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Frontotemporal lobar degeneration (FTLD) is a pathological process characterized by
severe atrophy in the frontal and temporal lobes of the brain (Mackenzie et al., 2011). There are
three major clinical syndromes in FTLD: behavioral variant of frontotemporal dementia (bvFTD),
nonfluent variant of primary progressive aphasia (nfvPPA), and semantic variant of PPA (svPPA)
(Gorno-Tempini et al., 2011; Rascovsky et al., 2011). bvFTD is the most common among three
(Hernandez et al., 2018). It is associated with changes in personality and behavior accompanied
with language deficits at later stages. In rare cases, FTLD subtypes may be associated with motor
neuron disease worsening the patient survival time (Olney et al., 2005). FTLD also includes
the clinical presentations of progressive supranuclear palsy (PSP) and corticobasal degeneration
(CBD), that are associated with parkinsonism, and other clinical features. PSP and CBD account for
about 20–30% of patients in FTLD (Park and Chung, 2013). Unfortunately, there is no significant
progress achieved in development of effective treatments for FTLD and current treatment options
are purely symptomatic (Hodges and Piguet, 2018).

The pathological changes found in FTLD are very heterogenous in their nature. FTLD can be
divided in three main histological subtypes according to the accumulation of neuronal protein
inclusions (Mackenzie et al., 2011). The most common disease is characterized by the presence
of inclusions containing the trans-activation response DNA-binding protein-43 (TDP-43) which is
found to be abnormally phosphorylated and ubiquitinated in patients (Neumann et al., 2006). This
subtype of pathology is classified as FTLD-TDP (Mackenzie et al., 2011). The second pathological
subtype, FTLD-tau, includes cases with inclusions consisting of abnormally phosphorylated
microtubule associated protein tau (Cairns et al., 2007). The third subtype, FTLD-FET, contains
fused in sarcoma (FUS) RNA-binding protein, Ewing’s sarcoma protein (EWS), and TATA-binding
protein associated factor 15 (TAF15) in the pathological inclusions (Mackenzie and Neumann,
2012). About 40% of FTLD cases are familial and about 10% of cases exhibit autosomal dominant
inheritance (Bang et al., 2015). Mutations in GRN (Baker et al., 2006; Cruts et al., 2006), MAPT
(Hutton et al., 1998), CHMP2B (Skibinski et al., 2005), VCP (Watts et al., 2004), and C9orf72
(Renton et al., 2011) have been found associated with the disease. Themost common known genetic
causes of FTLD are connected with mutations in GRN, MAPT, and C9orf72 genes (Cruts et al.,
2006; Gass et al., 2006, 2012; Mori et al., 2013; Hodges and Piguet, 2018). In this article we focus
on progranulin (PGRN protein encoded by GRN gene) role in FTLD. Patients with progranulin
mutations have ubiquitin and TDP-43 positive pathological inclusions (Baker et al., 2006; Cruts
et al., 2006). In addition to its role in neurodegenerative diseases PGRN is also implicated in
epithelial ovarian cancer and its level is highly elevated in various tumors (He and Bateman, 2003).
It also has a role in metabolic diseases and its excess is associated with obesity and insulin resistance
(Matsubara et al., 2012). PRGN is a multifunctional protein involved in regulation of many cellular
processes including angiogenesis, cell proliferation, inflammation, tissue remodeling, and wound
repair (Nguyen et al., 2013).
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PRGN is encoded by GRN gene that is located on
chromosome 17q21 and consists of 13 exons with the Kozak
sequence present in the second exon (Bhandari et al., 1992; Cruts
and Van Broeckhoven, 2008) (Figure 1A). It encodes 593 amino
acid long precursor protein with a predicted molecular mass of
63.5 kDa. PRGN contains a signal peptide (also known as a signal
sequence) at the N-terminus to mediate its secretion, followed
by 7.5 highly conserved cysteine-rich tandem repeats called
granulins. Granulins are separated by divergent linker sequences.
Cleavage of the signal peptide generates mature protein that is
heavily glycosylated and migrates as 88 kDa protein. This protein
is further processed by the cleavage at the linker regions to
produce 6 kDa granulins or linked combinations of granulins
(Cenik et al., 2012; Gass et al., 2012) (Figure 1B). PGRN does
not have clear consensus sequence for protease cleavage and
is cleaved by multiple intracellular and extracellular proteases
such as elastase, proteinase 3, matrix metallopeptidase 12, or
by cathepsins in the lysosomes (Gass et al., 2012; Nguyen
et al., 2013; Zhou et al., 2017a). Both progranulin and 6 kDa
granulins are shown to exist in vivo, however, their biological
functions in the cell are not very clear. Recent data suggest
that progranulin may be involved in anti-inflammatory activities
through modulation of the TNF signaling while granulins are
proinflammatory (Tang et al., 2011; Hu et al., 2014). The C-
terminus of PRGN is necessary to bind sortilin, a receptor
protein regulating intracellular protein trafficking in the Golgi
(Hu et al., 2010). Lysosomal targeting of PGRN is carried out
by two independent and complementary pathways. The first
utilizes sortilin protein, protein trafficking receptor, located in
Golgi and cell surface (Hu et al., 2010). The second, sortilin-
independent pathway, is mediated by prosaposin (PSAP) through
its interaction with mannose 6-phosphate receptor (M6PR) and
low-density lipoprotein receptor-related protein 1 (LRP1) (Zhou
et al., 2015). PSAP is the precursor of saposin protein essential
for lysosomal degradation of glycosphingolipids. The role of
PRGN and granulins in lysosome function is poorly understood,
however, it has been recently revealed that deficiencies in
granulins caused by mutations may play a role in lysosome
dysfunction (Holler et al., 2017). Complete loss of PGRN due
to homozygous GRN mutations was reported as a cause for
neuronal ceroid lipofuscinosis (NCL) linking rare lysosomal
impairment to neurodegeneration in FTLD (Smith et al., 2012;
Gotzl et al., 2016). This disease leads to progressive degeneration
of brain and loss of vision due to accumulation of ceroid
lipofuscin, a lipid-containing pigment, associated with lysosome
dysfunction (Kohlschutter and Schulz, 2009). It was shown
that a lack of PGRN leads to decreased level of PSAP in
neurons causing NCL (Zhou et al., 2017b). These discoveries
suggested that PRGN and PSAP facilitate each other’s lysosomal
trafficking. Furthermore, studies of lysosome storage diseases
from different groups suggested that PRGN might acts as a
chaperone of lysosomal enzymes (Jian et al., 2016; Beel et al.,
2017). Chaperone functions required direct association of PRGN
with lysosomal proteins through granulin E domain and also
involved recruitment of HSP70.

Loss of the PGRN function can occur on the genomic,
transcriptional, and posttranscriptional levels (Kleinberger et al.,

2013). Mutations in GRN are one of the major causes of FTLD
and found in 11.2% of patients, therefore progranulin is an
important emerging target to develop better treatments (Abella
et al., 2017). More than 100 different mutations were identified
in the GRN gene, and at least 79 pathogenic mutations in 259
families have been associated with FTLD (Cruts et al., 2012)
(http://www.molgen.ua.ac.be/FTDmutations/). Most common
mutations include nonsense, frameshift and splice site mutations
leading to generation of a premature stop codon that activate
nonsense-mediated decay (NMD) (Baker et al., 2006; Cruts
et al., 2006). Therefore, majority of the mutations are believed
to act through a haploinsufficiency mechanism due to mutant
mRNA degradation of the one allele and as a result reduced
progranulin protein level (Cruts and Van Broeckhoven, 2008).
Other mutations include genomic deletions or elimination of the
initiation codon for protein synthesis. Loss of the PGRN function
can also be mediated by mutations affecting the protein sorting,
secretion, proteolytic processing, association with sortilin and
cyclin T1, neurite outgrowth, and proinflammatory response
(Kleinberger et al., 2013). Some missense and intronic mutations
in GRN also contribute to the pathogenicity connected to FTLD
due to the loss of functional protein (Abella et al., 2017).

Unusual and intriguing molecular mechanism of FTLD that
is associated with mutations in progranulin signal sequences
was recently discovered (Pinarbasi et al., 2018). Progranulin
is a secreted protein and it is synthesized as a precursor
with signal peptide (Figure 1A). Signal Recognition Particle
(SRP) recognizes signal peptides co-translationally during
protein synthesis at the ribosome and targets ribosome nascent
complexes to endoplasmic reticulum (ER) membrane for the
protein translocation to the ER lumen and further processing
and transport outside of the cells (Figure 1B). It is well-
established that integrity of the signal peptides is important
for protein targeting and transport (Karamyshev et al., 1998;
Kalinin et al., 1999; Karamyshev and Johnson, 2005; Nilsson
et al., 2015). Despite the absence of the strong amino acid
homology between signal peptides of different proteins they
have similar organization and contain n-terminal, hydrophobic
core or h-region, and c-terminal parts (von Heijne, 1985).
Amino acid substitutions that decrease hydrophobicity of the
h-region inhibit interaction with SRP (Nilsson et al., 2015). As
we recently discovered, the loss of SRP interaction activates
the protein quality control pathway named RAPP (regulation
of aberrant protein production) leading to mRNA degradation
of the defective proteins (Karamyshev et al., 2014; Karamyshev
and Karamysheva, 2018). Among more than 100 of different
mutations in the progranulin three missense mutations lead to
amino acid alterations in the signal peptide hydrophobic core;
they are V5L, W7R, and A9D (Gass et al., 2006; Mukherjee
et al., 2006; Lopez de Munain et al., 2008; Cruts et al., 2012)
(Figure 1A).While V5L andW7Rmutations are not well-studied
in patients, it was demonstrated that the A9D mutation resulted
in decreased GRN mRNA and protein levels (Mukherjee et al.,
2006, 2008). However, the mechanism of the reduced mRNA
level was not clear at that time. Further detailed experimental
examination of the PGRN signal peptide mutations showed
that W7R and A9D inhibited signal peptide interaction with
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FIGURE 1 | Granulin biogenesis, quality control at the ribosome during its synthesis, and molecular mechanism of FTLD associated with mutations in the signal

peptide of the granulin precursor. (A) Schematic presentation of GRN, precursor protein structure, and known missense mutations in the signal peptide. Progranulin

pre-mRNA transcript is synthesized in the nucleus from GRN gene in the chromosome 17. It has 13 exons with exons 2–13 containing protein coding region. After

splicing, mRNA is exported to cytoplasm for translation. Progranulin precursor (63.5 kDa protein) consists of N-terminal cleavable signal peptide (green line with

indicated position of the cleavage by the signal peptidase shown as purple scissors) and 7.5 repeats (green ovals): P (half-repeat, paragranulin), G (granulin 1), F

(granulin 2), B (granulin 3), A (granulin 4), C (granulin 5), D (granulin 6), and E (granulin 7). Repeats are connected by linker sequences (light orange boxes). Proteases

are shown as brown scissors. Signal peptide sequence presented with known missense mutations L (V5L), R (W7R), D (A9D), corresponding amino acid residues in

the wild-type signal peptide are underlined. (B) PGRN protein trafficking and processing. During early translation step on the ribosome (purple hemispheres),

N-terminal signal peptide of progranulin (green line) is recognized by Signal Recognition Particle (SRP) (shown in orange) and ribosome-nascent chain complex is

targeted to ER for signal peptide cleavage (purple scissors), posttranslational modifications, and further processing and transport. Full length protein could be

processed to 6 kDa granulins in lysosomes by cathepsins (brown scissors are symbols for all proteases involved in posttranslational processing) or secreted outside

and undergo extracellular processing. Uptake of full-length protein is governed by endocytosis with the help of sortilin receptor (blue box) or through alternative PSAP

(prosaposin)-dependent pathway with involvement of mannose 6-phosphate receptor (M6PR) and low density lipoprotein receptor-related protein 1 (LRP1) (gray blue

box). (C) Loss of interaction with targeting factor, SRP, activates RAPP pathway. During normal translational event, PGRN with N-terminal signal sequence is targeted

to ER through interaction with SRP. Amino acid sequence of signal peptide and location of reported clinical mutations are shown on (A). When A9D or W7R mutations

in signal peptide is detected or SRP is defective or lost, nascent chain is no longer targeted to ER by SRP. It leads to the RAPP pathway activation and degradation of

the GRN mRNA.

SRP and pathologically activated the RAPP pathway leading
to degradation of the defective GRN mRNAs establishing the
molecular mechanism of the familial FTLD through mRNA
degradation (Pinarbasi et al., 2018) (Figure 1C). Remarkably,
the mechanism of GRN mRNA degradation was specific to the
mutated mRNAs only and did not affect the wild-type GRN
mRNA when they were co-expressed. The mRNA degradation
was initiated by the loss of SRP interaction with the signal
peptide due to W7R or A9D mutation. RAPP activation is a
unique feature of the pathway—it recognizes defective proteins
and degrades their mRNA templates. Interestingly, V5Lmutation

did not interfere with SRP interactions and did not induce
the RAPP pathway, and the mutated mRNA did not degrade,
suggesting that the V5L is a benign polymorphism and most
likely does not lead to a disease. Analysis of the signal peptide
hydrophobicity profiles revealed that W7R or A9D mutations
decreased hydrophobicity while V5L did not. This observation
may be used for theoretical prediction of the impact of the
uncharacterized mutations for RAPP activation and mRNA
degradation. Noteworthy, the depletion of SRP54 (one of the
six SRP subunits) led to mRNA degradation of the wild-type
protein (Figure 1C). This fact suggests that defects in SRP
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subunits may be a molecular basis of sporadic human diseases.
Indeed, it was found recently that several mutations in SRP54
are associated with inherited neutropenia and Shwachman-
Diamond-like syndrome (Carapito et al., 2017).

Polypeptide nascent chain interactions at the ribosome
are important for proper protein folding, transport, and
modification. As it is discussed above, the loss of the SRP signal
peptide interaction leads to dramatic consequences: elimination
of the defective protein mRNA in the RAPP pathway and
as a result to decrease of PGRN protein level and finally to
FTLD. Most likely, the induction of the RAPP pathway is not
limited to the mutant PGRNs, and may be associated with signal
peptide mutations in other secretory proteins leading to the
diverse group of the human diseases caused by the pathological
RAPP activation.

In conclusion, it seems that the decrease or loss of GRN
expression in many different familial FTLDs is associated with
mRNA degradation, although the nature of the mutations is
different. The nonsense, frameshift, and splice site mutations
generate premature stop codons that induce NMD, while the

mutations in the signal peptide activate RAPP. Regardless
of the pathway engaged, the GRN mRNA is degraded
that may lead to PGRN haploinsufficiency and the disease.
These observations open the necessity of deep exploration of
the molecular mechanisms of mRNA degradation pathways
in neurodegenerative diseases that may eventually lead to
development better pharmacological treatments in the future.
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