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Socioeconomic position links 
circulatory microbiota differences 
with biological age
Hannah Craven1,10, Dagmara McGuinness1,10, Sarah Buchanan1, Norman Galbraith2, 
David H. McGuinness8, Brian Jones9, Emilie Combet3, Denise Mafra4, Peter Bergman5, 
Anne Ellaway6, Peter Stenvinkel5, Umer Z. Ijaz7* & Paul G. Shiels1*

Imbalanced nutrition is associated with accelerated ageing, possibly mediated by microbiota. 
An analysis of the circulatory microbiota obtained from the leukocytes of participants in the MRC 
Twenty-07 general population cohort was performed. We now report that in this cohort, the most 
biologically aged exhibit a significantly higher abundance of circulatory pathogenic bacteria, including 
Neisseria, Rothia and Porphyromonas, while those less biologically aged possess more circulatory 
salutogenic (defined as being supportive of human health and wellbeing) bacteria, including 
Lactobacillus, Lachnospiraceae UCG-004 and Kocuria. The presence of these salutogenic bactreria 
is consistent with a capacity to metabolise and produce Nrf2 agonists. We also demonstrate that 
associated one carbon metabolism, notably betaine levels, did not vary with chronological age, but 
displayed a difference with socioeconomic position (SEP). Those at lower SEP possessed significantly 
lower betaine levels indicative of a poorer diet and poorer health span and consistent with reduced 
global DNA methylation levels in this group. Our data suggest a clear route to improving age related 
health and resilience based on dietary modulation of the microbiota.

Accumulating evidence has indicated that exposome factors (i.e. psycho-social, dietary and lifestyle) significantly 
affect health span in the general population1–4. The mechanistic basis of this is complex and not well understood, 
though evidence indicates that diet and socioeconomic position (SEP) are major contributory factors1,5–7. An 
outstanding problem, however, has been to identify factors driving ‘‘inflammageing’’. which is not fully explained 
by an inflammatory burden attributable to the senescence associated secretory phenotype (SASP)8–12. As human 
microbiotal composition shows age related changes4,8, the microbial metabolite trimethylamine N-oxide (TMAO) 
has been proposed to affect both ‘inflammageing’ and health span1,9–12. Evidence in support of this hypothesis 
comes from observations of the frail elderly, where dietary differences were associated with differences in inflam-
matory burden and microbiotal composition13. This hypothesis, however, is complicated by the fact that TMAO 
is secreted in the urine and knowledge of renal function is therefore required to gauge true levels.

There are also further emerging roles for the microbiota in maintenance of the epigenetic landscape via the 
capacity of the gut microbiota to generate betaine from nutritional sources, thus providing a source of methyl 
donor groups that contribute to the maintenance of the methylome14.

We have previously demonstrated that accelerated ageing was exacerbated by low SEP and imbalanced diet 
in the general population5–7. Based on these observations, we have explored the hypothesis that imbalanced diet 
can drive changes in the microbiota that can adversely affect age-related health7,15,16.

As no faecal samples are available for retrospective analyses of these cohorts, including the MRC Twenty-07 
cohort (the general population cohort used in this study, which is described in full here17), we have employed an 
analysis of the venous circulatory microbiome as a ‘canary in the coal mine’ for changes in the gut microbiome, 
corresponding to extremes of biological age within the cohort. While the existence of a circulatory microbi-
ome continues to be disputed, studies evidencing a blood microbiome have been accumulating in recent years, 
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supporting the thesis that microbial signatures can and do exist in the blood, outwith any source of infection18–22. 
Bacterial ingress into the blood circulation is an inherent feature of gut leakiness, which increases with both 
age and as a feature of diminishing renal function23–25. It provides a snapshot of what is in the gut and what may 
impact on health span. This snapshot approach using the circulatory microbiome has recently been valorised and 
validated in an investigation of a range of cancers15, and rheumatoid arthritis (RA)26. We have therefore sought 
to correlate features of such a putative blood microbial complement with metadata from the MRC Twenty-07 
cohort, in order to determine if there are differences in the microbiota correlated with SEP, inflammation and 
the landscape of ageing in the general population.

Materials and methods
Cohort details.  Data were from the West of Scotland Twenty-07 Study, a community-based, prospective 
cohort study, which has followed three cohorts of men and women recruited in 1987 at the (approximate) ages 
of 35 (‘1970s cohort’), 55 (‘1950s cohort’) and 75 years (‘1930s cohort’) in 1987 (wave 1) and followed up in a fur-
ther four waves over the next 20 years until 2007/8. Details of this cohort, the study design, its biochemical, bio-
physical and socioeconomic characterization have been described in depth elsewhere17. The Tayside Committee 
on Medical Research Ethics approved the study, and all research involving the use of human data was performed 
in accordance with relevant guidelines/regulations. Informed, written consent was obtained from all subjects (all 
over 18 years old) at each wave of the study. Data and blood samples (final wave only) were collected by trained 
nurses in the homes of the study participants, when respondents were aged approximately 35 (1970s cohort), 
55 (1950s cohort) and 75 (1930s cohort) years. Data from this study are available upon request. A measure of 
area deprivation (Carstairs deprivation score), an index based on census variables on area levels of overcrowd-
ing, no car access, male unemployment and low social class27 was used to assign SEP. Telomere analysis of this 
cohort has been described in depth elsewhere3,17,28. A sub-sample of n = 100 cases were selected from this MRC 
Twenty-07 general population cohort for this study. Samples (2 × n = 50) represented the extremes of biologi-
cal age and SEP; i.e. individuals at low SEP displaying the shortest 50 telomere lengths in the MRC Twenty-07 
cohort, compared with those at high SEP displaying the longest sample telomere lengths.

Quantification of elements of one carbon metabolism.  Plasma heparin samples were obtained after 
a 12 h fast and stored at -80 °C. Quantification of TMAO, choline and betaine was performed by LC–MS/MS as 
done by Missailidis29, utilizing a protocol designed specifically for this purpose and prepared in a 96-well format. 
Extracted plasma aliquots were spiked with internal standards, comprised of TMAO-D9 in methanol and water 
with Proline-13C5 as a recovery standard, and injected on an Agilent 1290 Infinity chromatographic system 
(Agilent Technologies, Waldbronn, Germany) fitted with an Acquity UPLC Amide column in combination with 
a VanGuard precolumn (Waters Corporation, Milford, MA, USA). The compounds were detected with an Agi-
lent 6490 Triple Quadrupole mass spectrometer (Agilent Techologies, Santa Clara, CA, USA). Data processing 
was performed with MassHunter Quantitative Analysis QQQ (Agilent Technologies Inc. Santa Clara, CA, USA). 
The MS/MS analyses for TMAO, choline, betaine, TMAO- D9 and Proline-13C5, were conducted in multiple-
reaction-monitoring (MRM) mode at m/z 76 → 58, m/z 104 → 45, m/z 118 → 58, m/z 85 → 66 and m/z 121 → 74 
respectively.

DNA isolation and 16S amplicon library preparation for microbiome analysis.  DNA was 
extracted from peripheral blood leukocytes using Maxwell®16 System (Maxwell® 16 Blood DNA Purification 
kit, Promega), and quantified using the High Sensitivity DNA Qubit system (ThermoFisher, Paisley, UK). 16S 
libraries encompassing the V3-V4 regions were generated by Glasgow Polyomics as done in Taponen30. Briefly, 
the V3 to V4 regions of bacterial 16S were amplified using Kapa HiFi Hotstart Readymix (2 ×) (Kapa Biosys-
tems, Wilmington, MA, USA) with the addition of primers specific for the V3 and V4 regions of 16S (based on 
the standard Illumina 16S primers), which contain an overlap sequence making the primers compatible with 
the Nextera XT indexing reagents (Illumina, San Diego, CA, USA). Samples were then amplified using a 5 min 
95 °C hotstart followed by 26 cycles of 95 °C for 30 s and 60 °C for 1 min with a final elongation step of 60 °C for 
5 min. The resulting amplicons were purified using bead extraction (SPRI select beads, Beckman Coulter, Brea, 
CA, USA), using 0.9 × beads followed by 80% ethanol washes and resuspension in 10 mM Tris–EDTA buffer. 
The amplicons were quantified using the High Sensitivity DNA Qubit system and profiles were obtained from an 
Agilent 2100 Bioanalyser using High Sensitivity DNA reagents (Agilent, Santa Clara, CA, USA). Samples were 
then standardized to 10 ng per reaction and amplified in the presence of Nextera XT v2 indexes using Kapa HiFi 
Hotstart readymix (2 ×) for 8 cycles. The resulting indexed libraries were then purified and quality controlled as 
before. The libraries were combined in equimolar ratios and sequenced on a MiSeq (Illumina, San Diego, CA, 
USA) instrument using a paired end, 2 × 300 bp, sequencing run. Samples were sequenced with an average of 
50 000 reads per sample. Possible contamination of reagents was controlled for by running a negative control 
sample (Nuclease-Free water (Ambion™, AM9932, Thermo Fisher Scientific)), instead of a DNA sample through 
the whole analysis, in conjunction with the true test samples. Water only samples were treated identically to test 
samples. Five sample libraries were not deemed suitable for sequencing due to the extremely low DNA concen-
trations, leading to a total of 95 out of the original 100 DNA libraries being successfully sequenced.

Bioinformatics.  Sequence quality trimming and OTU generation.  Bioinformatics was carried out as in 
Ijaz31. Paired-end reads were trimmed and filtered using Sickle v1.200 using a sliding window approach, trim-
ming the reads where the average base quality dropped below 20. Only reads that followed the default quality 
criteria after trimming in Sickle were kept, followed by error-correction of the paired-end reads by BayesHam-
mer from V2.5.0 assembler. Following this, pandaseq (2.4) was used to assemble the forward and reverse reads 
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into a single sequence spanning the entire V3/V4 region, with a minimum overlap of 10 bp. These preprocessed 
reads (overlapped) from each sample were pooled together, with barcodes added for identification. The reads 
were then de-replicated, sorted in order of decreasing abundance and singletons were discarded. Next, the VS-
EARCH v2.3.4 software was used to generate the abundance table by constructing Operational Taxonomic Units 
(OTUs) by clustering of the reads based on 97% similarity, followed by a two-step chimera removal stage using 
the(–uchime_denovo option in vsearch), and a reference based chimera filtering step using a gold database 
(https://​www.​mothur.​org/w/​images/​f/​f1/​Silva.​gold.​bacte​ria.​zip). Finally, OTU tables for each sample were gen-
erated by matching the original barcoded reads against clean OTUs at 97% similarity (a proxy for species-level 
separation). Having obtained the OTUs, DeConseq was used to identify OTUs that were contaminants, hitting 
on human reference genome32.

The assign_taxonomy.py script from the Qiime workflow33 was used to taxonomically classify the repre-
sentative OTUs against the SILVA SSU Ref NR database release v123 database. Following this, the OTUs were 
multisequence aligned using MAFFT v 7.334 and were used in FastTree v2.1.735 to generate the phylogenetic tree 
in NEWICK format. The biom file for the OTUs was then generated by combining the abundance table with 
taxonomy information using make_otu_table.py from the Qiime workflow.

Statistical analyses.  Statistical analyses were performed in R as by Ijaz31. The vegan package was used 
for alpha and beta diversity analyses. For alpha diversity measures we have used: Shannon entropy—a com-
monly used index to measure balance within a community, and rarefied richness (exponential of Shannon 
entropy)—the estimated number of species. Ordination of OTU table in reduced space (beta diversity) was 
done using Principal Coordinate Analysis (PCoA) plots of OTUs using three different distance measures: Bray–
Curtis, Unweighted Unifrac and Weighted Unifrac (shown). Unifrac distances were calculated using the phy-
loseq package36. Analysis of variance for explanatory variables (or sources of variation) was performed using 
Vegan’s adonis() against distance matrices (Bray–Curtis/UnweightedUniFrac/Weighted UniFrac). This function, 
referred to as PERMANOVA, fits linear models to distance matrices and used a permutation test with pseudo-F 
ratios to explain variability in the microbial community structure, contingent upon the variation in the given 
extrinsic parameter of interest.

To find OTUs that were significantly different between multiple categories considered in this study, we used 
the DESeq2 package37 with the adjusted p value significance cut-off of 0.05 and log fold change cut-off of 2.0. 
This function uses negative binomial GLM fitting to obtain maximum likelihood estimates for the OTUs log fold 
change between the two conditions. Bayesian shrinkage was then applied to obtain shrunken log fold changes, 
subsequently employing the Wald test for obtaining significances.

Correlation analysis between one carbon metabolism elements and the rest of the metadata38 was performed 
using the Kendall rank correlation coefficient, and Bonferonni adjustment was used to generate the p values. R’s 
fdrtool39 was also used as an alternative adjustment method (seen in supplementary materials Fig. 1). The scripts 
and workflows used to carry out all of the above bioinformatics and analyses can be found at http://​userw​eb.​eng.​
gla.​ac.​uk/​umer.​ijaz#​bioin​forma​tics.

Results
TMAO and choline increase with chronological age.  TMAO was measured in 100 samples from the 
MRC Twenty-07 general population cohort, representing the extremes of biological age and SEP; i.e. individuals 
at low SEP displaying the shortest 50 telomere lengths (n = 50), compared with those at high SEP displaying the 
longest sample telomere lengths (n = 50). Sample ages covered the range 35–75 years. Of the patients included in 
this analysis, only two were on diabetes medication.

In this general population cohort TMAO and choline levels did not correlate with SEP (Fig. 1). They did, how-
ever, show a significant correlation with chronological age. TMAO values in serum increased significantly only 
between chronological age groups and not biological age (i.e. telomere length)/SEP groups even when adjusted 
for eGFR (Fig. 1a/d). No significant differences were observed between the low and high SEP groups for TMAO 
levels (Fig. 1d). However, there was a significantly higher TMAO level in the oldest-age group (~ 75 years old) 
compared to both the middle-age (~ 55 years old) and the lowest-age (~ 35 years old) groups, with p values < 0.05 
and 0.01, respectively (Fig. 1a). Analogous to the TMAO results, no detectable differences in serum choline levels 
were observed between the low and high SEP groups (Fig. 1b). However, again there was a significantly higher 
choline level in the oldest-age group compared to the two younger groups (p < 0.05 for both). There were no 
significant differences found in betaine levels between any of the chronological age groups (Fig. 1c). In contrast, 
we have demonstrated a SEP difference for betaine levels, whereby those at low SEP had lower betaine levels in 
comparison to those at high SEP (p < 0.05) (Fig. 1f).

One‑carbon metabolism: correlations with MRC Twenty‑07 metadata.  Investigations to deter-
mine any associations between TMAO, betaine and choline levels and biophysical, bio-social and biochemical 
variables in the MRC Twenty-07 cohort, indicated that TMAO only showed a statistically significant correlation 
with chronological age (Table 1). No significant correlations were observed with any other variables, as can be 
seen in the full metadata correlations analysis in Supplementary materials—Fig. 1. Betaine showed significant 
positive correlation with choline level. Choline displayed significant positive correlations with betaine levels, 
mean corpuscular volume (MCV), and creatinine. A negative correlation was also observed between choline and 
estimated glomerular filtration rate (eGFR) (Table 1).

Differential abundance of salutogenic bacteria correlates with SEP.  Of the 100 samples from the 
MRCTwenty-07 cohort that were selected for one-carbon metabolism analysis, 95 were successfully sequenced. 

https://www.mothur.org/w/images/f/f1/Silva.gold.bacteria.zip
http://userweb.eng.gla.ac.uk/umer.ijaz#bioinformatics
http://userweb.eng.gla.ac.uk/umer.ijaz#bioinformatics
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No significant difference was found between the overall diversities (alpha and beta) of the microbial commu-
nities in the respective low and high SEP groups (Fig. 2a,b). However, 30 discriminant genera were identified 
through differential taxa analysis (Fig. 3), including some ‘salutogenic’ bacteria (i.e. beneficial to good health). 
Such bacteria include Lactobacillus, Lachnospiraceae UCG-004 and Kocuria, which were all present at higher 
relative abundance in the high SEP group. Genera increased in the low SEP group included pathogenicity related 
Neisseria, Rothia and Porphyromonas.

PERMANOVA analysis: vegetable intake, glycated haemoglobin and kidney function are 
sources of variation for the microbiota; TMAO and red meat are not.  PERMANOVA analysis 
(Table 2) of the metadata associated with this cohort identified several significant sources of variation for the 
overall microbial diversity of the samples (measured using three metrices: Bray–Curtis, Weighted Unifrac and 

Figure 1.   Changes in elements of one carbon metabolism with chronological and biological age/SEP. Variations 
in mean TMAO, betaine and choline levels across 3 tertiles of chronological age (a–c). Variations of TMAO, 
Betaine and Choline levels across two extremes of biological age and SEP, grouped by those that are the least 
deprived with the longest telomeres (High SEP) and the most deprived with the shortest telomeres (Low 
SEP) (d–f). Error bars represent standard error of the mean. ANOVA and TukeyHSD tests were performed to 
generate adjusted p values for multiple comparisons. Where significance occurred between groups, graphs were 
labeled as follows: p < 0.05 = *, p < 0.01 = **.

Table 1.   Significant correlations between MRC Twenty-07 meta-variables and elements of one carbon 
metabolism. Bonferroni adjustment was used to generate adjusted p values, where *** =  < 0.001, ** =  < 0.01, 
* =  < 0.05.

One-Carbon metabolism element Significant variable Kendall correlation Adjusted p value

TMAO Age 0.32 0.0014**

Choline

Estimated Glomerular Filtration Rate (eGFR)  − 0.28 0.0142*

Betaine 0.35 0.0002***

Mean corpuscular volume (MCV) 0.28 0.0145*

Creatinine 0.33 0.0007***

Betaine Choline 0.35 0.0002***
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Unweighted Unifrac). The full list of metadata used in this analysis, including those that were not significant is 
shown in Supplementary materials Table 1.

Microbial diversity was found to associate with two measures of social deprivation (DEPCAT and Carstairs), 
albeit only when using one of the three diversity matrices employed in the analysis (Bray–Curtis p = 0.03). With 
PERMANOVA, significant association was identified between the microbiota and choline (Weighted Unifrac-
p = 0.0024) and betaine levels (p = 0.0451), whilst no significant association was observed for TMAO. Significantly, 
the only food component showing a trend with microbiome diversity was vegetable intake (p = 0.0559), whereas 
neither fruit, nor red meat consumption showed any association (Supplementary materials-Table 1). differences 
in diversity of microbiota within this cohort correlated with several biochemical features, such as with glycated 
haemogobin (HbA1c), which proved to have a significant association with all 3 measures of beta diversity (e.g. 
Weighted Unifrac-p = 0.0099). A number of renal-related parameters showed association with variation in the 
microbiota of the the MRC Twenty-07 cohort, including eGFR (Bray Curtis-p = 0.0277), S-creatinine (Bray 
Curtis-p Trend = 0.072), and phosphate (Weighted Unifrac-p = 0.0328). Various blood cell types also showed a 
trend to association with microbial diversity, including eosinophils which strongly associated with beta diversity 
when measured by Weighted Unifrac (p = 0.0334) and Unweighted Unifrac (p = 0.002).

After categorising the cohort based on frequency of red meat and fish consumption (as sources of TMAO 
substrates), we measured beta diversity differences in the circulatory microbiota between high, medium and 
low intake groups (Supplementary Fig. 2a,e). PERMANOVA revealed no significant differences between any 
group for either food source. We also compared mean TMAO, choline and betaine levels between these groups, 
to determine if red meat and white fish consumption had any effect on elements of one carbon metabolism 
(Supplementary Fig. 2b–d,f–h). While TMAO did increase in both the high red meat and high fish consumption 
groups, ANOVA did not confirm significance for this comparison, or any other.

Discussion
We have demonstrated in a general population cohort that TMAO and choline levels do not correlate with SEP. 
They did, however, show a significant correlation with chronological age. This was not influenced by SEP, the 
composition of the microbiota, or biological age as measured by telomere length. In contrast, we have demon-
strated a SEP difference for betaine levels. This is in keeping with published reports of an accelerated biological 
ageing and diminished global methylation content among those at low SEP in an overlapping demographic6. 
Notably, our metadata analysis also showed that betaine levels contribute to the small variations in the micro-
biota of individuals of varying SEP (Table 2). Higher betaine plasma levels are associated with high intake of 
betaine-rich food sources, such as quinoa, spinach, fortified cereal products, wheat germ, bran, and beets, as well 
as with synthesis from choline oxidation14. As intake of fruit and vegetables are lower in low SEP groups40, this 
may partly explain the low betaine plasma levels. As more salutogenic foods are more expensive41, low income 
associated with lower SEP has been associated with intake of foods characterized by a high-energy low-nutrient 
content. Conversely, high SEP has been associated with more health-conscious food intake5,42 and the consump-
tion of so-called ‘superfoods’ as a marketed vehicle for added nutrition (e.g. spelt, quinoa and goji berries, chia 
seeds or wheatgrass)43.

Figure 2.   Microbial diversity analysis between high and low SEP. (a) and (b) represent alpha diversity and beta 
diversity indices, respectively. In (b), the ellipses are drawn at 95% confidence interval of standard error.
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The lack of association between SEP, the microbiota and TMAO levels is not intuitive, given recent literature 
indicating that TMAO is a feature of inflammageing and disease1,12,29. Our data suggests that lack of adjustment 
of chronological and/or, biological age, may be a confounder for these analyses. Furthermore, our data are from a 
general population cohort and not one tied to a specific morbidity and thus more reflective of normative ageing. 
This is supported by our microbiota analyses, which have indicated that those at differing SEP and biological 
age within the same demographic, do not show differences in overall microbial diversity (Fig. 2a,b). None of the 
30 discriminant genera identified between the high and low SEP groups (Fig. 3) are known TMAO-producers44, 
strengthening the finding that SEP does not influence TMAO levels.

Our differential taxa analysis (Fig. 3) indicates that there is a greater prevalence of Lactobacillus among those 
at higher SEP and low biological age. This genus has the capacity to process (poly)phenolic acids derived from 
the dietary intake of fruit and vegetables, to generate alkyl catechols45. Alky catechols are potent Nrf2 agonists 
and therefore have the capacity to regulate the expression of > 390 anti-oxidant genes46. Additionally, Lactobacil-
lus has the capacity to derive betaine via nutritional precursors47 influencing the maintenance of the epigenome 
(methylome). These findings are thus consistent with better physiological robustness and health span among 
those at higher SEP as a consequence.

Our analysis indicated that Lachnospiraceae UCG-004 are more prevalent in the high SEP group. Species 
from the Lachnospiraceae genus are known butyrate-producers abundant in the colon48. Being the primary 
energy source for colonocytes, butyrate plays a key role in maintaining gut epithelial integrity and is also another 
known activator of the NrF2 pathway49. In addition, the anti-carcinogenic effects of butyrate have been widely 
reported, as it is able to modulate gene expression via epigenetic regulation (e.g. histone deacetylation and DNA 
methylation) and impact upon apoptosis and cell cycle inhibitors such as p21 and BAK50. The prevalence of 
butyrate-producing bacteria in this group suggests that those of high SEP may benefit more from a microbial 
landscape that promotes butyrate-mediated protection against cancer, and other age-associated diseases induced 
by oxidative stress and a loss of epigenetic regulation.

Figure 3.   Differentiated Taxa Analysis showing Log2 changes in discriminant genera between the High and 
Low SEP groups, where * represents genera identified as being of particular interest. All discriminant genera 
shown have an adjusted p value < 0.001.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12629  | https://doi.org/10.1038/s41598-021-92042-0

www.nature.com/scientificreports/

Kocuria was also found to be more prevalent in the high SEP group. This genus is one of few bacteria iden-
tified as a potent producer of microbially-derived β-cryptoxanthin (β-CRX)51. This is a naturally occurring 
pro-vitamin A carotenoid found in only a limited number of fruit and vegetables such as oranges, papayas and 
sweet peppers52. The oral administration of this carotenoid has gained interest recently, due to widely reported 
health benefits, such as its anti-inflammatory, anti-obesity and anti-diabetic effects. Significantly, β-CRX has 
been shown to activate the Nrf2 and NfkB pathways52. Whilst Kocuria has been established as a β-CRX producer 
under optimal fermentation conditions in the lab, it is unclear whether this extant in the gut microbiota in vivo, 
and would require further exploration. However, the prevalence of an additional genus within the high SEP 
group that has the potential to produce a Nrf2 agonist is consistent with improved health span and physiological 
resilience in this group.

In addition to the “pro-health” genera observed in the high SEP cohort, our analyses also indicated an increase 
in pathogenic bacteria among the microbiota of the lower SEP group. These individuals showed increased num-
bers of bacteria associated with periodontal disease, such as Rothia and Porphyromonas53,54. Periodontitis has 
been linked to several systemic diseases within the diseasome of ageing, including chronic kidney disease, cardio-
vascular disease, cancer and type 2 diabetes (T2D)55,56. Furthermore, we observed an increase in the abundance of 
Neisseria in the low SEP group, consistent with poorer renal health. Neisseria is a genus that has previously been 
associated with CKD57. The dominance of these genera, along with the loss of any bacteria capable of producing 
agonists to anti-oxidative pathways indicates that those of poor SEP have a potential bias towards a circulatory 
microbiome that promotes poor physiological health.

PERMANOVA analysis (Table 2) of the metadata associated with this cohort identified several sources of 
variation, which impacted the overall microbial diversity of the samples. Significantly, microbial diversity was 
found to associate with two measures of deprivation (DEPCAT and Carstairs), albeit only when using one of 
the three diversity matrices employed in the analysis (Bray–Curtis). This indicates that whilst the deprivation 
status of an individual may not impact the phylogenetic variation of the associated microbiota, as indicated by 
both Unifrac measures (i.e. the distances between samples based on the branch lengths of the species present), 
it can impact upon the abundance of each species found.

The finding from the metadata analysis that frequency of red meat consumption did not show any associations 
with the microbiota or changes in beta diversity (Supplementary Fig. 2a) was surprising, given the literature on 
the impact of red meat on the gut microbiota and its metabolism9,58,59. There was also no change in beta diversity 
when categorised by white fish consumption (another dietary component associated with TMAO levels60,61), and 
whilst TMAO consumption did appear to increase in the highest white fish and red meat intake groups, these 
changes were not statistically significant (Supplementary Fig. 2). Instead, our analysis indicated that vegetable 
intake was a possible source of variation. Whilst we are conscious that our study has limited power, it is pertinent 
that we find biologically plausible associations between microbial composition and vegetable intake. The mecha-
nistic basis of such an association may be derived from (poly)phenolic acids found in fruit and vegetables which 
are metabolised into smaller, more bioavailable molecules, including alkyl catechols, by some of the bacteria 
found to be more prevalent in the high SEP group, such as Lactobacillus. As this bacteria is a producer of Nrf2 

Table 2.   PERMANOVA analysis showing significant sources of variation (metadata) in microbial community 
structure (distances between samples) with R2 representing percentage variability if significant for that variable. 
For example, R2 = 0.02581 for phosphate implies 2.5% variability. Asterisks denote a statistically significant 
difference (*p < 0.05, **p < 0.01, ***p < 0.001). n.s denotes a non-statistically significant outcome (p > 0.05) and 
outcomes where the p value is a trend it is marked with an (.) where the p value is between 0.05 and 0.1.

Variable Bray–Curtis Weighted Unifrac Unweighted Unifrac

eGFR R2 = 0.04359 (p = 0.0277) (*) R2 = 0.04827 (p = 0.0644) (.) n.s

Phosphate R2 = 0.01658 (p = 0.0616) (.) R2 = 0.02581 (p = 0.0328) (*) R2 = 0.01554 (p = 0.0566) (.)

Choline R2 = 0.02582 (p = 0.0022) (**) R2 = 0.04775 (p = 0.0024) (**) R2 = 0.01623 (p = 0.0479) (*)

Betaine n.s R2 = 0.02235 (p = 0.0451) (*) n.s

Haemoglobin n.s R2 = 0.02022 (p = 0.061) (1) n.s

Red blood cells R2 = 0.0157 (p = 0.0691) (.) n.s n.s

Haematocrit R2 = 0.01675 (p = 0.0464) (*) R2 = 0.02768 (p = 0.0137) (*) n.s

Lymphocytes n.s R2 = 0.01946 (p = 0.0702) (.) n.s

Monocytes R2 = 0.01655 (p = 0.0545) (.) n.s n.s

Eosinophils n.s R2 = 0.02429 (p = 0.0334) (*) R2 = 0.02173 (p = 0.002) (**)

Creatinine R2 = 0.01557 (p = 0.072) (.) R2 = 0.01878 (p = 0.0861) (.) R2 = 0.01434 (p = 0.0827) (.)

Hba1c R2 = 0.01932 (p = 0.0372) (*) R2 = 0.04314 (p = 0.0099) (**) R2 = 0.01605 (p = 0.0449) (*)

Globulin R2 = 0.01716 (p = 0.0572) (.) n.s n.s

Triglycerides n.s R2 = 0.02388 (p = 0.0526) (.) n.s

Carstairs 2001 score R2 = 0.01673 (p = 0.0367) (*) n.s n.s

Depcat 2001 score R2 = 0.01709 (p = 0.0304) (*) n.s n.s

Head of household occupational social class R2 = 0.01539 (p = 0.0696) (.) R2 = 0.01902 (p = 0.0743) (.) n.s

Vegetable frequency R2 = 0.01487 (p = 0.0873) (.) R2 = 0.02084 (p = 0.0559) (.) n.s
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agonists, activation of the anti-oxidative Nrf2 pathway may be promoted by a diet rich in fruit and vegetables45, 
which is more common in the high SEP group62. Furthermore, dietary carbohydrates that undergo bacterial 
fermentation into butyrate, another agonist of the Nrf2 pathway are also found in fruit and vegetables, and 
absent from meat63. Our findings provide a potential mechanistic link between the importance of plant foods 
in the diet, the microbiome, and the improved health span that is observed in those at high SEP. Interestingly, 
our analysis seems to suggest that vegetable consumption has more impact on the microbiota than red meat, 
as neither TMAO, nor red meat per se, associated with any changes in microbial diversity in this cohort. This 
analysis therefore provides no evidence that the burden of ‘inflammageing’ on health span and the age-related 
epigenome can be linked to microbially-derived TMAO in a general population cohort.

A recent study has evaluated SEP with composition of the gut microbiome in 1672 healthy volunteers from 
twin registry TwinsUK and observed that low SEP was associated with unhealthy diet and reduced alpha diversity 
measures, but diet did not explain the effects of low SEP on gut microbiota profile and socioeconomic position. 
Thus, SEP may be an important confounding factor in microbiota evaluation studies64.

The differences in diversity of microbiota within this cohort correlated with several pathological features, 
such as with HbA1c, a widely used biomarker for metabolic control in T2D65. A number of studies have already 
reported that microbial dysbiosis in the gut is a significant driver of insulin resistance in T2D, through microbial 
metabolites that modulate host metabolic signalling pathways66. In addition, oral supplementation with Lac-
tobacillus reuteri GMNL-263 has been reported to ameliorate the effects of insulin resistance in rats fed a high 
fructose diet, demonstrated by a decrease in multiple T2D markers, including HbA1c67. The finding that HbA1c 
is a factor associated with variation for the microbiota in this cohort, along with the finding that the Lactobacil-
lus genus is enriched in the high SEP group (Fig. 3) suggests that those at high SEP may have a more favorable 
microbiome in terms of enabling optimal energy output from the diet, and protecting against insulin resistance.

Kidney function was also shown to be factor associated with variation in the microbiota of the MRC 
Twenty-07 cohort, in keeping with previous studies showing that microbial dysbiosis has a role in kidney dis-
ease progression68. A number of blood cell types also correlated with microbial diversity, including eosinophils. 
The association of these specific leukocytes with alterations to microbial diversity within this cohort, further 
supports the growing hypothesis that they may influence maintenance of endothelial barrier function and thus 
the gut microbial environment69,70.

In conclusion, our data indicate that being at lower SEP is not linked to microbial dysbiosis assessed by 
analysis of the circulatory microbiome, as we observed no difference in overall diversity compared to those 
of high SEP. This is not surprising, given that this is a general population cohort rather than one tied to any 
specific disease. Despite this, we have identified several differences in the discriminant genera prevalent within 
the two groups that are informative. Combined with our metadata analysis, we can propose a mechanistic link 
between the higher vegetable intake of those at higher SEP, and the provision of Nrf2 agonists due to the coding-
capacity of Lactobacillus and Kocuria prevalent in this group. This should intuitively provide cyto-protection 
and promote better health span. Conversely, this protection is lost in the lower SEP group, with a lower relative 
intake of fruit and vegetables, and with an increased prevalence of bacteria that have the potential to contribute 
to systemic age-related diseases. However, it is important to note at this stage that this is merely a hypothesis 
worth investigating in future work. Additionally, a link between the high red meat intake of the low SEP, and 
microbially-produced TMAO could not be established as a contributing factor to the burden of ‘inflammageing’ 
in the general population, at least at current power of analysis, with vegetable intake having a seemingly higher 
impact on physiological health.
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