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Abstract Protein acylation has emerged as a large fam-
ily of post translational modifications in which an acyl
group can alter the function of a wide variety of pro-
teins, especially in response to metabolic stress. The
acylation state is regulated through reversible acylation/
deacylation. Acylation occurs enzymatically or non-en-
zymatical ly, and responds to acyl-CoA levels .
Deacylation on the other hand is controlled through
the NAD+-dependent sirtuin proteins. In several inborn
errors of metabolism (IEMs), accumulation of acyl-
CoAs, due to defects in amino acid and fatty acid met-
abolic pathways, can lead to hyperacylation of proteins.

Introduction

Organisms have several mechanisms to regulate cellular pro-
cesses. In addition to the classical ways of gene regulation
such as transcription and translation, post-translational modi-
fications (PTMs) of proteins have emerged as a dynamicmode
of regulation, which takes place after proteins are synthesized.
Either by covalent bonding or proteolytic cleavage the func-
tion and/or structure of a protein can be modified in a more
rapid fashion than for instance transcriptional regulation. This
allows the cell to respond immediately to environmental
changes. Several types of PTM exist, of which phosphoryla-
tion is best studied. In recent years, however, protein acylation
has emerged as a large family of modifications in which an
acyl group— whether an acetyl moiety or a larger acyl group
— can be identified on a wide variety of substrate proteins.
Protein acylation involves covalent binding of an acyl group
to one or more lysine residues of a protein. This neutralizes the
positively charged lysine residue, that is often situated in the
active or binding site, altering the function or the interaction
capabilities of the protein (Walsh et al 2005). At the same
time, deacylation enzymes — called sirtuins — have been
identified in different subcellular compartments. Sirtuins are
active regulators of acylation status and as such control me-
tabolism at many levels (Houtkooper et al 2012).

In mitochondria, PTMs provide a perfect mechanism for
quick adaption to changes in energy demand and availability
of metabolites. The PTM regulation in this organelle is even
tighter considering the fact that intermediary metabolites that
are handled by the mitochondrion are substrates for these
PTMs as well (Choudhary et al 2014). Indeed, recent work
in models for inborn errors of metabolism (IEMs) has marked
the extent and variety of protein acylation modifications
(Pougovkina et al 2014b; Hirschey and Zhao 2015). In this
review, we discuss the pathophysiological role of protein
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This can have a direct effect on protein function and
might play a role in pathophysiology. In this review
we describe several mouse and cell models for IEM that
display high levels of lysine acylation. Furthermore, we
discuss how sirtuins serve as a promising therapeutic
target to restore acylation state and could treat IEMs.
In this context we examine several pharmacological
sirtuin activators, such as resveratrol, NAD+ precursors
and PARP and CD38 inhibitors.
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acylation and how sirtuin activation may be a valuable strate-
gy to combat excessive acylation in IEMs.

Reversible acylation as a post-translational
modification

The first discovered type of acylation and therefore best char-
acterized is acetylation, which describes the bond of acetyl-
CoA to lysine. Acetylation can affect protein activity, protein-
protein interaction, protein stability and subcellular localiza-
tion of proteins. Functionally, acetylation is well known for
activating gene expression (Allfrey et al 1964) by weakening
the histone interaction with DNA and trafficking of bromo-
domain containing proteins to and from chromatin
(Kouzarides 2007; Lee andWorkman 2007). It is now evident,
however, that acetylation also alters the function of non-
histone proteins, such as p53 (Gu and Roeder 1997).

Over the past decade it became evident that other short-chain
acyl groups can also bind to lysine residues (Lin et al 2012).
Lysine propionylation and butyrylation are structurally similar
to acetylation (Fig. 1) and occur at many sites that are also
acetylated on histones and non-histone proteins, including
p53 (Chen et al 2007; Cheng et al 2009; Zhang et al 2009).
Lysine malonylation, succinylation and glutarylation are
thought to have a more profound impact on protein structure
and function since it not only neutralizes the charge of the lysine
residue but even charges it negatively (Hirschey and Zhao
2015). Lysine crotonylation and 2-hydroxyisobutyrylation also
serve as novel PTMs, but so far only histone targets have been
found (Tan et al 2011; Montellier et al 2012; Dai et al 2014).

The spectrum of acylation PTMs was expanded with the
identification of regulatory long-chain acylation, in particular
lysine myristoylation (Jiang et al 2013). Although this modi-
fication was already detected in the 1990s on TNF-α and IL-
1α (Stevenson et al 1992; Stevenson et al 1993), it received
little attention for many years until a regulatory mechanism
was discovered through SIRT6-dependent deacylation (Jiang
et al 2013). This member of the sirtuin family, which will be
discussed in a later section, preferentially removes long-chain
acyl groups from lysine residues, including hexanoyl,
octanoyl, decanoyl, dodecanoyl, palmitoyl and oleoyl chains
(Feldman et al 2013). Despite the lack of literature on these
types of acylation, the discovery of their regulatory mecha-
nisms points at a functional role in PTM.

Lysine acylation

The (sub)cellular acylation status is dependent on the balance
between acylation and deacylation. Acylation can occur either
enzymatically or non-enzymatically. In the case of enzymatic
acetylation, lysine acetyltransferases (KATs, also referred to as
histone acetyltransferases or HATs) transfer an acetyl group

from acetyl-CoA to a lysine residue (Roth et al 2001).
Although originally reported to acetylate histones only, KATs
also acetylate non-histone proteins in different compartments
of the cell and members of the p300/CREB family of KATs
have been shown to catalyze propionylation, butyrylation,
crotonylation and succinylation as well (Chen et al 2007;
Cheng et al 2009; Tan et al 2014; Hirschey and Zhao 2015;
Sabari et al 2015). In mitochondria, where acetylation is highly
abundant (Kim et al 2006), GCN5L1 was reported as a mito-
chondrial acetyltransferase (Scott et al 2012).

Non-enzymatic acylation of lysine residues is possible un-
der conditions with an alkaline pH and high abundance of
substrate (Paik et al 1970; Wagner and Payne 2013). Since
the mitochondrion is the only organelle that fits both these
criteria, this is considered the principal location for non-
enzymatic acylation reactions. Furthermore, acetyl-CoA gen-
erated by fatty acid oxidation is a direct substrate for mito-
chondrial protein acetylation and mitochondrial protein acet-
ylation levels correlate with mitochondrial acetyl-CoA levels
(Hirschey et al 2010; Hirschey et al 2011; Pougovkina et al
2014a). Together, these local environmental conditions make
it likely that both enzymatic and non-enzymatic acylation oc-
cur side by side, at least in mitochondria.

Sirtuins as lysine deacylase enzymes

Lysine deacetylation or deacylation is catalyzed by lysine
deacylases (KDACs, or HDACs in earlier papers) that remove
the acyl group from the lysine residue. For an overview of the
conventional Zn2+-dependent KDACs we refer the reader to
earlier comprehensive reviews (de Ruijter et al 2003; Menzies
et al 2015). Here, we will focus on the NAD+-dependent
KDACs — called sirtuins— as they are known for their role
in metabolic regulation (Houtkooper et al 2012; Newman et al
2012; Menzies et al 2015). Since sirtuins are NAD+ depen-
dent, a physiological or pharmacological increase of NAD+

levels leads to sirtuins activation (Houtkooper et al 2010). In
mammals, there are seven sirtuins with different subcellular
localizations and deacylation targets (Haigis and Sinclair
2010). While sirtuins were originally described as deacetylase
enzymes, it has become apparent that longer acyl groups can
also be removed, and some sirtuins possess ADP-ribosylation
activity (Houtkooper et al 2012). The best-described sirtuin in
this context is the mitochondrial SIRT5, which has
demalonylation, desuccinylation and deglutarylation activity
(Du et al 2011; Peng et al 2011; Park et al 2013; Rardin et al
2013; Tan et al 2014; Nishida et al 2015).

Metabolic consequences of deacylation dynamics

Deacylation of proteins by sirtuins can transform the protein
to its active state, but can also result in an opposite effect, such
as protein degradation. For instance, SIRT1, the best-
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described sirtuin, is an important regulator of glucose and fat
metabolism in response to energetic challenges (Houtkooper
et al 2012). During energy limitation, elevated NAD+ levels
induce SIRT1, which activates several proteins that regulate
the switch from glucose metabolism to fat oxidation, such as
FOXO1, PPARα and PPARγ coactivator-1 α (PGC-1α).
Both in liver and skeletal muscle, this activation leads to inhi-
bition of glycolysis and enhanced fatty acid oxidation
(Purushotham et al 2009; Philp et al 2011). On the other hand,
SIRT1 can also inactivate proteins by deacetylation. It re-
presses for example the transcription of uncoupling protein 2
(UCP2) in the pancreas, resulting in increased insulin secre-
tion (Moynihan et al 2005; Bordone et al 2006). Similarly,
SIRT1 activation leads to degradation of CREB-regulated
transcription cofactor 2 (CRTC2) that suppresses the tran-
scription of gluconeogenic genes (Liu et al 2008).

SIRT3 is the principal regulator of mitochondrial
deacetylation and is highly expressed in liver, kidney and
heart (Ahn et al 2008). It targets several metabolic enzymes,
including long-chain acyl-CoA dehydrogenase (LCAD), glu-
tamate dehydrogenase (GDH) and 3-hydroxy-3-
methylglutaryl CoA synthase 2 (HMGCS2), which are in-
volved in fatty acid oxidation, ketone body production and
TCA cycle. SIRT3 therefore is essential in the switch from
glucose metabolism to lipid and amino acid catabolism, that
is necessary to adapt to fasting (Hebert et al 2013). Moreover,

SIRT3 also activates urea cycle enzyme ornithine
transcarbamoylase and protects the cell from reactive oxygen
species (ROS) via activation of superoxide dismutase 2
(SOD2) (Chen et al 2011; Hallows et al 2011).

In addition to direct regulation, acetylation also plays a part
in PTM crosstalk, where acetylation either blocks a residue so
that another PTM cannot bind, or affects binding of nearby
PTMs. For example, acetylation of sterol regulatory element-
binding protein 1 (SREBP1a), that controls lipogenesis,
blocks the binding of ubiquitin and stabilizes the protein
(Giandomenico et al 2003). Conversely, acetylation of phos-
phoenolpyruvate carboxykinase (PEPCK) stimulates interac-
tion with E3 ubiquitin ligase, promoting degradation of the
protein (Jiang et al 2011). Altogether, the central position of
sirtuin proteins allows these proteins to integrate metabolic
cues into pleiotropic adaptive responses.

Acylation in inborn errors of metabolism

In several inborn errors of metabolism (IEMs), defects in ami-
no acid and fatty acid metabolic pathways can cause accumu-
lation of acyl-CoAs in different compartments of the cell. It
seems reasonable that high abundance of substrate can have a
direct effect on lysine acylation and the regulation of proteins,
especially in mitochondria, where a pH of around 8 facilitates

Fig. 1 Regulation and chemical structures of lysine acylation
modifications, including acetylation, propionylation, butyrylation, 2-
hydroxyisobutyrylation, crotonylation, malonylation, succinylation,
glutarylation and myristoylation. Lysine acylation is catalyzed by lysine
acyltransferase (KAT) and at least partly through non-enzymatic reactions

driven by acyl-CoA levels. Lysine deacylation is catalyzed by lysine
deacylase (KDAC) enzymes, such as sirtuins. PCC: propionyl-CoA car-
boxylase; GCDH: glutaryl-CoA dehydrogenase; MCD: malonyl-CoA
decarboxylase; SCAD: short-chain acyl-CoA dehydrogenase
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non-enzymatic reactions of acyl-CoA with lysine residues of
proteins (Wagner and Payne 2013). Indeed, several mouse or
cell models for IEM, in which acyl-CoAs accumulate, display
high levels of lysine acylation, including models for
propionyl-CoA carboxylase (PCC) deficiency (OMIM
606054), glutaryl-CoA dehydrogenase (GCDH) deficiency
(OMIM 231670), malonyl-CoA decarboxylase (MCD) defi-
ciency (OMIM 248360) and short-chain acyl-CoA dehydro-
genase (SCAD) deficiency (OMIM 201470) (Pougovkina et
al 2014b; Tan et al 2014; Colak et al 2015).

In PCC deficient patients the conversion of propionyl-CoA
to methylmalonyl-CoA is compromised. Clinically, patients
may present with a variety of symptoms, including seizures,
encephalopathy, intellectual disability and cardiomyopathy.
Nowadays, many countries have included PCC deficiency in
their newborn screening programs, but before introduction of
these screening programs patients would be diagnosed in the
neonatal period because of rapidly progressing symptoms or
at a later stage in childhood with a more chronic form of the
disease (Mardach et al 2005; Fenton et al 2011).
Biochemically, PCC deficiency results in metabolic acidosis,
ketotic hyperglycinemia, hypoglycemia and elevated levels of
propionic acid and propionyl carnitine in plasma and urine
(Schwab et al 2006; de Keyzer et al 2009; Fenton et al
2011). One of the possible pathophysiological mechanisms
in PCC deficiency might be the inhibitory effect of
propionyl-CoA on pyruvate dehydrogenase (PDG), α-
ketoglutarate dehydrogenase (KGDH), OXPHOS complex
III and succinate-CoA ligase (Stumpf et al 1980; Schwab et
al 2006). Recently, an increase in lysine propionylation was
discovered in patients with PCC deficiency (Pougovkina et al
2014b), which could explain how propionyl-CoA mechanis-
tically inhibits these enzymes.

GCDH deficiency results in impaired breakdown of lysine,
hydroxylysine and tryptophan. Clinically, patients often pres-
ent with macrocephaly at birth and develop neurological
symptoms (e.g. dystonia, dyskinesia and ataxia) shortly after
(Hedlund et al 2006). Like PCC deficiency, GCDH deficiency
is in many countries included in the newborn screening pro-
gram. Biochemically, GCDH deficiency results in elevated
levels of glutaric acid in plasma and urine. In GCDH deficient
mice, the accumulation of glutaryl-CoA has been shown to
enhance lysine glutarylation with subsequent inhibition of
carbamoyl phosphate synthase 1 (CPS1) (Tan et al 2014).

In MCD deficiency the conversion of malonyl-CoA to
acetyl-CoA and carbon dioxide is impaired. Patients may
present with a variety of clinical symptoms including devel-
opmental delay, muscle weakness, seizures and cardiomyop-
athy (Salomons et al 2007). Biochemically, MCD deficiency
results in metabolic acidosis, hypoglycemia and elevated
levels of malonic and methylmalonic acid in urine and
malonylcarnitine in plasma. In fibroblasts of MCD deficient
patients, the accumulation of malonyl-CoA is associated with

increased lysine malonylation (Pougovkina et al 2014b).
Recent proteomic analysis of MCD deficient mouse liver
and fibroblasts of MCD deficient patients identified lysine
malonylated sites at many proteins located in mitochondria,
cytosol and nucleus (Colak et al 2015). Furthermore, the
malonylated proteins in MCD deficient fibroblasts were also
involved in fatty acid oxidation, including very long chain
acyl-CoA dehydrogenase (VLCAD) and long-chain 3-
hydroxyacyl-CoA dehydrogenase (LCHAD). The higher de-
gree of VLCAD malonylation is associated with decreased
VLCAD enzyme activity in MCD human fibroblasts. In addi-
tion, mitochondrial oxygen consumption was decreased in
MCD deficient fibroblasts, particularly when fatty acids were
used as a substrate (Colak et al 2015). Interestingly, patho-
physiological mechanisms for the cardiomyopathy in MCD
deficiency and fatty acid oxidation disorders are poorly under-
stood, but these recent findings might direct to a common
pathogenic origin.

SCAD deficiency results in elevated levels of butyryl CoA,
butyric acid and butyrylcarnitine. SCAD deficiency is consid-
ered clinically irrelevant, since most ‘patients’ stay asymptom-
atic (van Maldegem et al 2010), but SCAD deficient fibro-
blasts also serve as a cell model in which increased levels of
lysine butyrylation can be studied (Pougovkina et al 2014b).

Finally, increased lysine acetylation has also been demon-
strated in mouse models for IEM in the absence of primary
acetyl-CoA accumulation. The altered mitochondrial redox
state in mouse models for frataxin deficiency (OMIM
229300) and mitochondrially encoded cytochrome c oxidase
subunit 1 (MT-CO1) deficiency (OMIM 220110) inhibits
deacetylation by SIRT3 leading to hyperacetylation (Wagner
et al 2012). It is not unlikely that this mechanism could be
applied to other respiratory chain defects as well.

Since the extent of lysine acylation is only starting to
emerge, particularly through the work in these models of
IEM, the metabolic consequences of lysine acylation require
further elucidation. This PTM might turn out to contribute
substantially to the pathophysiology in metabolic dysregula-
tion, although it cannot be excluded that specific lysine acyl-
ation modifications may represent adaptive responses with
profitable outcome.

Pharmacological sirtuin activation to treat inborn
errors of metabolism

Considering that aberrant protein acylation functionally im-
pairs the activity of various enzymes in inborn errors of me-
tabolism, removal of acyl groups from lysine residues by
sirtuins can rescue the protein to its native state that is acces-
sible to other PTMs. Therefore boosting the deacylase activity
of sirtuins could be an interesting therapeutic approach
(Houtkooper and Auwerx 2012). In addition to this direct
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effect on acylation, SIRT1 activation also leads to enhanced
mitochondrial biogenesis and could thereby increase the re-
sidual activity of the enzyme that is defective in a certain IEM.
Several of such approaches have emerged from the work on
common metabolic diseases, which could serve as a frame-
work for translation to the field of inborn errors (Fig. 2).

The most widely used sirtuin activator is the polyphenol
resveratrol. Resveratrol, which can be found in grape skin,
was originally identified as a SIRT1 activator that extends
lifespan in yeast and several other organisms (Howitz et al
2003; Bauer et al 2004; Wood et al 2004; Viswanathan et al
2005; Baur et al 2006; Valenzano et al 2006; Pearson et al
2008; Rascon et al 2012; Yu and Li 2012; Strong et al 2013;
Wang et al 2013). Following this initial success, numerous
small molecule mimics were identified that induce sirtuin ac-
tivity (Feige et al 2008; Smith et al 2009; Hoffmann et al 2013).
Although the exact molecular mechanism of resveratrol and the
other sirtuin activators has become a matter of debate
(Bitterman and Chung 2015), it appears uncontested that res-
veratrol activates SIRT1 and induces its downstream pathways.
Indeed, in various models resveratrol induces mitochondrial
biogenesis via the coactivator PGC-1α (Rodgers et al 2005).
As such, resveratrol, but also the other sirtuin activators, im-
proves metabolic homeostasis in mice, particularly in mice fed
a high fat diet, for instance by improving glucose sensitivity,

cold tolerance and exercise capacity (Baur et al 2006; Lagouge
et al 2006; Feige et al 2008; Um et al 2010). In humans, res-
veratrol also improved glucose sensitivity in type 2 diabetic and
healthy obese men (Timmers et al 2011; Bhatt et al 2012;
Konings et al 2014), although other studies report no clinical
effect of supplementation (Yoshino et al 2012; Poulsen et al
2013). No clinical studies have been performed yet with res-
veratrol in patients with inborn errors of metabolism, but in
vitro studies reported improved metabolic function in fibro-
blasts of patients with mitochondrial fatty acid oxidation de-
fects (Bastin et al 2011; Aires et al 2014), respiratory chain
deficiencies (Lopes Costa et al 2014) and propionic acidemia
(Gallego-Villar et al 2014). Although additional work is needed
to elucidate the mechanisms underlying this restoration, it is
likely due to an increase in residual activity of the defective
enzyme, caused by PGC-1α-dependent mitochondrial
biogenesis.

A second strategy to activate sirtuins is to increase the pro-
duction of its substrate NAD+. Nicotinic acid (NA, or niacin),
nicotinamide (NAM), nicotinamide mononucleotide (NMN)
and NAM riboside (NR) are all NAD+ precursors that can
boost NAD+ levels in different tissues (Jackson et al 1995;
Bieganowski and Brenner 2004; Belenky et al 2007; Yoshino
et al 2011; Canto et al 2012). NA is widely used as treatment
for dyslipidemia (Altschul et al 1955), and can activate SIRT1
(Li et al 2015), but at the same time causes flushing as an
adverse effect mediated through the membrane receptor
GPR109A (Benyo et al 2005). The other NAD+ precursors
NAM, NR and NMN do not activate GPR109 but still increase
NAD+ levels and improve metabolic parameters in rodents that
were fed with a high fat diet (Yoshino et al 2011; Canto et al
2012; Yang et al 2014). NAM might, however, play a more
complex role, since it has also been shown to inhibit
deacylation by sirtuins (Bitterman et al 2002; Peng et al
2011). The only clinical result so far comes from the NAD+

precursor acipimox, which improves muscle mitochondrial
function and glucose homeostasis in type 2 diabetes patients
(van de Weijer et al 2015). In the field of IEM, NR was shown
to restore mitochondrial homeostasis in fibroblasts from pa-
tients with a mitochondrial respiratory chain defect (Felici et
al 2015). Furthermore, NR induces mitochondrial biogenesis in
skeletal muscle of mice that suffer from mitochondrial myopa-
thy (Khan et al 2014) and induces OXPHOS-related gene ex-
pression and improves motor performance in mice that suffer
from cytochrome c oxidase deficiency (Cerutti et al 2014).

NAD+ levels can also be increased by limiting its catabo-
lism. Two major pathways compete with sirtuins for the utili-
zation of NAD+, i.e. poly(ADP-ribose) polymerases (PARPs)
and cyclic ADP-ribose synthases, such as CD38 (Houtkooper
et al 2010). Inhibition of these latter pathways hence leads to
increased NAD+ levels that become available to activate
sirtuins. In line with this idea, PARP inhibition in mice in-
creases NAD+ levels in various tissues, accompanied by

Fig. 2 Pharmacological activation of sirtuins. Sirtuins can be activated in
multiple ways. Resveratrol activates sirtuins, although the mechanism is
still debated. Two proposed modes of activation include (1) activation of
AMPK; (2) direct activation. Sirtuins can also be activated through in-
creasing the levels of its substrate NAD+. This can be achieved through
(a) boosting NAD+ synthesis from precursors nicotinic acid (NA), nico-
tinamide riboside (NR) or nicotinamide mononucleotide (NMN); (b)
inhibiting the activity of major NAD+ consuming pathways, such as
poly(ADP-ribose) polymerases (PARPs) or the cyclic ADP-ribose syn-
thase CD38. Activating sirtuins can improve the acylation state at various
levels and mitochondrial function
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enhanced mitochondrial biogenesis, and improved energy ex-
penditure (Bai et al 2011; Cerutti et al 2014; Pirinen et al
2014). Similarly, deletion or inhibition of CD38 reduced glob-
al acetylation and improved glucose and lipid homeostasis in
mice as well (Barbosa et al 2007; Escande et al 2013).

Conclusions

While sirtuin activation seems a promising avenue for IEM
treatment, the mode of activation may dictate the efficacy and
is dependent on the pathophysiology of the disease.Most of the
beneficial effects of resveratrol and PARP inhibitors have been
attributed to activation of the nuclear SIRT1, either directly or
through the accumulation of nuclear NAD+, and likely rely on
enhanced mitochondrial biogenesis and upregulation of resid-
ual activity. NR and other NADprecursors, however, also reach
other compartments of the cell, including mitochondria, and
lead to a marked activation of SIRT3 and possibly also
SIRT5 (Canto et al 2012). As such, this treatment may be better
suited to remove acylation PTMs in cells that accumulate acyl-
CoAs and show features of hyperacylation. Regardless of the
mechanisms, it is evident that the emerging interest and knowl-
edge about acylation as a PTM introduces a new pathophysio-
logical mechanism in IEM with promising opportunities for a
new therapeutic approach. More work is needed to better es-
tablish the dynamics of sirtuin activation upon treatment, but
combined with the pathophysiological mechanisms pertaining
to IEMs this will guide the preferred treatment strategy.
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