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Abstract

Objectives CT findings of COVID-19 look similar to other atypical and viral (non-COVID-19) pneumonia diseases. This study

proposes a clinical computer-aided diagnosis (CAD) system using CT features to automatically discriminate COVID-19 from

non-COVID-19 pneumonia patients.

Methods Overall, 612 patients (306 COVID-19 and 306 non-COVID-19 pneumonia) were recruited. Twenty radiological

features were extracted from CT images to evaluate the pattern, location, and distribution of lesions of patients in both groups.

All significant CT features were fed in five classifiers namely decision tree, K-nearest neighbor, naive Bayes, support vector

machine, and ensemble to evaluate the best performing CAD system in classifying COVID-19 and non-COVID-19 cases.

Results Location and distribution pattern of involvement, number of the lesion, ground-glass opacity (GGO) and crazy-paving,

consolidation, reticular, bronchial wall thickening, nodule, air bronchogram, cavity, pleural effusion, pleural thickening, and

lymphadenopathy are the significant features to classify COVID-19 from non-COVID-19 groups. Our proposed CAD system

obtained the sensitivity, specificity, and accuracy of 0.965, 93.54%, 90.32%, and 91.94%, respectively, using ensemble

(COVIDiag) classifier.

Conclusions This study proposed a COVIDiag model obtained promising results using CT radiological routine features. It can be

considered an adjunct tool by the radiologists during the current COVID-19 pandemic to make an accurate diagnosis.

Key Points

* Location and distribution of involvement, number of lesions, GGO and crazy-paving, consolidation, reticular, bronchial wall
thickening, nodule, air bronchogram, cavity, pleural effusion, pleural thickening, and lymphadenopathy are the significant
features between COVID-19 from non-COVID-19 groups.

* The proposed CAD system, COVIDiag, could diagnose COVID-19 pneumonia cases with an AUC of 0.965 (sensitivity =
93.54%, specificity = 90.32%, and accuracy = 91.94%).

» The AUC, sensitivity, specificity, and accuracy obtained by radiologist diagnosis are 0.879, 87.10%, 88.71%, and 87.90%,
respectively.
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Abbreviations

ARDS Acute respiratory distress syndrome

CAD Computer-aided diagnosis

COVID-19 Coronavirus disease 2019

GGO Ground-glass opacity

HRCT High-resolution CT

HU Hounsfield units

KNN K-nearest neighbor

RT-PCR Reverse transcriptase-polymerase
chain reaction

SVM Support vector machine

Introduction

In December 2019, a novel coronavirus-infected pneumonia,
called coronavirus disease 2019 (COVID-19), occurred in the
city of Wuhan, China, related to Huanan Seafood Market
[1-3]. This outbreak has spread exponentially throughout
the world and is declared a pandemic [4]. The most prevalent
clinical symptoms of COVID-19 patients are fever, followed
by cough, fatigue, and dyspnea. It can lead to acute respiratory
distress syndrome, acute renal failure, shock, and death [3, 5].

The diagnostic criteria of COVID-19 pneumonia are labo-
ratory evaluation of respiratory secretions acquired from en-
dotracheal aspirate, bronchoalveolar lavage, or
nasopharyngeal/ oropharyngeal swab [6]. Currently, laborato-
ry examination such as reverse transcriptase-polymerase chain
reaction (RT-PCR) test has become the standard assessment
for the diagnosis of COVID-19 infection [7, 8]. However, RT-
PCR testing results may be falsely negative due to insufficient
specimen or laboratory error [9]. In addition, although the
image finding can be positive in the early stages of the disease,
RT-PCR results can be negative at the early stages in some
cases. However, RT-PCR can become positive in the follow-
ing course of the disease [10, 11]. Therefore, a combination of
repeated swab tests and CT imaging can be used as a tool to
diagnose the individual with negative RT-PCR screening and
high suspicion of COVID-19 infection [10].

Chest CT scan provides more detailed information about
the chest and hence, it is used to diagnose COVID-19 patients.
In a study using 1014 patients, the sensitivity of chest CT in
suggesting COVID-19 based on the positive RT-PCR is 97%,
and patients with negative RT-PCR and chest CT findings of
75% are positive [12]. Abnormal CT findings such as pneu-
monia, the existence of patterns like ground-glass opacity
(GGO), and bilateral patchy shadowing are frequently ob-
served in positive COVID-19 cases [13]. The most frequent
CT features of COVID-19 pneumonia are GGO, crazy-paving
pattern, mixed GGO and consolidation, bilateral lobe involve-
ment, and subpleural lesions [14, 15].

Radiologists can help in several ways in this current pan-
demic such as (i) early detection of the disease and plan ahead
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for proper management in later stages of the disease; (ii) score
the severity of the disease and help to identify the chance of
developing ARDS and the need to transferring to the intensive
care unit; and (iii) detect possible secondary or co-infection of
bacterial pneumonia, which is very critical as bacterial pneu-
monia can lead to serious complications [16]. However, both
COVID-19 virus and other non-COVID-19 viruses can cause
pneumonia and differentiate them, which is challenging for
radiologists as both CT findings look similar [15, 17]. Bai
et al [18] showed that seven radiologists can diagnose
COVID-19 pneumonia with mean sensitivity and specificity
of 70.42% and 83.71%, respectively. Also, they concluded
that the radiologists showed high specificity but moderate
sensitivity in distinguishing COVID-19 pneumonia from oth-
er atypical and viral (non-COVID-19) pneumonia based on
chest CT findings. To overcome these limitations and manage
the COVID-19 pneumonia patients effectively, a computer-
aided diagnosis (CAD) system is needed [19].

Nowadays, CAD systems can help and allow radiologists
to make a better decision, especially in CT lung imaging
[20-22]. It also help to detect lung abnormalities [23, 24]
and pulmonary fibrosis [25, 26], manage lung nodules [27,
28], and differentiate nodules from interferential vessels [29,
30]. In this work, we have investigated the potential of using
the CAD system to diagnose and manage patients with
COVID-19 pneumonia disease. In this work, we proposed a
clinical CAD system, namely COVIDiag, to differentiate
COVID-19 from non-COVID-19 pneumonia diseases using
features extracted from the chest CT images. We feel that the
proposed system can help to reduce the workload and improve
the quality of COVID-19 disease diagnosis.

Patients and methods
Patients

Regardless of demographic values like age and gender in the
pandemic of the COVID-19, the patients with flu-like symp-
toms and diagnosed with novel coronavirus were enrolled for
the study. A chest high-resolution CT (HRCT) examination
was conducted for all patients before enrolling them in this
study. The confirmation for COVID-19 was done through
RT-PCR based on nasopharyngeal swab samples. The pa-
tients with respiratory infections with negative RT-PCR and
confirmed laboratory test were excluded in this study. Also,
those cases with chronic lung diseases and subsequent pulmo-
nary involvement were excluded. HRCT images of patients
with other causes of atypical and viral pneumonia, such as
adenoviral or HIN1 flu from PACS of our university hospital,
were retrospectively investigated from January 2018 to
December 2019.
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Image acquisition

All HRCT examinations were performed using a 16-MDCT
scanner (Alexion, Canon Medical Systems) with high-
resolution protocol: patients in the recumbent situation with
the arms over the head; 1- to 2-mm slice thickness in incre-
ments of up to 10 mm from the lung apices through the
hemidiaphragm, at deep inspiration; tube voltage, 120 kVp;
tube current time, 50-100 mAs; and pitch, 0.8—1.5.
Parenchymal window settings were set for all patients to a
range of window level and a window width of —600 to —
500 Hounsfield units (HU) and 1500 to 1600 HU, respective-
ly. All of the CT slices were reconstructed using an iterative
algorithm (adaptive iterative dose reduction using three-
dimensional processing (AIDR 3D)) with the kernel FC56,
and scans were acquired without the use of contrast agent.

CT feature extraction

Few studies indicated that the pattern, location, and distribu-
tion of lesions can differentiate COVID-19 from other non-
COVID-19 pneumonia [14, 18, 31]. There are few radiologi-
cal features such as GGO, crazy-paving, peripheral, both pe-
ripheral and central involvement, and upper lobe involvement,
which are more common in COVID-19 pneumonia compared
with non-COVID-19 pneumonia. On the other hand, there are
few other radiological features that are more common and
specific in non-COVID-19 pneumonia compare with that in
COVID-19 pneumonia, such as pleural effusion, pleural thick-
ening, air bronchogram, consolidation, central involvement,
and lymphadenopathy.

In this study, two radiologists with more than 15 years of
experience in thoracic imaging, who were blinded to the lab-
oratory test, reviewed the CT images. Radiological features
were extracted by one radiologist and confirmed by another
experienced radiologist. In total, 20 radiological features are
extracted for both the groups. These radiological features are
as follows:

(a) Location 1, location of lesion(s) are evaluated if they
involve unilateral, bilateral, or both unilateral and
bilateral;

(b) Location 2, location of lesion(s) are studied if they are
present in lower, upper, or both lobes;

(c) Distribution of lesion(s) are defined as peripheral, cen-
tral, or both central and peripheral;

(d) Number lesion(s) is assigned as a single lesion, if there is
only one patch of a lesion, multiple lesions, if there are
2—4 patches of lesions in every lung, and diffuse lesion, if
lesions involved the entire lobe bilaterally;

(e) GGO, which is hazy augmented lung attenuation with
the maintenance of bronchial and vascular borders. In

other words, a hazy opacity that does not obscure the
underlying pulmonary vessel;

(f) Consolidation, which is described as opacification with
obscuration of vessels and airway borders walls. It is
defined as filling of air that usually fills the small airways
with something else;

(g) Presence of reticular: every thin linear opacity between 1
and 3 mm thickness;

(h) Nodule, which is defined as every round or oval well-
defined margin opacity;

(1) Vascular thickening;

(j) Septal thickening;

(k) Bronchial wall thickening;

(1) Air bronchogram; which is defined as opacification of
surrounding alveoli (gray/white) make the air-filled bron-
chi (dark) detectable;

(m) Cavity;

(n) Cyst;

(o) Crazy-paving, which is a linear pattern superimposed on
an area of GGO, with irregular paving stones pattern;

(p) Halo sign;

(@) Reversed halo sign;

(r) Pleural effusion, defined as blunting of the costophrenic
angle, cardiophrenic angle, and fluid within the horizon-
tal or oblique fissures;

(s) Pleural thickening; and

(t) Lymphadenopathy, described as a lymph node with a
greater size than 1 cm in short axis.

Machine learning study

The MATLAB software (version R2019b, MathWorks Inc)
was used to implement machine-learning process. In order to
perform an automated diagnosis of COVID-19 cases, five
classifiers are used: decision tree, K-nearest neighbor
(KNN), 3- naive Bayes, support vector machine (SVM), and
ensemble. The optimization method based on the Bayesian
optimization algorithm [32] is used to define the optimized
hyperparameters. This method searches the specific
hyperparameters within their ranges for each classifier to find
the bestpoint hyperparameters to yield the highest classifica-
tion performance. The names of hyperparameters and their
ranges (in parentheses) for each classifier are as follows: de-
cision tree: maximum number of splits (1-487), split criterion
(Gini’s diversity index, maximum deviance reduction); KNN:
number of neighbors (1-244), distance metric (city block,
Chebyshev, correlation, cosine, Euclidean, Minkowski,
Mahalanobis, spearman, hamming, and Jaccard), distance
weight (equal, inverse, squared inverse); naive Bayes: distri-
bution name (Gaussian, kernel), kernel type (Gaussian, box,
Epanechnikov, triangle); SVM: kernel function (Gaussian,
linear, quadratic, cubic), kernel scale (0.001-1000) and box
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Statistical analysis/ Significant
parameters defining

€d

>

CT Images of patients with
COVID-19 and non-COVID-19
pneumonia

Radiological features
extracting by a Radiologist

Fig. 1 An overview of the six main steps used in this study

constraint level (0.001 to 1000); and Ensemble: ensemble
method (AdaBoost, RUSBoost, LogitBoost, GentleBoost,
and bag), maximum number of splits (1-487), number of
learners (10-500), learning rate (0.001-1).

In this study, the entire database is divided into two parts:
80% for training and 20% for testing. All five classifiers are
trained for 30 iterations using the Bayesian optimization algo-
rithm. The K-fold (K = 20) cross-validation strategy is used to
prevent over-fitting of the models. At the end of the training
process, optimization algorithm returns the bestpoint
hyperparameters for each classifier.

Statistical analysis

The discrimination between COVID-19 and non-COVID-19
groups of CT features is evaluated with the chi-square test.

_a(C)

Fig. 2 CT sample images of patients with pneumonia. a A 28-year-old
male with confirmed COVID-19 pneumonia. The red arrow in the right
upper lobe indicates mixed ground glass and crazy paving opacity. b A
67-year-old female patient with confirmed COVID-19 pneumonia. The
red arrows indicate multifocal ground-glass opacity pattern in both lobes.

@ Springer

Performance evaluation/
ROC analysis

Testing model on
blinded data

Feeding significant parameters
into neural networks

Statistically significant features have a p value of less than
0.05.

Performance evaluation of networks

Five parameters namely sensitivity, specificity, accuracy,
PPV, and NPV are calculated in our study to compare the
performance of radiologists and classifiers. COVID-19 and
other viral pneumonia (non-COVID-19 group) cases are con-
sidered positive and negative, respectively. Therefore, correct-
ly diagnosed COVID-19 and non-COVID-19 cases are indi-
cated as N7p and Ny, respectively. Also, incorrectly diag-
nosed COVID-19 and non-COVID-19 cases are identified as
Npp and Npy, respectively. Furthermore, ROC curve analysis
is used and AUC is computed [33]. SPSS software (version

N

(b)

(d)

¢ An 68-year-old male patient with atypical pneumonia. The red arrows
indicate mixed ground glass and alveolar consolidation pattern in the right
lower lobe. d A 67-year-old male patient with HIN1 pneumonia. The red
and yellow arrows indicate alveolar consolidation the right and left upper
lobe, respectively
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Table 1 CT chest findings of COVID-19 and non-COVID-19 groups
CT findings COVID-19 Non-COVID-19 D
(n=244) (n=244) value
Location 1 <0.001
Unilateral 68 (27.87) 172 (70.49)
Bilateral 176 (72.13) 72 (29.50)
Location 2 <0.001
Lower lobe 106 (43.44) 131 (53.69)
Upper lobe 48 (19.67) 89 (36.47)
Both lobes 90 (36.89) 24 (09.84)
Distribution <0.001
Peripheral 147 (60.25) 41 (16.80)
Central 26 (10.65) 115 (47.13)
Both central and 71 (29.10) 88 (36.07)
peripheral
Lesion <0.001
Single 32(13.11) 155 (63.52)
Multiple 136 (55.74) 74 (30.33)
Diffuse 76 (31.15) 15 (06.15)
GGO <0.001
No 67 (27.46) 227 (93.03)
Yes 177 (72.54) 17 (06.97)
Consolidation <0.001
No 143 (58.61) 39 (15.98)
Yes 101 (41.39) 205 (84.02)
Reticular <0.001
No 242 (99.18) 198 (81.15)
Yes 2(0.82) 46 (18.85)
Nodule <0.001
No 244 (100) 213 (87.30)
Yes 0 (0.0 31 (12.70)
Vascular thickening 0.499
No 244 (100) 242 (99.18)
Yes 0(0.0) 2(0.82)
Septal thickening 0.511
No 208 (85.25) 213 (87.30)
Yes 36 (14.75) 31 (12.70)
Bronchial wall <0.001
thickening
No 242 (99.18) 216 (88.52)
Yes 2(0.82) 28 (11.48)
Air bronchogram <0.001
No 230 (94.26) 178 (72.95)
Yes 14 (05.74) 66 (27.05)
Cavity <0.001
No 244 (100) 232 (95.08)
Yes 0(0.0) 12 (04.92)
Cyst 1.000
No 244 (100) 243 (99.59)
Yes 0(0.0) 1(0.41)
Crazy paving <0.001
No 197 (80.74) 240 (98.36)
Yes 47 (19.26) 4(01.64))
Halo Sign 0.787
No 236 (96.72) 238 (97.54)
Yes 8(03.28) 6 (02.46)
Reversed halo sign
No 244 (100) 244 (100)
Yes 0(0) 0(0)
Pleural effusion 0.005
No 233 (95.49) 216 (88.52)
Yes 11 (04.51) 28 (11.48)
Pleural thickening <0.001
No 244 (100) 226 (92.62)
Yes 0(0) 18 (07.38)
Lymphadenopathy <0.001
No 243 (99.59) 222 (09.98)
Yes 1(0.41) 22 (09.02)

Number in parentheses represents the percentage of patients in each group

GGO, ground-glass opacity

24.0, IBM Corporation) is used for statistical analysis.
Figure 1 shows the steps involved in our study at a glance.

Results

In this study, 612 patients (306 COVID-19 and 306 non-
COVID-19) were recruited. In total, 488 patients (with 50—
50 distribution) were used for the training phase and the rest of
the patients (20%) were used to test the developed model.
Figure 2 shows the sample CT images of patients with
COVID-19 and non-COVID-19 pneumonia.

CT findings

The bilateral involvement is significantly high in COVID-19
patients (176 out of 244, 72.13%) compared with that in the
non-COVID-19 group (72 out of 244, 29.5%). In the location
2 feature, the infection involvement of the upper, lower, and
both lobes in COVID-19 group is observed in 106 (43.44%),
48 (19.67%), and 90 (36.89%) patients, respectively, which
are significant differences compared with the non-COVID-19
group whose involvements are observed in 131 (53.69%), 89
(36.47%), and 24 (09.84%) cases, respectively. The peripher-
al, central, and both central and peripheral involvements in
COVID-19 group are discovered in 147 (60.25%), 26
(10.65%), and 71 (29.10%) cases, respectively, for the distri-
bution feature, which have shown significant differences com-
pared with the non-COVID-19 group whose the involvements
are observed in 41 (16.80%), 115 (47.13%), and 88 (36.07%)
cases, respectively (Table 1).

The single, multiple, and diffuse lesions in the COVID-19
group are observed in 32 (13.11%), 136 (55.74%), and 76
(31.15%) cases, respectively, for the lesion feature compared
with those in the non-COVID-19 group whose single, multi-
ple, and diffuse lesions are found in 155 (63.52%), 74
(30.33%), and 15 (06.15%) cases, respectively, with p value
<0.001. In addition, the GGO and crazy-paving features are
found significantly high in COVID-19 cases compared with
those in the non-COVID-19 group (p <0.001). In contrast,
consolidation, reticular, bronchial wall thickening, nodule,
air bronchogram, cavity, pleural effusion, pleural thickening,
and lymphadenopathy are more common in the non-COVID-
19 group. However, no significant differences are seen in
other CT features like vascular thickening, septal thickening,
cyst, halo sign, and reversed halo sign (Table 1).

Performance of machine learning and radiologist
The results of the optimization process and the

hyperparameters of each optimized network are shown in
Fig. 3.
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Fig. 3 The optimization curves of five networks after 30 iterations. a
Decision tree; b K-nearest neighbor; ¢ naive Bayes; d support vector
machine; and (e) ensemble (named as COVIDiag). During the process,

10 15
Iteration

The classification results of the models for COVID-19 and
non-COVID-19 groups are summarized in Table 2. Also, we
measured the performance of the radiologist as a baseline to
compare the results with these five models. Among all
models, the highest performance is obtained for ensemble
classifier with an AUC of 0.988 (sensitivity, 94.67%; speci-
ficity, 93.03%; accuracy, 93.85%) for the training dataset. In
contrast, the lowest performance is obtained for decision tree
with an AUC of 0.934 (sensitivity, 89.34%; specificity,
90.16%; accuracy, 89.75%). After training the models, they
are tested with blinded (unseen) data. Then, the highest dis-
criminative power is obtained for the ensemble model with
AUC, sensitivity, specificity, and accuracy of 0.965,
93.54%, 90.32%, and 91.94%, respectively. Also, the AUC,
sensitivity, specificity, and accuracy obtained for the diagno-
sis by a radiologist are 0.879, 87.10%, 88.71%, and 87.90%,
respectively (Table 2). Radar plots and ROC curves for vari-
ous classifiers and radiologist in the testing phase are
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the optimization algorithm seeks different combinations in each iteration
to find the condition with the minimum classification error and
confidence interval, i.e., “bestpoint hyperparameters”

presented in Fig. 4a and b, respectively. The COVIDiag mod-
el is available (Link) (to test the model with your own data,
please follow the guide sheet (Figure E1, Supplementary
material).

Discussion

In this study, the best performance is achieved by ensemble
classifier (COVIDiag) with an AUC of 0.965. The main ad-
vantage of this classifier is that it uses many (81 in this study)
learners to build an accurate model. Aggregating the output of
the learners help to build a robust model compared to the
individual learner [34]. Hence, the stability and discriminative
power of the ensemble classifier is higher than other classifiers
used in this study. In addition, our results indicate that the
performance of the COVIDiag is even higher than the radiol-
ogist for the testing dataset (AUC of COVIDiag vs.
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Table 2  Performance of five networks and the radiologist in differentiating COVID-19 from non-COVID-19 cases

Confusion
Sensitivity | Specificity | Accuracy | PPV | NPV Matrix
Network Group %) %) %) %) %) AUC Truc Class
C NC
.. Training 89.34 90.16 89.75 90.08 | 89.43 | 0.934
Decision
Tree .
Testing 79.03 87.10 83.06 85.96 | 80.60 | 0.860
Training 90.98 89.75 90.36 89.87 | 90.87 | 0.938
KNN
Testing 88.71 80.64 84.68 82.09 | 87.72 | 0.901
. Training 88.52 93.44 90.98 93.10 | 89.06 | 0.962
Naive
B .
aves Testing 85.48 88.71 87.10 | 8833 | 85.94 | 0.940 Predict
Class
Training 93.44 92.21 92.82 92.31 | 93.36 | 0.976
SVM
Testing 88.71 87.10 87.90 87.30 | 88.52 | 0.942
Training 94.67 93.03 93.85 93.16 | 94.58 | 0.988
Ensemble
Testing 93.54 90.32 91.94 90.63 | 93.33 | 0.965
Radiologist Testing 87.10 88.71 87.90 88.24 | 87.30 | 0.879

C and NC stand for COVID-19 and non-COVID-19 cases, respectively; KNN, K-nearest neighbor; SVM, support vector machine

radiologist: 0.965 vs. 0.879). In this work, 58 out of 62
COVID-19 cases and 56 out of 62 non-COVID-19 cases are
correctly diagnosed by COVIDiag. The details about the

diagnosis results of COVIDiag and radiologists are listed in
Tables E1 and E2 (supplementary material). The machine-
learning model can deal with complex and multiparametric

(a)ro7 - = (b)
0.8
> 067 NPV SPC
£ )
=
& |U
N 0.4+
Decision Tree
—KNN
Decision Tree (AUC=0.860) Naive Bayes
0.0 —KNN (AUC=0.901) e
’ —Naive Bayes (AUC=0.940)
——SVM (AUC=0.942) e
——Ensemble (AUC=0.965) PPV AcC T Tedilogst
0.0 —Radiologist (AUC=0.879)
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1 - Specificity

Fig. 4 a ROC curves and (b) radar plot of five networks and the radiologist on testing blinded dataset
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Table 3  CT findings changes related to COVID-19 pneumonia over time

Phase of disease Characteristics

Days after onset symptoms

Early 04
Progressive 5-8
Peak 10-13 Consolidation
Absorption >14

GGO, partial crazy-paving pattern, lower number of involved lobes; or have normal CT

Extension of GGO, increased crazy-paving pattern

Fibrous stripes, gradual resolution

GGO, ground-glass opacity

data better than the radiologists. During the visual inspection
process, radiologists should extract several radiological fea-
tures from the CT images, make a meaningful relationship
between them, and finally make a final decision. This step of
processing is subjective, time-consuming, and prone to human
errors. Hence, in this study, we proposed a practical clinical
CAD system (COVIDiag) to help radiologists during routine
practices.

The results of the present study indicate that multiple and
diffused lesions with GGO and crazy-paving patterns are sig-
nificantly more common in COVID-19 pneumonia cases. On
the other hand, patients with cavity, nodule, single lesion,
consolidation, reticular, bronchial wall thickening, air
bronchogram, pleural effusion, pleural thickening, and lymph-
adenopathy are significantly more likely to have non-COVID-
19 pneumonia. Moreover, the bilateral involvements with pe-
ripheral distribution occur more significantly in patients with
COVID-19 pneumonia. Our findings in terms of distribution,
GGO, pleural effusion, and pleural thickening are similar, but
the terms of nodule, location 1, bronchial wall thickening,
crazy-paving, halo, reverse halo, and vascular thickening are
not similar to the study by Bai et al [18]. In addition, except for
GGO, lymphadenopathy, and pleural effusion, the results of

Table 4 A list of alternative diagnosis for COVID-19 pneumonia

other features are similar to those of Long et al [31] and Cheng
et al [35]. The main reason for the difference in the results is
that these studies have used either a small number of patients
in both groups or included all types of non-COVID-19 pneu-
monia patients. Hence, bacterial or other atypical pneumonia
cases may be included. On the other hand, during the diag-
nosing process, radiologists should pay attention to the time of
patient’s admission (Table 3) and the similar CT findings that
can be misdiagnosed as COVID-19 pneumonia (Table 4) to
reduce the possible false-positive cases.

Few artificial intelligence studies on chest CT images have
been emerging to help physicians to manage patients with
COVID-19 pneumonia. Some studies reported that deep
learning could diagnose COVID-19 pneumonia cases with
an AUC of 0.960 [36] and 0.994 [37], respectively.
However, we used simple machine-learning technique and
achieved an AUC of 0.965. Hence, the COVIDiag is more
effective in discriminating COVID-19 pneumonia cases from
non-COVID-19 cases. The main advantage of the proposed
model is simple and takes less time to train as it is not deep
learning—based model.

Another advantage of the COVIDiag is that it is easy to use.
After the acquisition of CT images from the patients, we can

Type of disease Definition

CT features suggesting pneumonia of other cause

Pneumonia from bacterial origin

Characterized by a lobar or segmental airspace consolidation limited by the

pleural surfaces. Ground glass attenuation, centrilobular nodules, and bronchial
wall thickening may be other CT findings.

Pneumocystis jiroveci pneumonia

In immunocompromised patients, GGO within the lung parenchyma is not similar

to COVID-19; it is more diffusely distributed, and subpleural sparing is more prominent.

Other viral causes

CT features may be problematic, but CT abnormalities in COVID-19 more frequently exhibit

a peripheral predominance, and pleural effusion and lymphadenopathy are less frequent.

Non-infectious causes of acute GGO
Pulmonary edema

Central predominance and peripheral sparing of the peripheral portions of the lung are

more predominant contrary to COVID-19. Septal lines, pleural effusion, and large
pulmonary veins are another suggestive singe.

Goodpasture’s syndrome
Drug-induced pneumonitis

Organized pneumonia

There is no subpleural predominance contrary to that seen in COVID-19.
Subpleural sparing is more characteristic, and a history of drug exposure helps diagnosis.
Similar findings with COVID-19 are seen, but GGO occurs in a very different context.

GGO, ground-glass opacity
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extract the desired features from the images and feed those
features on the pre-trained model to get the output class. In
addition, COVIDiag is reproducible and can be used for un-
limited time in a day without degrading the performance.
These test images again can be used to train the model and
make the model more robust. Also, this system is more eco-
nomical and can be used along with the RT-PCR method. The
RT-PCR method is expensive as it involved well-equipped
laboratories which many underdeveloped countries may not
be able to afford [38]. In addition, countries continuously need
to supply the high demand for the new kits. In the present
scenario, our proposed COVIDiag can be used to meet the
challenges of third-world countries and help to rehabilitate
the affected patients immediately by accurate faster diagnosis.

The limitation of our proposed system is that CT findings
can be negative in the early stage, while the RT-PCR is pos-
itive [39, 40]. In this situation, the results of COVIDiag tend to
be negative. Another limitation is that, in some cases, the
initial results of RT-PCR may be false negative [9]. So, these
patients with COVID-19 may be excluded incorrectly. It
should be noted that the PPV and NPV indices are not intrinsic
to the test and they depend on the prevalence of diseases. In
this study, we provided balanced dataset, which can affect the
indices.

Conclusion

This study proposed an automated clinical COVIDiag system
based on routine radiological parameters and machine-
learning techniques. The developed tool is simple to operate
and can help the radiologists to reduce their daily workload by
helping them to make an accurate diagnosis. In the future, we
intend to extend our COVIDiag model to assess the severity of
COVID-19 patients.
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