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Abstract

Background: Thymic epithelial tumors (TETs) are the most common primary tumors in the anterior mediastinum,
which have considerable histologic heterogeneity. This study aimed to develop and validate a nomogram based on
computed tomography (CT) and texture analysis (TA) for preoperatively predicting the pathological classifications
for TET patients.

Methods: Totally TET 172 patients confirmed by postoperative pathology between January 2011 to April 2019 were
retrospectively analyzed and randomly divided into training (n = 120) and validation (n = 52) cohorts. Preoperative
clinical factors, CT signs and texture features of each patient were analyzed, and prediction models were developed
using the least absolute shrinkage and selection operator (LASSO) regression. The performance of the models was
evaluated and compared by the area under receiver-operator characteristic (ROC) curve (AUC) and the DeLong test.
The clinical application value of the models was determined via the decision curve analysis (DCA). Then, a nomogram
was developed based on the model with the best predictive efficiency and clinical utility and validated using the
calibration plots.

Results: Totally 87 patients with low-risk TET (LTET) (types A, AB, B1) and 85 patients with high-risk TET (HTET) (types
B2, B3, C) were enrolled in this study. We separately constructed 4 prediction models for differentiating LTET from HTET
using clinical, CT, texture features, and their combination. These 4 prediction models achieved AUCs of 0.66, 0.79, 0.82,
0.88 in the training cohort and 0.64, 0.82, 0.86, 0.94 in the validation cohort, respectively. The DeLong test and DCA
showed that the Combined model, consisting of 2 CT signs and 2 texture parameters, held the highest predictive
efficiency and clinical utility (p < 0.05). A prediction nomogram was subsequently developed using the 4 independently
risk factors from the Combined model. The calibration curves indicated a good consistency between the actual
observations and nomogram predictions for differentiating TET classifications.
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Conclusion: A prediction nomogram incorporating both the CT and texture parameters was constructed and
validated in our study, which can be conveniently used for the preoperative individualized prediction of the simplified
histologic subtypes in TET patients.

Keywords: Thymic epithelial tumor, Classification, Nomogram, Computed tomography, X-ray, Texture analysis

Background
Thymic epithelial tumors (TETs), which are the most
common primary tumors in the anterior mediastinum, are
well-known for heterogeneity in the oncologic and bio-
logic behaviors [1]. According to the morphology of epi-
thelial cells and the lymphocyte-to-epithelial cell ratio, the
World Health Organization (WHO) classification classi-
fied TETs into six subtypes (thymoma: types A, AB, B1,
B2, and B3; thymic carcinoma: type C) in 2015, which is
recognized as the basis of the clinical decision making and
an independent prognostic factor in TETs [2–4]. Previous
studies have shown that the tumor invasiveness of each
subtype increases in turn, and patients with low-risk TET
(LTET) (types A, AB, B1) usually have more chances to be
completely resected, lower tumor recurrence rate and
higher survival rate than ones with high-risk TET (HTET)
(types B2, B3, C) [5–7]. Moreover, HTET patients can
benefit more from adjuvant treatment than LTET patients
[8]. Thus, preoperative knowledge of histologic classifica-
tions can provide valuable information for treatment deci-
sion making and prognostic evaluation in TET patients.
Computed tomography (CT) is widely recognized as the

main imaging method for the diagnosis, differentiation,
and evaluation of curative effect in TET patients due to its
convenient operation, good image quality, moderate price,
and fewer contraindications [9]. The signs on CT images,
such as the tumor size, location, as well as the presence of
pericardium or pleural effusion and distant metastases, are
helpful to preliminarily judge the invasiveness of TETs
[10–12]. However, they are limited for further accurately
assessment of tumor heterogeneity or differentiation of its
histological subtypes [13].
Texture analysis (TA) based on conventional medical

images has been applied in the quantitative assessment of
tumor heterogeneity by analyzing the distribution and re-
lationship of pixel or voxel gray levels in the lesion area
[14, 15]. Previous studies have revealed that TA, as a non-
invasive imaging tool, has great potential in predicting
pathologic features, response to therapy and prognosis of
head and neck cancer, rectal cancer, et.al [16, 17]. CT
quantitative TA also has been used in assessing anterior
mediastinal lesions, including in distinguishing TET and
non-TET diseases, estimating TET’s subtypes, grades and
stages, et.al, and shown good diagnostic performance [18–
20]. However, only texture parameters extracted from CT
images were analyzed in the above studies, whether the

prediction performance based on texture analysis can be
further improved by combining CT signs is an interesting
problem that requires investigation.
Hence, this study aimed to develop and validate a

nomogram consisting of CT morphological features and
texture parameters for differentiating the simplified
histologic subtypes in patients with TET.

Methods
Patients
We conducted a retrospective analysis of records from
patients with TET who were diagnosed by curative sur-
gical resection between January 2011 to April 2019 at
two cancer centers: Shanghai Proton and Heavy Ion
Center (institution A) and Fudan University Shanghai
Cancer Center (institution B). This retrospective study
was approved by the ethics committees of these two in-
stitutions, and the requirement for informed consent
was waived. The inclusion criteria included the follow-
ing: 1) underwent standard contrast-enhanced CT at the
above two institutions less than 14 days before surgery;
2) received radical surgery at institution B; 3) informa-
tion of postoperative pathologically confirmed TET
histologic subtypes available. The exclusion criteria in-
cluded the following: 1) previous history of malignant
tumors; 2) anti-tumor therapy before CT examination;
3) poor image quality affects lesion segmentation.
In total, 172 patients were enrolled and analyzed (95

males and 77 females; mean age, 54.56 ± 10.67 years;
range, 24–77 years). Patients were divided into a training
cohort (n = 120) and a validation cohort (n = 52) after
simple randomization at a ratio of 7 to 3. Baseline data
pertaining to the demographics of each patient, includ-
ing gender, age, symptom was reviewed and recorded.

CT images acquisition and analysis
Patients generally underwent contrast-enhanced CT of
the entire thorax according to the standard clinical scan-
ning protocols (tube voltage, 120 kV; tube current, 200
mA; pitch, 1.0; imaging matrix, 512 × 512; and recon-
structed slice thickness, 1.0 mm) on the 32- or 64-slices
Siemens Sensation System (Siemens Medical System,
Forchheim, Germany). All CT scans were reconstructed
into slices of 1-mm thickness and interval using a kernel
that was suitable for interpreting mediastinal structures.
Patients were in a supine position, and the scan range
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included all lesion areas. After the plain CT, a total of
80–120 mL (1.5 mL/kg) of iodinated contrast material
(Ultravist 370, Bayer Schering Pharma, Berlin, Germany)
was injected with a pump injector (Ulrich CT Plus 150,
Ulrich Medical, Ulm, Germany) at a flow rate of 3 mL/s
into the antecubital vein. The enhanced scan started 35 s
after the injection of contrast media. The images were
uploaded to the picture archiving and communication
system (PACS) (Carestream, Ontario, Canada).
Two radiologists (reader 1: CY.R, with 3 years of ex-

perience in CT diagnosis, now working in the Depart-
ment of Nuclear Medicine; reader 2: YY.Z, a radiologist
who has 14-years working experience) assessed the fol-
lowing CT morphological features of each lesion without
knowing the exact TET pathologic subtypes by

consensus: tumor size (the longest diameter measured
by the largest cross-section of the mass and the shortest
diameter perpendicular to it), location (unilateral or
cross midline), shape (regular or irregular), boundary
(smooth or rough), density (the presence of calcifica-
tion, cystic necrosis), the degree of enhancement
compared to that of the chest wall muscle (mild en-
hancement: less than that of chest wall muscle; mod-
erate enhancement: equal to that of chest wall
muscle; obvious enhancement: higher than that of
chest wall muscle), mediastinal fat line that means
the fat planes between the tumor and adjacent medi-
astinal structures such as pericardium or great vessels
(clear, unclear), pericardium or pleural effusion and
metastasis (present or absent).

Fig. 1 Chest enhanced CT images of a 53-years-old man with type B1 thymic epithelial tumor (low-risk TET). Texture features are extracted from
the primary tumor area (purple overlay). a transverse section; b median sagittal section; c coronal section; d histogram
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Fig. 2 The cross-correlation matrix for covariates. Blue represents positive correlation and red represents negative correlation. The depth of color
indicates the intensity of the correlation between covariates. The darker the color, the higher the correlation is

Table 1 Clinical and demographic characteristics of TET patients

Characteristics Training cohort p-
value

Validation cohort p-
valueLTET (n = 61) HTET (n = 59) LTET (n = 26) HTET (n = 26)

Sex (%)

Male 28 (45.90%) 38 (64.41%) 0.04 11 (42.31%) 18 (69.23%) 0.03

Female 33 (54.10%) 21 (35.59%) 15 (57.69%) 8 (30.77%)

Age (mean ± SD, years) 56.44 ± 9.48 51.76 ± 12.08 0.02 56.50 ± 8.30 54.53 ± 11.02 0.04

Symptom (%)

+ 25 (40.98%) 30 (50.85%) 0.28 12 (46.15%) 16 (61.54%) 0.57

- 36 (59.02%) 29 (49.15%) 14 (53.85%) 10 (38.46%)

Note: LTET low-risk thymic epithelial tumor, HTET, high-risk TET; SD standard deviation; p-values were the results of univariable association analyses of
each characteristic
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Tumor segmentation and texture feature extraction
Tumor segmentation and feature extraction were per-
formed using the LIFEx (version 5.10, www.lifexsoft.org)
package [21]. The above two radiologists selected the
largest slice of the tumor at three-dimensional (3D) im-
ages to delineate the region of interest (ROI) by consen-
sus (Fig. 1 a-d). The ROI selection should include all
tumors and avoid blood vessels, calcification and gas.
A total of 43 texture features were extracted automatically

from the ROI [22], including 2 shape features, 9 first-order

histogram features, 7 Gray-Level Co-occurrence Matrix
(GLCM) features, 11 Gray-Level Run Length Matrix (GLRL
M) features, 3 Neighboring Gray-Level Dependence Matrix
(NGLDM) features and 11 Gray-Level Zone Length Matrix
(GLZLM) features. The details of texture features were de-
scribed in supplementary data (Table A).

Statistical analysis
Statistical analysis was performed in R (version 3.6.0, http://
www.r-project.org). A two-tailed p value of < 0.05 indicated

Fig. 3 Features selection for the prediction models by LASSO regression. Tuning parameter (λ) selection used 10-folds cross-validation. The X-axis
shows log (λ), and the Y-axis shows the model misclassification rate. The 2, 3, 3,4 features with non-zero coefficients are indicated with the
optimal λ values of 0.07, 0.10, 0.08, 0.10 for Clinical model (a), CT model (b), TA model (c), Combined model (d), respectively
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statistical significance. The Mann-Whitney U test was used
to assess the differences in continuous variables, whereas
the χ2 test was used for categorical variables. Intra- and in-
terclass correlation coefficients (ICCs) were used to evalu-
ate the consistency and reproducibility of the intra- and
inter-observer agreements of the feature extractions. An
ICC greater than 0.75 indicated good consistency.

Feature selection and prediction model establishment
Univariate analysis was applied to the clinical, CT, and
texture features to identify the relevant predictors of the
TET subtypes using Pearson’s correlation test in the train-
ing cohort. Multivariate analysis was performed by the
least absolute shrinkage and selection operator (LASSO)
regression with 10-fold cross-validation, which was used
to select the most useful features [23, 24]. The prediction
models for differentiating LTET from HTET were devel-
oped by the linear fusion of the selected features weighted
by their coefficients, with prediction scores (Pre-scores) of
each model calculated for each patient.

Prediction performance and clinical utility of prediction
models
The performance of the models was evaluated by the area
under the receiver-operator characteristic (ROC) curve
(AUC) and compared by the DeLong test. The AUC with
95% confidence interval (CI), sensitivity, specificity and ac-
curacy were calculated for each model. The clinical appli-
cation value of the prediction models was determined and
compared through the decision curve analysis (DCA) by
quantifying the net benefit to the patient under different
threshold probabilities in the queue.

Development and validation of a nomogram
To provide a visually quantitative tool to predict the
histologic subtypes for TET patients, we develop a
nomogram based on the prediction model with the high-
est AUC value and clinical utility on the training cohort.
The calibration curves were plotted to assess the calibra-
tion of the nomogram by bootstrapping (1000 bootstrap
resamples) based on internal (training cohort) and exter-
nal (validation cohort) validity.

Results
Clinical and demographic characteristics
Totally 172 TET patients comprising of 87 LTET (n [type
A] = 6; n [type AB] = 66; n [type B1] = 15) and 85 HTET
(n [type B2] = 41; n [type B3] = 23; n [type C] = 21) were
enrolled in this study. The patients’ clinical and demo-
graphic characteristics are summarized and compared in
Table 1. The patient’s sex and age were highly related to
the discrimination of the two subtypes (p < 0.05, respect-
ively). There are no significant differences in the symptom
between the LTET and HTET groups according to the
univariate analysis in either the training or validation co-
horts (p > 0.05, respectively), consistent with the report
[25]. The long and short diameters (mean ± SD) of tumors
in the training cohort were 51.61 ± 23.21mm, 35.48 ±
16.44mm in LTET; and 46.58 ± 17.46mm, 29.85 ± 12.52
mm in HTET, respectively. The short diameter of LTET
was significantly greater than that of HTET (p < 0.05),
conversely, there was no statistical significance in long
diameter between the LTET and HTET groups (p > 0.05).

Feature selection and prediction model establishment
A total of 12 CT signs and 43 texture features were ex-
tracted from 172 TET patients’ enhanced CT images,

Table 2 Pre-scores of prediction models and their compositions of TET patients in the training cohort

Short diameter (mean ±
SD, mm)

LTET (n = 61) HTET (n = 59) p-value

35.48 ± 16.44 29.85 ± 12.52 0.04

Boundary (%)

Smooth 53 (86.89%) 30 (50.85%) 0.00

Rough 8 (13.11%) 29 (49.15%)

Mediastinum fat line (%)

clear 45 (73.77%) 20 (33.90%) 0.00

unclear 16 (26.23%) 39 (66.10%)

MeanValue 68.63 (56.52, 78.55) a 48.84 (40.82, 58.18) a 0.00

SHAPE_Sphericity 0.95 (0.93, 0.97) a 0.93 (0.90, 0.96) a 0.01

NGLDM_Busyness 1.13 (0.36, 3.64) a 0.91 (0.43, 1.63) a 0.01

Pre-scores (Clinical model) −0.11 (−0.23, 0.06) a −0.01 (−0.11, 0.13) a 0.00

Pre-scores (CT model) − 0.37 (− 0.50, − 0.22) a 0.29 (− 0.33, 0.63) a 0.00

Pre-scores (TA model) −0.53 (− 0.85, 0.02) a 0.32 (− 0.01, 0.76) a 0.00

Pre-scores (Combined model) − 0.53 (− 0.99, − 0.05) a 0.52 (0.03, 0.84) a 0.00

Note: NGLDM Neighboring Gray-Level Dependence Matrix, CT computed tomography, TA texture analysis; aValues refer to median (interquartile range (IQR))
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and the agreements between the two radiologists
(readers 1, 2) were excellent for texture features (all
ICCs > 0.85, p < 0.05). Thus, the mean measurement
values of the two radiologists were used for further
analysis.
The cross-correlation matrixes showed that there were

multiple complex cross-correlations among these param-
eters (Fig. 2). For differentiating LTET from HTET, 4 in-
dependent prediction models were built separately based
on the selected clinical, CT, texture parameters, and
their combination by LASSO regression in the training
cohort (Fig. 3 a-d). The Pre-scores of each model for
each patient were calculated using the following
formulas:

Pre-scores (Clinical model) = 0.83–0.20*sex -
0.01*age;
Pre-scores (CT model) = − 0.16 - 0.01*short diameter +
0.49*boundary + 0.63*mediastinum fat line;
Pre-scores (TA model) = 3.01–0.04*meanValue -
0.62*SHAPE_Sphericity − 0.03*NGLDM_Busyness;
Pre-scores (Combined model) = 1.67 + 0.39*boundary +
0.46*mediastinum fat line − 0.03*meanValue -
0.03*NGLDM_Busyness.

HTET patients generally had higher Pre-scores for all
prediction models than LTET patients in both the train-
ing and validation cohorts (p < 0.05, respectively)
(Table 2).

Prediction performance and clinical utility of prediction
models
The performance of these 4 models to discriminate
LTET from HTET is shown in Table 3 and Fig. 4. The
discriminant capacity of Clinical model, CT model, TA
model, and Combined model increased in turn, which
indicated that the Combined model presented the opti-
mal discrimination and best predictive accuracy with the
highest AUC and accuracy in both the training cohort

(AUC [95% CI] = 0.88 [0.81–0.94], accuracy = 79.2%) and
the validation cohort (AUC [95% CI] = 0.94 [0.89–0.98],
accuracy = 86.5%) (Table 3).
The DCA also showed that the clinical application

value of these 4 prediction models increased in turn,
which indicated that the Combined model, incorporating
2 CT morphological features and 2 texture parameters,
was a most reliable clinical treatment tool for predicting
the histologic subtypes in TET patients when the thresh-
old probability was between 0.02 and 0.91 (Fig. 5).

Development and validation of a nomogram
According to the above results, we generated a nomo-
gram based on the parameters of the Combined model
for visualization (Fig. 6). The calibration curves of the
nomogram for the probability of HTET demonstrated
good agreements between the nomogram and the actual
observations in both the two cohorts (p > 0.05, respect-
ively) (Fig. 7).

Fig. 4 ROC curve analysis of the prediction models in the validation cohort

Table 3 Prediction performance of the 4 prediction models

Training cohort AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Clinical model 0.66 0.56–0.75 81.4 45.9 59.2

CT model 0.79 0.70–0.87 66.1 83.6 71.7

TA model 0.82 0.74–0.89 94.9 60.7 75.0

Combined model 0.88 0.81–0.94 93.2 67.2 79.2

Validation cohort AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Clinical model 0.64 0.49–0.79 73.1 61.5 57.7

CT model 0.82 0.70–0.93 96.2 53.8 69.2

TA model 0.86 0.76–0.96 88.5 73.1 75.0

Combined model 0.94 0.89–0.98 96.2 80.8 86.5

Note: AUC area under the receiver operating curve, 95% CI 95% confidence interval
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Discussion
In the present study, we developed 4 independent pre-
diction models to differentiate the TET pathologic sub-
types, and constructed a quantitative nomogram based
on the model which held the highest efficiency and clin-
ical utility. This nomogram was validated for the pre-
operative individualized prediction of the classifications
in TET patients.
In terms of the clinical characteristics and CT

signs, although the correlation between patient’s gen-
der, age and tumor invasiveness is still controversial

[2, 4, 12], our study showed that an older female
TET patient with a bigger tumor size, a smoother
boundary and a clearer mediastinum fat line indi-
cated a lower probability that the tumor was malig-
nant. In this study, the tumor size, boundary, and
mediastinum fat line were significantly associated
with the malignant grades of TET. According to the
general understanding, the larger the tumor, the
more malignant it is [26]. However, the sizes in
LTET were larger than that in HTET in both the
training and validation cohorts (p values < 0.05, re-
spectively). This may be related to the fact that the
less aggressive the tumor is, the lighter clinical
symptoms the patient has, which leads to a larger
tumor volume when it is found. The boundary and
mediastinum fat line of the tumor on CT images can
reflect the mass invasiveness to a certain extent [27,
28]. There is usually a higher rate of the tumor inva-
siveness by directly extending to adjacent structures
including vessels, pericardium, or lung, which is
shown as a rough boundary and blurred or even dis-
appeared fat line. The results of this study are con-
sistent with previous researches.
In this study, the texture parameters of meanValue,

sphericity, and NGLDM_Busyness of LTET patients
were higher than HTET ones. Meanwhile, the TA
model that composed of these 3 parameters held
great individualized prediction for TET patients
(AUCs = 0.82 [training cohort], 0.86 [validation co-
hort], respectively). MeanValue in the histogram,

Fig. 5 DCA for the prediction models. The X-axis represents the
threshold probability. The Y-axis represents the net benefit. The grey
and black thin lines represent the hypothesis that all TET patients
are high-risk or low-risk, respectively. The higher curve at any given
threshold probability is the optimal prediction to maximize
net benefit

Fig. 6 Developed prediction nomogram in the training cohort. The probability of each predictor can be converted into scores according to the
first scale “Points” at the top of the nomogram. After adding up the corresponding prediction probability at the bottom of the nomogram is the
malignancy of the tumor
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which represents the average value of ROI, reflects
the degree of texture regularity: the higher the value,
the more regular the texture is, that is, the lower the
heterogeneity is. Yasaka K et al. also found that the
meanValue was a significant parameter for

differentiating HTET from LTET with AUC of 0.89
[18]. Sphericity is the shape feature of the tumor
and has been proven as the most significant factor
for discriminating histologic subtypes in TET pa-
tients [29]. Busyness is a parameter of NGLDM,

Fig. 7 Calibration curves of the nomogram in training (a) and validation (b) cohorts. The X-axis represents the predicted malignancy probability
estimated by the nomogram whereas the Y-axis represents the actual observed rates of HTET. The solid line represents the ideal reference line
that predicted TET malignant corresponds to the actual outcome, the short-dashed line represents the apparent prediction of nomogram, and
the long-dashed line represents the ideal estimation
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which measures the spatial frequency of changes in
intensity between nearby voxels of different grey-
levels. The role of busyness in TETs has not been
reported before, but it has been used to assess the
tissue heterogeneity in glioma and lung cancer [30–
32]. Heterogeneity is a recognized feature of the
tumor that considered to be positively correlated
with the tumor malignancy, which is of great clinical
significance for effective personalized therapies [33,
34]. Previous studies also demonstrated that thymic
carcinoma, type B2, and B3 thymomas are generally
more heterogeneous than type A, AB, B1 thymomas
[35–37]. The results of this study are consistent with
the above reports.
This study also explored whether the prediction per-

formance based on texture analysis could be improved
by combination with conventional CT diagnosis. The
Combined model developed in the present study, con-
sisting of the boundary, mediastinum fat line, meanVa-
lue, and NGLDM_Busyness, was most advantageous
than did the use of either them alone. The accuracy of
the Combined model was also superior. The results of
this study confirm the hypothesis and indicate that the
heterogeneity of the tumor can be evaluated more com-
prehensively by combining with the macroscopic and in-
ternal characteristics of the tumor. In addition, we
generated a nomogram based on the Combined model
for facilitating clinical use, and recommend that a youn-
ger male patient with a smaller tumor size, a rougher
boundary, an unclearer mediastinum fat line shown on
preoperative enhanced CT images should have a more
regular follow-up, and the progression also should be
closely monitored. Besides, we suggest that patients with
a higher-risk of TET, as screened by the nomogram,
should be considered potential adjuvant therapy candi-
dates to extend survival. The clinical application of this
nomogram can reduce the cost of subsequent diagnosis,
help develop more reasonable and effective treatment
plans, and prevent patients from having a poor
prognosis.
However, the present study had several limitations

although the results were encouraging. First, the sam-
ple selection was biased in this retrospective study,
and a prospective study is required to confirm and
validate the prediction nomogram. Second, the texture
analysis in this study was based on enhanced CT,
which can increase the risk of adverse reactions of
contrast media, such as acute hypersensitivity reac-
tions [38]. Whether the use of plain CT or the com-
bination of plain and enhanced CT will increase the
predictive efficiency needs further study. Third, the
tumor, node, metastasis (TNM) [39], or Masaoka [40]
staging systems for TETs were not used in this study.
Further study will be needed to reveal the relationship

between texture features and TNM or Masaoka sta-
ging systems. Finally, this study only included TETs.
Additional studies that include other tumors or
tumor-like lesions in the anterior mediastinum for
better characterization will be performed.

Conclusions
A prediction nomogram incorporating both the CT
morphological features and texture parameters was con-
structed and validated in our study, which was conveni-
ently used to facilitate the preoperative individualized
prediction of the simplified histologic subtypes in TET
patients.
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