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Abstract  
Circular RNAs (circRNAs) are generated by head-to-tail splicing and are ubiquitously expressed in all multicellular organisms. Their im-
portant biological functions are increasingly recognized. Cerebral ischemia reperfusion injury-induced brain microvascular endothelial 
cell dysfunction is an initial stage of blood-brain barrier disruption. The expression profile and potential function of circRNAs in brain mi-
crovascular endothelial cells is unknown. Rat brain microvascular endothelial cells were extracted and cultured in glucose-free medium for 
4 hours with 5% CO2 and 95% N2, and the medium was then replaced with complete growth medium for 6 hours. The RNA in these cells 
was then extracted. The circRNA was identified by Find_circ and CIRI2 software. Functional and pathway enrichment analysis of genes 
that were common to differentially expressed mRNAs and circRNA host genes was performed by the Database for Annotation, Visualiza-
tion and Integrated Discovery Functional Annotation Tool. Miranda software was used to predict microRNAs that were potentially spong-
ed by circRNAs. Furthermore, cytoscape depicted the circR-NA-microRNA interaction network. The results showed that there were 1288 
circRNAs in normal and oxygen-glucose deprived/recovered primary brain microvascular endothelial cells. There are 211 upregulated and 
326 downregulated differentially expressed circRNAs. The host genes of these differentially expressed circRNAs overlapped with those of 
differentially expressed mRNAs. The shared genes were further studied by functional enrichment analyses, which revealed that circRNAs 
may contribute to calcium ion function and the cyclic guanosine 3′,5′-monophosphate (CAMP) dependent protein kinase (PKα) signaling 
pathway. Next, quantitative reverse transcription polymerase chain reaction assays were performed to detect circRNA levels transcribed 
from the overlapping host genes. Eight out of the ten circRNAs with the highest fold-change identified by sequencing were successfully ver-
ified. Subsequently, the circRNA-microRNA interaction networks of these eight circRNAs were explored by bioinformatic analysis. These 
results demonstrate that altered circRNAs may be important in the pathogenesis of cerebral ischemia reperfusion injury and consequently 
may also be potential therapeutic targets for cerebral ischemia diseases. All animal experiments were approved by the Chongqing Medical 
University Committee on Animal Research, China (approval No. CQMU20180086) on March 22, 2018.  
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Graphical Abstract   

The circular RNAs (circRNAs) expression profile in brain microvascular endothelial cells after 
oxygen-glucose deprivation/recovery injury
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Introduction 
The blood-brain barrier consists of brain microvascular 
endothelial cells (BMECs), astrocytes, microglial cells, and 
pericytes and the microvasculature in the brain delivers oxy-
gen and nutrients to neurocytes. Under physiological con-di-
tions, the blood-brain barrier selectively allows molecules 
to pass through the barrier to protect the central nervous 
system. In particular, BMECs can express special transport 
proteins to carry glucose, amino acids, and other factors. 
BMECs also secrete neurotrophins and enzymes to nourish 
neural cells and degrade harmful molecules. Thus, BMECs 
contribute to revascularization and neurological recovery af-
ter ischemic injury (Yu et al., 2015; Toth and Nielsen, 2018).

Circular RNAs (circRNAs) have recently been described as 
novel regulatory noncoding RNAs (Barrett et al., 2015). cir-
cRNAs are transcribed from the exons and introns of genes 
and form covalently closed head-to-tail (or backspliced) 
circularized transcripts (Hansen et al., 2013; Barrett et al., 
2015). circRNAs can act as competing endogenous RNA 
or microRNA (miRNA) sponges. circRNAs play important 
roles in stroke and endothelial function. For example, cir-
cRNA-ZNF609 adsorbs miR-615-5p, which withstands oxi-
dative stress and promotes vascular endothelial cell mi-gra-
tion (Liu et al., 2017b). Furthermore, circRNA Hectd1 acts as 
a sponge that inhibits miR-142 and contributes to ischemic 
stroke via astrocyte activation (Han et al., 2018). Therefore, 
we suggest that circRNAs are worthy of further exploration.

BMECs contribute significantly to integrity and function of 
the brain vasculature. Oxygen and nutrient deprivation may 
induce BMEC dysfunction and increased blood-brain barri-
er permeability (Yu et al., 2015). However, how oxy-gen-glu-
cose shortages affect circRNAs in BMECs is unknown. Here, 
we used RNA sequencing to measure the global changes of 
circRNAs in BMECs subjected to oxygen-glucose depriva-
tion (OGD)/recovery (OGD/R) treatment. Differentially ex-
pressed (DE) circRNAs as well as potential mechanisms were 
explored.
  
Materials and Methods
Isolation and cultivation of primary BMECs 
All animal methods were approved by the Chongqing Med-
ical University Committee on Animal Research, China (ap-
proval No. CQMU20180086) on March 22, 2018. Adult male 
Sprague-Dawley rats aged 6 weeks and weighing 160–200 g 
were housed in a specific-pathogen-free animal room of the 
Animal Breeding Center of Chongqing Medical University, 
China [license No. SYXK (Yu) 2017-0023]. Eight rats were 
anesthetized by inhalation of isoflurane (2% in oxygen) 
(RWD Life Science, Shenzhen, China), euthanized, and their 
brains collected. Tissue was homogenized and then centri-
fuged at 720 × g for 5 minutes at 4°C. The supernatant was 
discarded, and the pellet resuspended in phosphate-buffered 
saline. This was then layered over 15 mL 18% dextran and 
centrifuged at 4500 × g for 20 minutes at 4°C. The pellet was 
resuspended in 10 mL phosphate-buffered saline (containing 
0.1% bovine serum albumin). Ten milliliters of the suspen-

sion were added to 100 µL collagenase (100 mg/mL), 40 µL 
DNase I (10 mg/mL) and 100 µL N-alpha-tosyl-L-lysine 
chloromethyl ketone hydrochloride (14.7 µg/mL) and digest-
ed for 1 hour at 37°C. After centrifugation at 1000 × g for 5 
minutes, the pellet was resuspended in 2 mL phosphate-buff-
ered saline containing 0.1% bovine serum albumin and 
100 µL biotin-labeled anti-CD31 antibody (DSB-X Biotin 
Protein Labeling Kit, Thermo Fisher, Waltham, MA, USA). 
After incubation for 10 minutes at 4°C, BMECs were isolated 
with a Dynabeads FlowComp Flexi Kit (Thermo Fisher). Fi-
nally, bead-free cells were cultured in ordinary medium. The 
medium comprised DMEM basic medium (Thermo Fisher), 
10% fetal bovine serum, 20 mg/L endothelial cell growth 
supplement (ECGS), 2 mM L-glutamine and 100 mg/L hep-
arin sodium (Plácido et al., 2017; Sawaguchi et al., 2017). 
The endothelial cell markers, factor VIII and CD31 (Thermo 
Fisher), were used to identify BMECs by immunofluores-
cence (Bachetti and Morbidelli, 2000). 

OGD/R treatment
Cells at 90–100% confluency were digested with trypsin and 
re-seeded in new dishes. The passage dilution was 1:4. Pas-
sage 6 BMECs were subjected to OGD/R treatment. At 48 
hours after seeding, the medium was replaced by glu-cose-
free medium, which was prebubbled with 95% N2 and 5% 
CO2 for 1 hour. BMECs were then cultured in an incubator 
flushed with 5% CO2 and 95% N2. The chamber was sealed 
and kept at 37°C for 4 hours with an oxygen concentration 
of < 0.2%. Upon OGD termination, the cells were placed 
back into a normal incubator (5% CO2, 95% air at 37°C), and 
the medium was replaced with complete growth medium. 
Control BMECs were not exposed to OGD. The cells were 
harvested for further analyses after 6 hours.

RNA extraction and sequencing
A total of 5 µg of RNA per sample was prepared using 
TRIzol reagent according to the manufacturer’s recommen-
da-tions (Thermo Fisher). A Nanodrop 2000 (Thermo Fish-
er), an Agilent Bioanalyzer 2100 (Agilent, USA) and agarose 
gel electrophoresis were used to determine RNA quality. 
Samples with an optical density (OD)260/280 between 1.7–2.0, 
OD260/230 > 2, 28S/18S > 1.8 and RNA integrity number > 9 
were considered reliable. Five samples of equal mass in each 
group were mixed. An Epicentre Ribozero ribosomal RNA 
Removal Kit (Epicentre, Madison, WI, USA) was used to re-
move ribosomal RNA, and RNase R (Epicentre) was used to 
digest linear RNA. Subsequently, sequencing libraries were 
generated using the NEBNext Ultra Directional RNA Library 
Prep Kit for Illumina (NEB, Ipswich, MA, USA) following 
the manufacturer’s recommendations. After cluster genera-
tion, the libraries were sequenced on an Illumina Hiseq 4000 
platform, and 150-bp paired-end reads were generated.

For mRNA sequencing, ribosomal RNA was removed 
from 3 µg of total RNA. Sequencing libraries were generated 
directly without linear RNA digestion. Sequencing and DE 
circRNA/mRNA analysis were completed by Novogene, Bei-
jing, China.
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Bioinformatic analysis
Find_circ (GitHub, San Francisco, CA, USA) and CIRI2 
(GitHub) software were used to identify circRNAs (Memczak 
et al., 2013; Gao et al., 2018). Raw data were normalized by 
standardized TPM (transcripts per million clean tags). The 
DESeq R package (1.10.1) (Bioconductor, Riverside, CA, 
USA) calculated differences in the expression of circRNAs.

For mRNA analysis, bowtie2 (v2.2.8) (Johns Hopkins Uni-
versity, Baltimore, MD, USA) and HISAT2 (v2.0.4) (Johns 
Hopkins University) mapped data to the reference genome. 
Cuffdiff (v2.1.1) (GenePattern, CA, USA) was used to cal-
culate FPKMs (expected number of Fragments Per Kilobase 
of transcript sequence per Million base pairs sequenced) of 
mRNA. Next, the FPKM value was used to calculate mRNA 
differential expression.

The intersecting genes of DE circRNA host genes and DE 
mRNAs were subjected to functional and pathway enrich-
ment analysis by the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) Functional Annotation 
Tool (DAVID Bioinformatic Team, Frederick, USA) (Huang 
da et al., 2009). Miranda software (cBio-MSKCC, New York, 
USA) was used to predict the miRNAs that were potentially 
sponged by circRNAs (John et al., 2004). Cytoscape (NIGMS, 
Bethesda, MD, USA) depicted the circRNA-miRNA interac-
tion network (Shannon et al., 2003).

Quantitative reverse transcription polymerase chain 
reaction (qRT-PCR)
As described previously (Shang et al., 2016), RNA was ex-
tracted using TRIzol reagent (Thermo Fisher). Two mi-cro-
grams of RNA were reverse-transcribed to cDNA using a 
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher). 
qRT-PCR was performed with 20 µL SYBR Green reaction 
mix containing specific primers (Sangon Biotech, Shanghai, 
China) using a standard protocol The primers are listed in 
Additional Table 1. Each group had five experimental repli-
cates; and each experimental replicate was performed three 
times. The Ct value of target circRNAs was normalized to 
the geometrical average of glyceraldehyde-3-phosphate de-
hydrogenase, β-actin and U6.

statistical analysis
For sequencing, a model based on negative binomial dis-
tribution was used. The resulting P values were adjusted 
to q values using Benjamini and Hochberg’s approach for 
controlling the false discovery rate. In DAVID enrichment 
anal-ysis, Fisher’s exact test was used to determine whether 
the proportions of those falling into each category differed 
by group. P value was adopted to measure the gene enrich-
ment in annotation terms. In the bubble chart, the number 
of genes that fall into each category divided by the total 
number of this category was the RichFactor. Bubble chart 
analysis was performed using OmicShare tools (Genedenovo, 
Guangzhou, China). qRT-PCR analysis was performed using 
Student’s t-test with a two-tailed P value (GraphPad Software 
Company, San Diego, CA, USA). All summary statistics of 
the results are presented as the mean ± standard error of the 

mean (SEM). P < 0.05 was considered statistically significant.

Results
Identification of differentially expressed circRNAs
At least 10G of clean sequencing data were obtained from 
each sample for further analysis. The intersection of the Find_
circ and CIRI2 software results identified 1195 circRNAs in 
the control group and 1109 circRNAs in the OGD/R group 
(Memczak et al., 2013; Gao et al., 2018), with 1016 circRNAs 
found in both groups (Figure 1A). The detailed information 
of all 1288 identified circRNAs is shown in Additional Table 2, 
including chromosome, length, strand, host genes and expres-
sion level. Most circRNAs were transcribed from exons and 
circRNAs were uniformly distributed across chromosomes. 
We selected 10 representative chromosomes to show the dis-
tribution of circRNAs (Figure 1B).

Next, we performed a global analysis of the DE circRNAs 
in the OGD/R and control BMECs. Standardized TPM 
values were applied to compare gene expression between 
two groups (Zhou et al., 2010). The fold change (FC) in the 
expression of each circRNA was calculated as the log2 ratio 
using normalized TPM values (Audic and Claverie, 1997). 
Subsequently, the resulting q values for all genes were cor-
rected for multiple tests using a DEGseq adjustment (Wang 
et al., 2010). A Volcano Plot was used to show the filter and 
distribution of DE circRNAs (Figure 1C). Finally, the cir-
cRNAs with FC > 2 and q values < 0.01 were identified as DE 
circRNAs. As shown in Figure 1D, there were 211 upregu-
lated and 326 downregulated circRNAs in OGD/R-treated 
cells. The detailed information is shown in Additional Ta-
ble 3. These results demonstrate that OGD/R dramatically 
altered circRNA expression profiles in vascular endothelial 
cells. Ischemia-reperfusion-induced endothelial dysfunction 
has been attributed to angiogenesis, oxidative stress, and 
inflammation (Guo et al., 2018; Pang et al., 2018; Zhu et al., 
2018). Whether the OGD/R-induced circRNA alterations 
participate in endothelial dysfunction by affecting these re-
sponses remains to be determined in future studies.

Functional enrichment of the overlapping host genes for 
DE circRNAs and mRNAs
circRNAs are synthesized via backsplicing and are generat-
ed from mRNA precursors. Several circRNAs can also reg-
ulate the expression of their host genes (Barrett et al., 2015). 
Therefore, characterizing the function of these mRNAs may 
enhance our understanding of the features of circRNAs. We 
analyzed the genes that colocalized on chromosomes with 
these DE circRNAs and found that the exonic and intronic 
circRNAs originated from 416 host genes (Figure 2B).

Next, RNA sequencing was used to explore the mRNA 
profile of BMECs. After quality trimming of raw reads, 13G 
high-quality data remained. We mapped the clean reads to 
the Ensembl human genome database. The proportion of 
total reads in the OGD/R and control transcriptome libraries 
that mapped to the genome ranged from 92.9% to 93.2%. 
Cuffdiff calculated the FPKM of each transcript and the FC 
of DE mRNAs. We set the threshold as FC > 2.0 and P < 0.05 
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and identified 808 DE mRNAs, including 448 upregulated 
mRNAs and 439 downregulated mRNAs (Figure 2A and B).

To predict the potential function of the DE circRNAs, 
software was used to identify the host genes of the DE cir-
cRNAs and DE mRNAs. Figure 2B shows the intersection 
of host genes for DE circRNAs and DE mRNA. A total of 
36 genes were identified to transcribe both DE mRNA and 
circRNA and were then subjected to functional and pathway 
enrichment analysis. In Figure 2C and D, the color of the 
bubble distinguishes the P value, and the size represents the 
number of genes that are enriched. More detailed informa-
tion is shown in Additional Table 4. We identified calcium 
ion export, cellular calcium ion homeostasis and calcium ion 
transmembrane transport to be significantly enriched func-
tional terms and the calcium signaling pathway as a top term 
in pathway enrichment analysis.

validation of the DE circRNAs
Next, we continued to investigate the circRNAs transcribed 
from the overlapping host genes (Figure 2B). We adopted 
qRT-PCR to verify changes in the expression of circRNAs. 
According to the FC value, we selected the five most up-reg-
ulated or downregulated circRNAs for expression validation. 
As shown in Figure 3A and B, the quantification of circRNA 
expression was well correlated with the qRT-PCR results. 
Nine out of ten circRNA candidates identified in the samples 
were successfully amplified by qRT-PCR using the RevertAid 
First Strand cDNA Synthesis Kit and SYBR Green PCR Kits 
(Thermo Fisher). Additionally, the PCR results of eight cir-
cRNAs were consistent with sequencing, demonstrating the 
high reliability of the high-throughput RNA sequencing of 
circRNA.

circRNA-miRNA network analysis
Recent studies have shown that some circRNAs act as miR-
NA sponges (Hansen et al., 2013). To determine the possible 
miRNA targets of OGD/R-induced DE circRNAs, Miranda 
software was employed to analyze the binding sites of DE 
circRNAs and miRNAs. Figure 3C shows the circRNA-miR-
NA interaction networks of the eight circRNAs verified by 
qRT-PCR. A detailed list of the predicted circRNA-miRNA 
interactions is provided in Additional Table 5. In cerebral 
ischemia, some miRNAs are sponged by circRNAs. For 
instance, circRNA DLGAP4 functions as an endogenous 
miR-143 sponge to inhibit miR-143 activity, resulting in the 
inhibition of endothelial-mesenchymal transition by regu-
lating tight junction protein and mesenchymal cell marker 
expression (Bai et al., 2018). Our results also show that miR-
143 may interact with novel_circ_0003342 (Figure 3C). 

Discussion
Lin et al. (2016) explored the circRNA profile of mouse hip-
pocampal HT22 cells in an OGD/R model and identified 
several DE circRNAs that may be involved in apoptosis, 
metabolism and immunoreaction. A further study also 
identified 1027 DE circRNAs in a middle cerebral artery 
occlusion model (Liu et al., 2017a). However, none of the 

circRNAs that we identified in BMECs overlapped with 
those identified in neural cells or tissues in previous papers. 
In view of the specificity of circRNA expression, endothelial 
cells and neural cells likely have different expression profiles 
in hypoxic-ischemic conditions. These newly identified cir-
cRNAs might also contribute to the features and functions of 
BMECs.

We analyzed the intersection of DE circRNA and DE 
mRNA host genes. The results indicate the circRNAs are 
closely related to calcium ions. Calcium signaling plays an 
important role in the regulation of vascular endothelial cell 
function. For example, increased calcium binds to calmod-
ulin and interacts with related proteins to release vasodila-
tors, such as nitric oxide and prostacyclin (Yamamoto et al., 
2000). Differences in the amplitude and duration of intracel-
lular calcium oscillations contribute to the differential acti-
vation of various transcription factors, leading to regulated 
gene expression (Chen et al., 2019). This is consistent with 
the high score for “regulation of gene expression” in our re-
sults. Additionally, “response to hypoxia” had a high enrich-
ment score. Therefore, we suggest that circRNAs transcribed 
from the 36 genes identified may play important roles in 
calcium ion regulation during cerebral ischemia-reperfusion 
injury.

Surprisingly, the most significant term in the pathway 
results was cyclic guanosine 3′,5′-monophosphate (cG-
MP)-cGMP-dependent protein kinase (PKG) signaling. The 
first mechanism proposed for cGMP-dependent relaxation 
of smooth muscle was the reduction of free intracellular cy-
tosolic calcium concentration (Johnson and Lincoln, 1985). 
Several sites of action have been proposed to account for 
cGMP-dependent regulation of cytosolic calcium, and these 
have been reviewed (Lincoln et al., 2001). Nitric oxide-cG-
MP signaling was recognized by the 1998 Nobel Prize in 
Physiology and Medicine (Arnold et al., 1977). Nitric oxide 
diffuses across vascular smooth muscle cell membranes and 
activates the enzyme-soluble guanylate cyclase, which cata-
lyzes the conversion of guanosine tri-phosphate into cGMP 
(Denninger and Marletta, 1999). cGMP activates PKG, 
which promotes multiple phosphorylation of targets, lower-
ing cellular calcium concentrations and promoting vascular 
relaxation (Surks et al., 1999). The cGMP-PKG pathway also 
decreases calcium release, which inhibits caspase-3 activa-
tion and apoptosis. Therefore, identification of this term in 
our pathway enrichment analysis is consistent with the iden-
tification of calcium ion terms in the functional enrichment 
analysis.

circRNA was first identified in 1976 by Sanger et al. (1976). 
circRNAs are not susceptible to degradation by RNA exo-
nucleases because of their covalently closed circular struc-
ture that lacks accessible ends (Altesha et al., 2019). These 
characteristics give circRNAs significantly longer half-lives 
than linear RNAs. BMEC-released circRNAs can be easily 
detected in plasma; for example circHectd1 is significantly 
increased in the plasma of model stroke mice (Han et al., 
2018). circRNAs are, therefore, potential candidates for diag-
nostic and prognostic biomarkers of disease. 
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Figure 1 Profile of circular RNAs 
(circRNAs) in brain microvascular 
endothelial cells in control (Ctrl) and 
oxygen glucose deprivation/recovery 
(OGD/R) groups.
(A) RNA sequencing identified 1195 
circRNAs in the Ctrl group and 1109 
circRNAs in the OGD/R group. Among 
these circRNAs, 1016 circRNAs existed 
in both groups. (B) The circRNAs were 
uniformly distributed across chromo-
somes. Ten representative chromosomes 
are shown. (C) Volcano plot showing the 
global change in circRNAs. A q value (or-
dinate) < 0.01 and fold change (abscissa) 
> 2 defined the differentially expressed 
circRNAs. The blue dots represent the un-
changed circRNAs. (D) Heatmaps show 
211 upregulated and 326 downregulated 
circRNAs in primary brain microvascular 
endothelial cells after OGD/R treatment. 
FC: Fold change.

Figure 2 Functional annotation 
clustering of differentially expressed (DE) 
circular RNAs (circRNAs) combined with 
DE mRNAs.
(A) Heatmaps show mRNAs with FC > 2 
in the control (Ctrl) and oxygen glucose 
deprivation/recovery (OGD/R) groups. 
There were 448 upregulated and 439 
downregulated mRNAs. (B) The intersec-
tion of DE mRNA host genes and DE cir-
cRNA host genes. A total of 36 genes were 
identified in the intersection. (C, D) The 
functional (C) and signaling (D) pathway 
enrichment analyses of these genes, respec-
tively. The P value indicates significance 
for enrichment. P < 0.05 was considered 
significant. The RichFactor is calculated 
as the number of genes that fall into each 
category divided by the total number in 
that category. The size of the circle reflects 
the absolute number of genes that fall into 
each category. FC: Fold change.
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Figure 3 The microRNA (miRNA)-circular RNA (circRNA) interaction network map. 
(A, B) The five most upregulated or downregulated circRNAs, the host genes of which were identified in both the differentially expressed (DE) 
mRNA and DE circRNA analyses, were selected for verification. One circRNA was not successfully amplified by quantitative reverse transcrip-
tion-polymerase chain reaction (RT-PCR). The quantification of eight circRNAs was consistent with the RNA sequencing results. (C) The miR-
NA-circRNA interaction network map of these eight circRNAs created by bioinformatic analysis. ① novel_circ_0003760; ② novel_circ_0002086; 
③ novel_circ_0001606; ④ novel_circ_0002023; ⑤ novel_circ_0000173; ⑥ novel_circ_0004586; ⑦ nov-el_circ_0003342; ⑧ novel_circ_0004860. 
Red dots indicate miRNAs.

miRNAs negatively regulate gene expression by par-
tial base pairing with the untranslated region of its target 
mRNA. But interaction of the miRNA seed region with the 
mRNA is not unidirectional. Transcribed pseudogenes, long 
noncoding RNAs and circRNAs compete for the same pool 
of miRNAs, thereby regulating miRNA activity. This phe-
nomenon of regulating other RNA transcripts by competing 
for shared miRNAs is performed by RNAs termed compet-
ing endogenous RNAs. The binding and holding of miRNAs 

by circRNAs has been termed the “sponging effect”, which 
results in the increased expression of miRNA target mRNAs 
(Altesha et al., 2019). In the present study, we obtained sev-
eral circRNA-miRNA networks by bioinformatics. Some of 
the miRNAs have been reported in cerebral ischemia reper-
fusion injury. For example, miR-26a can promote endotheli-
al lumen formation and cell proliferation in BMECs via the 
phosphatidylinositol 3′-kinase/Akt and mitogen-activated 
protein kinase/extracellular signal-regulated kinase pathway 
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(Liang et al., 2018). In addition, overexpression of miR-544 
ameliorated the inflammation and apoptotic responses in 
brain tissue after ischemia reperfusion by down-regulating 
the expression of interleukin-1 receptor-associated kinase 4 
(Fang et al., 2018). Moreover, miR-124, one the most abun-
dant miRNAs in the central nervous system, is a potential 
partner of novel_circ_0004586. miR-124 plays multiple func-
tions in brain ischemia, such as in inflammation, glycolysis 
and cell damage (Zhu et al., 2014; Hamzei Taj et al., 2016; 
Caruso et al., 2017). Future research should explore the reg-
ulatory mechanisms of circRNAs and functional miRNAs.

The most significant result of the present study is the as-
sociation of circRNAs with calcium ion-related pathways. 
Calcium overload is well known to be induced by brain 
ischemia and oxygen and glucose deprivation and to induce 
dysfunctional adenosine triphosphate and cell damage. Tar-
geting calcium ion-related proteins, such as sodium-calcium 
exchanger, voltage-sensitive calcium channels, transient 
receptor potential channels, and N-methyl-D-aspartate 
recep-tors has been confirmed to be an effective treatment 
(Khananshvili, 2013; Kumar et al., 2014). cGMP and PKGs 
are widely involved in the physiological processes of the 
vascular system. This pathway stimulates endothelial cell 
prolif-eration and inhibits vascular smooth muscle cell pro-
liferation. Dysfunction of the cGMP-PKG signaling pathway 
at any step of the cascade has been implicated in numerous 
vascular diseases, ranging from cerebral ischemia to athero-
sclerosis and angiogenesis (Zhang et al., 2003; Tsai and Kass, 
2009). In future studies we will, therefore, explore the mech-
anism between circRNAs and calcium ion-related pathways.

In the present study, we used rat BMECs to detect DE 
circRNAs and mRNAs after OGD/R injury. Bioinformatics 
predicted the functions of circRNAs and indicated down-
stream pathways. We believe this will be benefit treatment 
strategies for cerebral ischemia reperfusion injury. However, 
one contentious question is whether animal samples and in 
vitro experimental results can be used to predict responses 
in human. circRNAs are poorly conserved among species 
(Chen and Yang, 2015) and all biological functions are de-
termined by the genes of the individual. Every species has a 
unique genetic code for the biological activities associated 
with that species (Shanks et al., 2009). Currently, nine out 
of ten experimental drugs fail in clinical studies because we 
cannot accurately predict how they will behave in people 
based on laboratory and animal studies (Shanks et al., 2009). 
Therefore, we will explore the circRNAs from the present 
study that are homologous with human orthologs.

In summary, a number of previously unrecorded circRNAs 
have been revealed to be differentially expressed in prima-
ry BMECs after OGD/R treatment. Furthermore, calcium 
ion and cGMP-PKG signaling pathways may be important 
regulatory targets of circRNAs. Altered circRNAs may be 
important in the pathogenesis of cerebral ische-mia-reperfu-
sion injury and, consequently, may be potential therapeutic 
targets for cerebral ischemia diseases.
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