy/μL N gene (Genome coordinate:
1320115600, GenBank No. NC 045512). Escherichia coli
(ATCC 8739) was originally obtained from Guangdong
Huankai Microbial Technology Co LTD, and the strain
was activated and cultivated with the Lysogeny Broth (LB)
medium as the real samples we used. Nucleic acid was
extracted from a 1 ml overnight culture by Wizard Genomic
DNA Purification Kit (Promega). In this work, the standard
RNA sample and real DNA sample were diluted in TE
buffer (17890, Thermal Fisher Scientific) on a scale of 500
and 100000 as template nucleic acid. SWM-01 PCR Nucleic
Acids Analyzer (SN:202003010EN, Shineway, China) and
microfluidic PCR chip (BS-C3-12/ BS-C6-12, Shineway,
China) were used for nucleic acid amplification and shown
in Fig. 1.

For RNA standard sample, the total reaction volume is
25 μL which consists of 16 μL RT-PCR Buffer Master
Mix, 2 μL COVID-19 Reaction Solution, 2 μL RT-PCR
Enzyme Mix, and 5 μL 500-fold diluted RNA Reference
Material. For DNA real sample, a 25 μL reaction volume
containing 12.5 μL TaqManTM Fast Advanced Master Mix
(ThermoFisher, USA), 1 μL INVOA Primer F (10 μM),
1 μL INVOA Primer R (10 μM), 0.5 μL INVOA Probe
P (10 μM), 5 μL Rnase-free H2O from Escherichia coli
(universal) qPCR test kit (Invitrogen), and 5 μL diluted
Escherichia coli (ATCC 8739) DNA. Then, 12 μL mixture
was independently loaded in the microchip with bubbles
that easily be generated by the air-containing pipette tip.
According to the users’ manual of SWM-01, we set up
the following conditions for thermal cycling of COVID-
19 RNA standard sample: (1) Reverse transcription: 50 ◦C
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for 15 min; (2) pre-cycle: 95 ◦C for 3 min; (3) 45 thermal
cycles: 95 ◦C for 10 s and 60 ◦C for 40 s, with a total
reaction time of 55.5 min; and Escherichia coli (ATCC
8739) DNA sample according to the following conditions:
(1) pre-cycle: 95 ◦C for 3 min; (2) 45 thermal cycles: 95 ◦C
for 10 s and 55 ◦C for 40 s, with a total reaction time of
40.5 min. Through the excitation of the blue LED (470nm),
the fluorescent images were collected by complementary
the metal oxide semiconductor (CMOS) with the resolution
of 800 × 480 pixels. It should be noted that the DIPLOID
image analysis method proposed in this paper has universal
validity, and the types of experiment samples do not affect
the effectiveness of the algorithm because they have the
same luminescence mechanism.

Dataset and dataset augmentation

Deep learning networks have achieved great success in visual
recognition fields such as autonomous driving and face
recognition, but one of the most serious limitations for deep
learning is the lack of data [25]. The requirement of the large
dataset limits the application of deep learning networks in
many fields that data is expensive or hard to obtain. To
solve this dilemma, deep learning networks based on the
small dataset with effective data augmentation methods
are becoming more and more popular recently [26, 27].
Because of the high cost to acquire PCR images, we adopted
the randomly targets copy strategy [28] combines with
the image rotation method [29] as the data augmentation
method in this paper. We first randomly copied and pasted
impurities with different brightness and size to augment the
images, then doubled all data again by rotating them 180◦.

Fig. 1 The testing equipment of portable real-time PCR and micro-
fluid chips. (a) Portable fast microchip PCR analyser of Shineway. (b)
3-chamber chip. (c) 6-chamber chip

This step not only quickly increased the number of training
images but also simulated more patterns of noise, which
could improve the training efficiency of the model.

The original training dataset contains 450 images, the
validation dataset contains 50 images, and the testing dataset
contains 1350 images. After augmentation, the original
training images were increased from 450 to 1800. The
dataset is labeled with polygon box by via-2.0.10, and all
annotation information of the training dataset and the testing
dataset is stored in two JSON files named VIA REGION
DATA respectively. We could divide the prediction results
into four types: False Negative (FN), True Negative (TN),
False Positive (TP), and True Positive (TP). The key factors
which present the precision of the prediction results are
False Positive Rate (FPR), False Negative Rate (FNR), and
Accuracy (ACC) [30–32]: FNR = FN/(TP + FN), FPR =
FP/(FP+TN), ACC = (TN +TP)/(TN +TP+FN +FP),
sensitivity = T P/(T P + FN), specificity = T N/(FP +
T N). The dataset of the current study is available from the
corresponding author on reasonable request.

Methods

Methods overview

In this paper, a novel dynamic deep learning noise elimi-
nation method based on Mask R-CNN and dynamic selec-
tion is proposed as Fig. 2 shows. The DIPLOID could be
mainly divided into two parts: interference identification
and dynamic selection, which are processed by Mask R-
CNN and DANA respectively. First, the Mask R-CNN will
identify impurities and output masks for the input images.
The ground truth we used to train Mask R-CNN is the man-
ually labeled bubbles and noise. The output of the Mask
R-CNN is the recognition result and the mask of impurities,
which are shown in Fig. 2(B) and (C) respectively.

Second, the DANA will subtract the impurity regions
from original images through the cv2.subtract function. The
input image shown in Fig. 2(A) is used as the minuend, and
the mask is used as the subtrahend. After subtractions, the
gray value of the original corresponding impurity area is
perfectly reduced to 0, and pixels in other areas are retained
at their original values, and the subtraction result is shown
in Fig. 2(D).

Third, the DANA will calculate the Maximum Valid
Contiguous Area (MVCA) from the subtraction result.
DANA will construct a dynamic programming list (DP) for
realizing this task. The subtraction result is binarized by the
dynamic selection method with the background mean value
as the threshold. The pixels below the threshold are set to 0,
and the pixels above the threshold are set to 1.

Fourth, the dynamic selection method is used to calcu-
late the maximum square (Fig. 2(G)) with all values of 1 for
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Fig. 2 Flow chart of the processing procedure for DIPLOID. (A) Input images. (B) Recognition result of Mask R-CNN. (C) Output mask. (D)
Subtraction result. (E) Threshold binary result. (F) Dynamic programming result. (G) MVCA result. (H) Brightness analysis of MVCA

calculating the brightness curve. According to the dynam-
ically selected region, the average gray value in the region
is calculated and the brightness change curve is output to
make predictions (Fig. 2(H)), where the x-axis of the curve
is the cycle number and the y-axis is the brightness value.

Last but not least, the cycle threshold (CT) values are
used to predict the results of curves, which is the most
commonly used method at present [33]. For CT values, it
is the x-axis value of the intersection point between the
brightness curve and a straights line y = 10 ∗ std +
C3, where C3 is the brightness value of cycle 3 and the
std is the standard deviation from cycle 3 to cycle 15.
After calculating the intersection point (xi, yi) between the
brightness curve and the straight line, if xi ≤ 37 then the
prediction is positive, if xi ≥ 40 then the prediction is
negative, and if 37<xi<40 then the prediction is unknown
and need to be tested again.

Mask R-CNN

Mask R-CNN plays an important role in DIPLOID for iden-
tifying the location of bubbles and noise, its recognition
result will directly affect the selection effect of DANA.
Since the bubbles and noises themselves have initial bright-
ness and are easily adherent with each other in the liquid

region, it is difficult to remove them directly by the tradi-
tional algorithm, so we introduce Mask R-CNN which is
more accurate in region segmentation. Since Mask R-CNN
uses ROI Align instead of ROI Pooling on the basis of Fast
R-CNN, so it can locate the target spatial location more
accurately. The structure and parameters of the model we
use in this paper are shown in Fig. S1 and Table S1, respec-
tively. Mask R-CNN expands the function of predicting
segmentation masks based on Fast R-CNN, so it will out-
put masks for each ROI, which provides a design basis for
interference elimination of DIPLOID. DIPLOID uses Mask
R-CNN to identify interfering objects in the input image and
output Mask. Thus, DIPLOID can accurately eliminate the
noise region and make its gray value to be accurately iden-
tified as 0 in the subsequent dynamic programming, which
is one of the cores of our proposed method.

Compared with other instance segmentation algorithms
that first divide then classify, Mask R-CNN adopts a three-
way parallel design conception, which can synchronize
the classification and segmentation operation, making the
network simpler and more efficient. The loss of Mask R-
CNN is defined as L = Lcls + Lbox + Lmask , in which
the Lcls , Lbox , and Lmask represent the classification loss,
bounding-box loss, and average binary cross-entropy loss
respectively [34].
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DANA

The new PCR image detection method, DIPLOID, that we
propose in this paper can be mainly divided into two parts:
interference identification (by Mask R-CNN) and dynamic
selection (by DANA). Successful noise identification by the
deep neural network is only the first step. To effectively
select the optimal region, we also need an effective dynamic
selection algorithm. Therefore, in this section, we proposed
a novel dynamic optimal area selection algorithm (DANA)
to achieve fully automatic selection according to the features
of real-time PCR images.

DANA will first store the original images and masks
of interference produced by Mask R-CNN under the same
path, where the masks are named according to the format
of image name + number. Then, classify them into the
corresponding sub-directories according to the number of
cycles and naming rules, then perform the cv2.subtraction
operation among the image and masks in each sub-directory.
When subtrahend is the mask format, cv2.subtract will only
keep the pixels of the input image which correspond to
the non-zero area of the mask, and all the other pixels are
uniformly cleared to 0. So before operating subtractions, we
first need to apply an invert operation for the mask which is
output from Mask R-CNN, to make the regions of impurities
are 0 and the other pixels are 1.

Second, DANA will adopt the distinguish threshold which
is calculated by the background mean value to recalculate
the subtraction results into binary format, where the pixels
with a luminance below the threshold are considered as 0
while the pixels with a luminance above the threshold are
considered as 1. The value of the distinguish threshold can
be decided either by the average background brightness or
manual adjustment. For example, if the background area is
[x1 : x2, y1 : y2], and the total number of pixels among this
area is N, the threshold = ∑x=x2,y=y2

x=x1,y=y1
(R∗0.3+G∗0.59+

B ∗ 0.11)/N , where the R, G, and B represent the value of
3 channels for each pixel.

Then, DANA will compute the Maximum Valid Contigu-
ous Area (MVCA) from all effective areas with the pixel
value of 1 and the MVCA will be used for the brightness
analysis. During the process of computing MVCA, we need
to construct a dynamic programming list (DP) to select the
optimal area effectively as Fig. 2(G) shows. The initial input
is the binarized image after the threshold prediction process
as Fig. 2(E) shows. As for Fig. 2(F), it will update the values
in Fig. 2(E) according to the formula (1), where i represents
the number of rows and j represents the number of columns.
Roughly speaking, the first row, first column, and all pix-
els with the value of 0 will keep their original values, and
other pixels will be calculated iteratively from left to right
and from top to bottom in a group of four points as green
boxes in Fig.S2(b) shows. The calculation method for each

box is to update the value of the bottom-right point as the
minimum value among these four points plus one except
the bottom-right value is 0. After all iterations are com-
pleted, the maximum value stored in the new DP is the edge
length of the MVCA, and the corresponding point DP[i][j]
is the bottom-right point of the MVCA as the yellow box
in Fig.S2(b) shows. And for the following formulas: the
LMV CA represents the length of the MVCA, (x1, y1) and
(x2, y2) represent the upper-left and bottom-right points of
the MVCA, respectively.

DP[i][j ]=

⎧
⎪⎨

⎪⎩

DP [i][j ] i = 0 or j =0
0 DP [i][j ]=0
min(DP[i−1][j ],DP[i][j−1],
DP [i − 1][j − 1]) + 1 otherwise

(1)

LMV CA = max(LMV CA , DP [i][j ]) (2)

(x2, y2) = (i, j)DPmax (3)

x1 = (x2 + 1) − LMV CA (4)

y1 = (y2 + 1) − LMV CA (5)

Finally, the MVCA will be the selected areas for bright-
ness analysis. The calculation method for brightness anal-
ysis is the same as the traditional algorithm, where the
histograms of all pixels in the MCVA are summed and aver-
aged, then save and output by different chambers and make
the prediction for each chamber.

Comparative methods and training environment

We adopted the most commonly used traditional fixed selec-
tion algorithm and the human selection method as compar-
ative methods in this paper. The traditional fixed selection
algorithm is selected as the ground truth method because it
is one of the most commonly used methods for qPCR in
the industry at present. For this method, it usually needs to
manually predetermine an effective region as the brightness
calculation region for each chamber according to the size
and structure of the chip. This region is usually rectangu-
lar and contains the entire reaction chamber, which does not
change during the subsequent cycle. In industrial produc-
tion, the regions are usually measured and set in advance by
the equipment manufacturer. Besides, the regions need to
be manually redefined if there are any changes in the chip
design. As the most commonly used method, the fixed selec-
tion method only works efficiently for images with uniform
brightness. The actual experiments are easily be influenced
by uneven heating, impurities, and improper operations,
the traditional method is less effective for these compli-
cated situations and may even cause false results. On the
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contrary, the human selection algorithm will perform bet-
ter for these complicated situations. The human selection
method manually selected the effective area for each cycle
so this area could flexibly vary according to the situation.
The human selection method can accurately avoid bubbles,
noise, light spots, and other interference, but it is only suit-
able for laboratory calibration reference since it is quite
time-consuming, which can not meet the needs of industrial
production.

The training of deep neural networks requires the high
performance of computer configuration, so we use the
PG620-P2G deep learning workstation with Intel Core I7-
9800X processor with the Graphic Card of GeForce RTX
2080 Ti which possesses 11G graphic memory to train
the model. Because interference prediction and dynamic
selection require lower arithmetic power. Considering the
practicality so we used Precision 5820 which owns the pro-
cessor of intel Xeon W-2245 for processing the DIPLOID.
The project is installed on anaconda3-4.4.0 of Linux sys-
tem with python 3.6 and OpenCV2, and the TensorFlow
(TensorFlow-gpu 1.9.0) and Keras (Keras-applications-
1.0.8) are also installed in the virtual environment of the
anaconda.

Results and discussion

Results of solving false-negative problem

The bubble is one of the most severe challenges during PCR
reactions, which can easily cause false-negative results. The
bubbles will greatly reduce the fluorescence brightness of
the covered area. The traditional method usually selects the
whole chamber or a fixed area during the entire reaction
period and is therefore susceptible to false-negative results
from bubbles when they cover a large area.

As the experiment is shown in Fig. 3, the reactants of
chambers 1 to 3 are standard samples, so the theoretical
results should all be positive with an exponential growth
trend. However, due to the large bubble area in chambers 2
and 3, the average regional brightness is seriously affected.
If the traditional algorithm is adopted, as shown in Fig. 3(d),
the brightness of chambers 2 and 3 is seriously lowered
by the bubble region, thus presenting false-negative results
with the flat trend. On the contrary, the effect of bubbles on
brightness is minimized since DIPLOID is able to recognize
and avoid the bubble region. Its analytical results are
shown in Fig. 3(f), where all three chambers are correctly
predicted to be positive with a clear exponential growth
trend. Human selection is another commonly used method
in laboratory studies, but this method is highly dependent

on experience and time-consuming. However, our method
is fully automated, time-saving, and more suitable for
commercial and research purposes.

As the performance analysis is shown in Fig. 4, the
traditional method is easily affected by bubbles, with the
accuracy of less than 40% and the false-negative rate of
higher than 60%. While the accuracy of DIPLOID is 100%.
When dealing with the problem of bubbles, the performance
of DIPLOID far exceeds the traditional method.

Results of solving the false-positive problem

Complicated noise is another factor that seriously affects
accuracy because it may lead to a false-positive result.
Complicated noise of real-time PCR has features such as
high brightness, irregularity, and overlap with the reaction
area. As the example is shown in Fig. 5, the complex noise
is difficult to be removed by the traditional method. In this
experiment, we used the negative control in chambers 2
and 3, and Escherichia coli (ATCC 8739) in chamber 1.
So, the theoretical analysis results of chamber 1 should be
positive, and results of chambers 2 and 3 should be negative.
However, the bubble and complicated noise were observed
in chamber 1 and chamber 2, respectively. The cause of
these problems may because of the pollution of reaction
liquid, the noise of light source, or unregulated operation.

For this situation, since the effective region in chamber 2
is changing all the time, human selection needs to repeatedly
measure and calibrate the target region for each cycle, which
is cumbersome and time-consuming. And if the traditional
method is adopted, it mistakenly counts the noise brightness
change into the effective region and wrongly outputs the
positive growth trend as chamber 2 of Fig. 5(d) shows, and
it also incorrectly predicts the chamber 1 to be negative with
the influence of the bubble. On the contrary, the DIPLOID
removed the noise and bubbles in the impurity subtract step,
so it could accurately select the effective undisturbed region
and output the negative result for chamber 2 and positive
result for chamber 1 as Fig. 5(f) shows, which owns optimal
accuracy and conciseness.

As the performance analysis shown in Fig. 6, the tradi-
tional algorithm is easy to be influenced by the presence
of complex noise because it may wrongly regard the noise
brightness as an increase of reactant brightness. So, for the
example shown in this section, the traditional method owns
the false-positive rate and false-negative rate of more than
30%, and the accuracy of less than 35%. And the DIPLOID
has accuracy as high as 100% without false-positive predic-
tion. So, our method is obviously more resistant to complex
noise than the traditional method because of the higher
detection accuracy and lower false-positive rate.
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Fig. 3 Original bubble images and comparison results of three dif-
ferent analysis methods. (a) Cycle = 1. (b) Cycle = 45. (c) Bubble
detection result by Mask R-CNN. (d) Traditional method. (e) Human
selection method. (f) DIPLOID. The blue curve represents Chamber
1, the green curve represents Chamber 2, and the red curve represents

Chamber 3. The circle next to the chamber legend represents the pre-
diction result of each Chamber. In (d), Chamber 1 is True Positive (TP),
Chamber 2 and 3 are False Negative (FN). In (e) and (f), Chamber1,2,3
are all True Positive (TP)

Discussion

Table 1 presents a comprehensive analysis of the test dataset
for three methods, which contains a total of 108 samples,
and each of the samples has 45 cycles. We adopted the
cross-validation strategy by randomly selecting 48 samples
each time and repeating this step five times, then calculating
the average value and standard deviation to make the
final predictions. In Table 1, the sensitivity represents the
probability that positive samples are correctly predicted, and
specificity represents the probability that negative samples
are correctly predicted [35]. The average sensitivity and

Fig. 4 Performance comparison of the false-negative problem

specificity of the traditional method were only 49.1% ±
3.3% and 65.9% ± 3.7% respectively, which means the
average false detection rate was over 40%. With such a
high false detection rate, it is obvious that the traditional
method cannot get reliable results under the interference
of complex noise. On the contrary, the DIPLOID proposed
in this paper showed excellent robustness to interference.
Compared with the traditional method, DIPLOID increased
the sensitivity and specificity to 93.9%±2.2% and 95.2%±
1.1%, respectively. So, the average false detection rate
was decreased to less than 6%, which far exceeds the
performance of the traditional method.

From the perspective of parameters, the traditional algo-
rithm is similar to the manual selection method. They need 5
key parameters including the x-coordinate and y-coordinate
of the start-points and end-points, and the average bright-
ness of the selection area. The parameters of DIPLOID were
more complex, Mask R-CNN included 48 major training
parameters such as learning rate, steps per epoch, and val-
idation steps. While DANA required 15 major parameters
such as DP, MVCA coordinates, and distinguish thresh-
old. The bubble, noise, and background usually have initial
brightness for PCR images. Even though some impurities
seem to be black, however, their gray values are usually not
0. Therefore, it is difficult to simply find a threshold and
separate the interference from the reaction fluid directly. To
solve this problem, the DIPLOID method will first accurately
identify the precise location of impurities by the deep neural
network, then reduce the gray value of the corresponding
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Fig. 5 Original complicated noise images and comparison results of
three different analysis methods. (a) Cycle = 1. (b) Cycle = 33. (c)
Detection result by Mask R-CNN. (d) Traditional method. (e) Human
selection method. (f) DIPLOID. The blue curve represents Chamber
1, the green curve represents Chamber 2, and the red curve represents

Chamber 3. The circle next to the Chamber legend represents the pre-
diction result of each Chamber. In (d), Chamber 1 is False Negative
(FN), Chamber 2 is False Positive (FP), Chamber 3 is True Negative
(TN). In (e) and (f), Chamber 1 is True Positive (TP), Chamber 2 and
3 are True Negative (TN)

area to 0. Therefore, the difference of gray values between
the impurity region and reaction fluid region is greatly
increased, which makes them much easier to be separated.
So, the DANA could calculate the average brightness of
the background for separating the MVCA, and the impurity
subtraction strategy makes it able to adapt to most samples.

In conclusion, the DIPLOID reaches the state-of-the-art
level of PCR image analysis. when dealing with complex
noise and bubble problems, the traditional algorithm cannot

Fig. 6 Performance comparison of the false-positive problem

accurately identify and remove noise due to the inflexible
area selection mechanism, and thus shows poor average
accuracy as low as 58%. Differently, the DIPLOID improved
the average accuracy to 95% by effectively recognizing and
removing interference through the deep neural network and
maximum area selection algorithm, showing outstanding
performance for dealing with complex situations. It is not
only sensitive to the brightness change but also more robust
to the interference. Compared with traditional algorithms,
the DIPLOID algorithm has obvious advantages in accu-
racy, false-positive rate, and false-negative rate. It can better
adapt to the high accuracy requirements of POC real-time
PCR, and make the portable PCR have greater potential in
future disease detection.

Table 1 Performance comparison of three analysis methods for test
dataset

Method TP FP TN FN Sensitivity Specificity ACC

Human 23 0 25 0 100.0% 100.0% 100.0%

±0.0% ±0.0% ±0.0%

Traditional 12 8 16 12 49.1% 65.9% 57.9%

±3.3% ±3.7% ±2.7%

DIPLOID 22 1 24 1 93.9% 95.2% 94.6%

±2.2% ±1.1% ±1.1%
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Conclusion

POC real-time PCR is becoming one of the most important
detection methods for epidemic diseases. The complex
noises such as bubbles, fluorescent debris, and light spots
influence the accuracy of the real-time PCR hugely.
Besides, these problems can easily lead to false-negative
or false-positive results. The design of POC PCR usually
adopts small volume chambers, which are more likely
to produce complex noise. These issues are difficult to
be solved by the traditional image analysis method that
is widely used now, so we proposed a novel method,
DIPLOID, to reduce the influence of the above problems
from the aspect of algorithms.

Compared with the traditional fixed selection algorithm,
our new method effectively increases the detection accuracy
from 57.9 to 94.6%. Besides, because bubbles and complex
noise can greatly affect the average brightness, and the tra-
ditional algorithm cannot eliminate the interference, so the
FPR and FNR of it are up to 34.1% and 50.9%. While the
DIPLOID can effectively recognize and eliminate the inter-
ference by deep neural network and dynamic selection, so
its FPR rate is only 4.8%. After eliminating the interference,
the DIPLOID will apply threshold segmentation and then
calculate the MVCA, so it is very sensitive to the brightness
adjustment and the FNR rate is decreased to 6.1% in our
experiments. Our method is more accurate, sensitive, and
robust than the traditional method. It can reduce the impact
of complex noise as much as possible from the perspective
of software, which will allow POC real-time PCR to have
more potential in the detection and control of infectious
diseases in the future.
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