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Abstract: Limited information is available regarding chemical water quality at the tap in Guatemala
City, preventing individuals, water utilities, and public health authorities from making data-driven
decisions related to water quality. To address this need, 113 participants among households served by
a range of water providers across the Guatemala City metropolitan area were recruited as participatory
scientists to collect first-draw and flushed tap water samples at their residence. Samples were
transported to the U.S. and analyzed for 20 metals and 25 per- and polyfluoroalkyl substances (PFAS).
At least one metal exceeded the Guatemalan Maximum Permissible Limit (MPL) for drinking water
in 63% of households (n = 71). Arsenic and lead exceeded the MPL in 33.6% (n = 38) and 8.9% (n = 10)
of samples, respectively. Arsenic was strongly associated with groundwater while lead occurrence
was not associated with location, water source, or provider. One or more PFAS were detected in 19%
of samples (n = 21, range 2.1–64.2 ppt). PFAS were significantly associated with the use of plastic
water storage tanks but not with location, water source, or provider. Overall, the high prevalence of
arsenic above the MPL in Guatemala City tap water represents a potential health risk that current
water treatment processes are not optimized to remove. Furthermore, potential contaminants from
premise plumbing and storage, including lead and PFAS, represent additional risks requiring further
investigation and public engagement.

Keywords: drinking water quality; climate change; sustainability; arsenic; lead; PFAS; Guatemala;
participatory science; community-engaged research

1. Introduction

Lack of access to food, energy, and water (FEW) in the face of a changing climate could
hasten large-scale migration from rural to urban settings worldwide [1]. In Latin America
alone, over 10 million people may migrate within their own countries by 2050, away from
areas of water insecurity and diminishing crop productivity to urban centers [1]. These
pressures are acutely felt in Guatemala and Central America. Uncertainty regarding the
rainy season exacerbates challenges for small farmers which, along with meager economic
opportunities and limited basic services, has led to mass migration from rural to urban
settings [2–5]. In 2018, the urban population in Guatemala exceeded the rural population
for the first time (Figure 1), with approximately 3 million residents in the metropolitan area
of Guatemala City, making it the largest city in Central America [6].
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World Urbanization Prospects, by the United Nations (UN), Department of Economic and Social 
Affairs, Population Division, © 2018 UN. Data used with the permission of the UN [6]. 

Although economies of scale in urban areas allow governments to provide essential 
FEW services to a larger population at a lower cost than in dispersed, rural areas [7,8], 
rapid and unplanned urban growth can also affect the quality and efficiency of these same 
services. For example, increases in unregulated extraction of groundwater resources by 
private companies, housing developments, and water utilities has caused rapid declines 
in water table levels below Guatemala City since the 1990s [9]. Flooding from surface run-
off in urban zones has also caused millions of dollars in damage to critical water infra-
structure in the past two decades [9]. Furthermore, urban runoff and poor or non-existent 
wastewater management represent drinking water contamination risks [9–11].  

As a result of these coalescing pressures on water infrastructure and resources in ur-
ban areas, utilities often struggle to consistently supply quality drinking water and the 
public generally assumes that tap water is unsafe to drink [12–14]. Indeed, only 65% of 
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rural/urban proportions shown through 2050. Thick line emphasizes Guatemala trend. Data from
World Urbanization Prospects, by the United Nations (UN), Department of Economic and Social
Affairs, Population Division, © 2018 UN. Data used with the permission of the UN [6].

Although economies of scale in urban areas allow governments to provide essential
FEW services to a larger population at a lower cost than in dispersed, rural areas [7,8],
rapid and unplanned urban growth can also affect the quality and efficiency of these same
services. For example, increases in unregulated extraction of groundwater resources by
private companies, housing developments, and water utilities has caused rapid declines in
water table levels below Guatemala City since the 1990s [9]. Flooding from surface runoff in
urban zones has also caused millions of dollars in damage to critical water infrastructure in
the past two decades [9]. Furthermore, urban runoff and poor or non-existent wastewater
management represent drinking water contamination risks [9–11].

As a result of these coalescing pressures on water infrastructure and resources in urban
areas, utilities often struggle to consistently supply quality drinking water and the public
generally assumes that tap water is unsafe to drink [12–14]. Indeed, only 65% of urban
households in Guatemala are estimated to have access to a safely managed drinking water
source, and very little water quality data exists for those who have access [15]. A systematic
review of studies addressing the FEW nexus in Guatemala reported that drinking water
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was one of the most frequent concerns [16]. Most of the research on drinking water quality
in Guatemala to date, however, has focused on microbial risks in rural areas [17–24].
As the country’s population becomes increasingly urbanized, improved water quality
monitoring in urban zones is paramount for achieving Sustainable Development Goal 6
of universal access to safe drinking water. Specifically, water quality monitoring enables
local decision-makers to engage the public, improve drinking water quality governance,
prioritize infrastructure investments, and develop policies that deliver sustainable FEW
services and protect public health [25–27].

In response to these needs, this study sought to characterize chemical tap water quality
in the Guatemala City metropolitan area and identify factors associated with the occurrence
of certain chemicals of concern. There are limited data on the occurrence and distribution
of metals (including lead) and emerging contaminants such as per- and polyfluoroalkyl
substances (PFAS) in urban Guatemalan tap water and in international water, sanitation,
and hygiene (WASH) research overall [28]. To our knowledge, only one other peer-reviewed
study has reported metals concentrations other than arsenic in Guatemalan tap water [29]
and none have evaluated metals other than arsenic in Guatemala City. Additionally, our
study represents the first analysis of PFAS in Central American tap water, thus addressing a
critical data shortage for these chemicals in Latin America [30,31]. Our participatory science
approach allowed for rapid sampling across the city during the COVID-19 pandemic and
engaged the community around water quality [32,33]. The results are intended to support
decision-making by public health authorities and water service providers in Guatemala and
other urban areas throughout Latin America, while also empowering individual residents
to understand their water quality and make simple improvements at the tap.

2. Materials and Methods
2.1. Recruitment and Questionnaire

Potential participants were initially recruited from faculty, staff, and students at the
Universidad del Valle de Guatemala (UVG) using an online flyer and survey sent to UVG
email addresses, along with hard copies of flyers on campus. A total of 207 potential
participants expressed interest. Participants were then selected using a stratified sampling
approach to ensure adequate participation across the study area. The Guatemala City
metropolitan area consists of 22 distinct zones plus adjoining areas in the municipalities of
Villa Nueva, San Miguel Petapa, and Villa Canales to the south. In total, 113 participants
submitted water samples, representing 20 of the 22 formal city zones (no UVG-affiliated
households were found in zones 24 or 25), Villa Nueva, San Miguel Petapa, and Villa
Canales (Figure 2). An online questionnaire was administered to most participants to
collect information on socioeconomic status, home ownership, building age, water provider,
frequency of water shutoffs, household water storage, and perceptions of water quality
(perceptions data forthcoming), with in person completion available for select maintenance
staff (see Supplementary Materials (SM) for more details).
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water provider.

2.2. Classification of Water Source

Households served by private wells or private water companies were categorized as
being supplied by groundwater. Private water companies around Guatemala City obtain
water through one or more privately operated wells and distribute it to a subdivision or
condominium and charge the recipients monthly rates. Households served by municipal
water providers may be served by groundwater, surface water, or mixed source water,
depending on the zone of the city and time of year. Information regarding the water source
for households served by the main Guatemala City water utility, Empresa Municipal de
Agua (EMPAGUA), was obtained from EMPAGUA engineers according to the water source
supplied to the zone of each household during the sampling dates. Information regarding
the water source for households served by municipal providers in Villa Nueva, San Miguel
Petapa, and Villa Canales was obtained directly from the water utilities.

2.3. Sampling and Analysis

Using provided sampling kits picked up at UVG or sent via courier, participants
were trained to collect samples with an online video and written instructions. Participants
collected a first-draw sample for metals analysis after at least 8 h of stagnation time in
250 mL HDPE bottles. First-draw samples were collected for metals analysis to evaluate
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risk from corrosion byproducts in tap water, such as lead, following the requirements for
compliance sampling in the U.S. under the Lead and Copper Rule [34]. Due to the possibility
of wide variability in lead levels from different sampling approaches and flushing times,
first-draw sampling provided a standardized approach for evaluating metals risk in tap
water [35]. Participants subsequently ran the water for 3–5 min and collected a PFAS
sample and field blank sample in 250 mL polypropylene bottles. Samples were returned
to UVG between 21 and 29 March 2021 and refrigerated before return shipment in FedEx
cooling boxes to RTI International in Research Triangle Park, North Carolina, United
States (U.S.). Samples were received at RTI on 1 April 2021 and analyzed for a panel of
20 metals (Table S1) and 25 PFAS (Table S2) according to methods approved by the U.S.
Environmental Protection Agency (EPA). The fully specified conditions for both methods
have been described in detail previously [36,37].

Briefly, metals were analyzed according to EPA Method 200.8. Turbidity was measured
prior to acidification. Per EPA 200.8, if turbidity was less than 1 nephelometric turbidity
units (NTU), direct analysis was performed. If turbidity was greater than 1 NTU, the
sample was sent through a digestion process. Once turbidity had been determined, the
samples were acidified with nitric acid and mixed well. Samples were then held for a
minimum of 16 h between acidification and analysis prior to the pH being verified < 2. The
samples were analyzed by inductively coupled plasma–mass spectrometry (ICP-MS) using
a Thermo Scientific Q instrument equipped with a DX4 autosampler. The samples were
stored at ambient temperature pre- and post-analysis.

PFAS were analyzed according to a modified EPA Method 533. Samples were ex-
tracted using a weak anion exchange, polymeric sorbent (Phenomenex #8B-S038-HCH)
and then reconstituted in 1 mL of 80% methanol/reagent water (v/v). Isotope performance
standards were added to the extracts and a 10 µL aliquot was analyzed by liquid chro-
matography/tandem mass spectrometry (LC-MS/MS) using an Agilent 1290 LC system
and Agilent 6470 triple quadrupole MS/MS instrument. During the analysis, four PFAS
sample bottles were broken, and these samples could not be reported. All PFAS samples
were stored under refrigeration prior to extraction.

2.4. Statistical Methods

Metals concentrations were compared to Guatemalan drinking water limits [38]. The
Guatemalan standards include Maximum Acceptable Limits (MALs) for aesthetic water
quality and Maximum Permissible Limits (MPLs) for health-related contaminants. For
PFAS, no standards currently exist for drinking water quality in Guatemala. Thus, PFAS
levels were compared to the U.S. EPA’s Health Advisory Level (HAL) of 70 parts per trillion
(ppt) for PFOA and PFOS, the European Union (EU) Drinking Water Directive limit of
500 ppt for the sum of all PFAS [39], and the more stringent limit set by the International
Bottled Water Association (IBWA) of 10 ppt for the sum of PFAS [40].

To assess statistical differences in water quality in different parts of the city, the city
zones were aggregated into northern, southern, eastern, western, and central categories.
Water samples from Villa Nueva, San Miguel Petapa, and Villa Canales were grouped
separately. Multiple logistic regression analysis was used to test the significance of various
socioeconomic and infrastructure-related variables (Table 1) in predicting the odds of metals
exceedances. A separate multiple logistic regression model was developed to evaluate the
odds of any PFAS occurring above the reporting limit. Initially, all potential predictors
were included in each model and insignificant variables were removed in a stepwise
fashion to minimize overfitting. All statistical analyses were conducted in the software R
(version 4.1.1).
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Table 1. Water service and household characteristics of the study population (total n = 113).

n %

Water service provider
Municipal—EMPAGUA 70 62%
Municipal—Villa Nueva 5 4%
Municipal—San Miguel Petapa 4 4%
Private water company 20 18%
Private well 12 11%
Trucked water a 2 2%

Water source type
Surface water 36 32%
Ground water 70 62%
Mixed 5 4%
Unknown 2 2%

Frequency of water shut offs
Once a year or less 44 39%
A few times a year 32 28%
A few times a month 8 7%
A few times a week 15 13%
Daily 14 12%

Housing type
Apartment 11 10%
Formal house 100 88%
Improvised house 1 1%
Room 1 1%

Water storage
Concrete cistern only 48 42%
Plastic tank only 21 19%
Both cistern + plastic 8 7%
None 36 32%

Home ownership
Own 92 81%
Rent 21 19%

Age of home (years)
≤10 10 9%
11–20 17 15%
21–30 25 22%
31–40 9 8%
>40 29 26%
Not reported or unknown 23 20%

Monthly household income (Q)
≤4000 5 4%
4001–8000 17 15%
8001–16,000 26 23%
16,001–24,000 19 17%
>24,000 34 30%
Not reported 12 11%

Level of education attained
No schooling 2 2%
Elementary school 1 1%
Middle school 1 1%
High school 12 11%
University or above 97 86%

a—Private truckers may serve individual households directly or deliver to a community storage tank in areas that
municipal lines do not yet reach [41]. The source of trucked water was unknown.
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3. Results
3.1. Household Characteristics

Most participants (70%, n = 79) obtained their water from municipal providers (Table 1).
Of these, 89% received water from the Guatemala City water utility EMPAGUA (n = 70).
Other households were supplied by private wells serving single households (11%, n = 12),
private water companies throughout the city (18%, n = 20), or had water trucked in (2%,
n = 2). Most participants were supplied by groundwater (62%, n = 70) while 32% were
supplied by surface water, 4% by mixed sources and 2% were unknown. A range of home
ages was reported, from 2 to over 100 years old (mean = 32 years). Monthly household
incomes ranged from less than 4000 Q (approximately 500 USD) to over 24,000 Q (over
3000 USD). Most participants had received some university education or a higher degree
(86%, n = 97).

3.2. Occurrence of Metals in Tap Water

Three metals exceeded Guatemalan health standards (MPLs): aluminum (Al), arsenic
(As), and lead (Pb) (Figure 3, Table S3). Overall, tap water in 63% of households (n = 71)
exceeded the Guatemalan MPL for at least one metal. As and Pb exceeded the MPL (10 parts
per billion (ppb) for both metals) in 33.6% (n = 38) and 8.9% (n = 10) of samples, respectively.
As was detected above, the reporting limit in 100% of samples and ranged 0.3–29.3 ppb
(mean = 7.4 ppb). Pb was detected above the reporting limit in 94% of samples and ranged
<0.1–42.6 ppb (mean = 2.9 ppb). Although Pb exceeded the Guatemalan MPL in only
8% of samples, 42% of samples (n = 48) exceeded the American Academy of Pediatrics’
reference level of 1 ppb of Pb in drinking water [42]. Al, although not often regulated in
drinking water for health concerns [43], is regulated at a health-permissible level of 100 ppb
in Guatemala. Overall, 24% of samples (n = 27) exceeded this limit with concentrations
ranging 1.0–528 ppb (mean = 70.8 ppb). Five metals also exceeded the Guatemalan aesthetic
standard (MAL): Al, copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn). At least one of
these metals exceeded the MAL in 64% of households (n = 72).
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Figure 3. Distribution of metals concentrations in first draw tap water samples among all water
providers sampled in the Guatemala City metropolitan area. Horizontal lines of each box indicate the
first quartile, median, and third quartile for each metal. Vertical black lines indicate the spread of the
data up to ±1.5 times the interquartile range. Symbol colors separate samples by established limits
while shapes sort the samples by provider type.
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Arsenic concentrations varied significantly across the city, with higher levels in the
south, central, and northern zones (Kruskal–Wallis test p < 0.0001). Median As concentra-
tions in these zones were 10.2, 7.8, and 9.6 ppb, respectively, compared to 2.4 and 0.5 ppb in
the east and west (Figure 4). Al concentrations were also significantly different by zone
(Kruskal–Wallis test p < 0.0001, Figure S2), with higher concentrations in the western zones.
In contrast, Pb and Cu concentrations did not exhibit significant geographic differences
(Pb Kruskal–Wallis test p = 0.11, Figure 4; Cu Kruskal–Wallis test p = 0.09, Figure S3).
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Figure 4. Distribution of As and Pb concentrations in first-draw tap water throughout the Guatemala
City metropolitan area. Horizontal lines of each box indicate the first quartile, median, and third
quartile for each metal; vertical lines indicate the spread of the data up to ± 1.5 times the interquartile
range. Black diamonds show the mean value. Dashed red lines indicate the MPL for As and Pb.
Pairwise comparisons highlight significant differences (adjusted for multiple comparisons) between
geographic areas using Wilcoxon tests. As showed significant differences between different parts of
the city, but Pb did not. Kruskal–Wallis tests evaluate the overall significance of the geographic area
on As and Pb concentrations.

3.3. Effect of Source Water and Provider on Metals Exceedances

EMPAGUA customers in the south, central, and northern zones are primarily served
by groundwater, while eastern and western zones of the city are also connected to surface
water reservoirs. Samples taken from households served by groundwater only were over
twelve times as likely to exceed the MPL for As compared to households served by surface
water (OR = 12.2, 95% CI: 3.6–57, p < 0.001; Figure 5 and Table S4). Households in zones
where groundwater and surface water mixed in EMPAGUA’s distribution system were
also over 16 times as likely to exceed the MPL for As than surface water alone (OR = 16.5,
95% CI: 2.0–181, p = 0.012). Tap water collected from homes supplied by private wells,
however, were significantly less likely to exceed the MPL for As compared to municipal
sources (OR = 0.08, 95% CI: 0.003–0.47, p = 0.02). Samples collected from homes served by
private water companies were not more likely to have elevated As compared to municipal
waters (OR = 0.87, 95% CI: 0.28–2.67, p = 0.81).
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Figure 5. Odds ratios and 95% confidence intervals from multiple logistic regression analyses to
evaluate exceedances of the Guatemalan health-based MPL (for Al, As, and Pb) and aesthetic MAL
(for Cu). Large orange dots indicate significant predictors. As exceedances were positively associated
with groundwater and mixed source waters but negatively associated with private well water.
Al exceedances were positively associated with the presence of a concrete cistern but negatively
associated with groundwater. Pb and Cu exceedances were not significantly associated with any
predictors. Intercept values show the odds of exceedance when all predictors are set to their reference
value (see Table S4). Household income, housing type, building age, home ownership, and frequency
of water shut offs were not significant in any models. Variables labeled “ns” were not significant and
exceeded the plotting boundaries. See Table S4 for more detail.

The odds of exceeding the MPL for Al decreased by almost 100% in groundwater
compared to surface water (OR = 0.01, 95% CI: 0.0004–0.07, p = 0.0001). Furthermore, no
significant associations with source water were detected for Pb and Cu. The highest Pb
concentration was detected in a private well (42.6 ppb), indicating a high corrosion risk for
certain households on well water, but private wells were not associated with elevated Pb
overall (OR = 2.42, 95% CI: 0.40–13.4, p = 0.31).

3.4. Effect of Water Storage on Metals Exceedances

Most participants (68%) had a concrete cistern or plastic water storage tank connected
to their property (Table 1). Local concerns exist that households with onsite water storage
could be at greater risk of elevated metals concentrations due to accumulation of sediment
in water storage tanks and low frequency of tank cleaning. Notably, the highest As
concentration detected (29.3 ppb) was from a household served by municipal groundwater
with an underground cistern. However, no significant differences were observed in As
concentrations between the various water storage types (Figure 6), nor was the presence of
a cistern or plastic tank significantly associated with As exceedances above the MPL after
controlling for additional variables (Figure 5).
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Figure 6. Distribution of As and Al concentrations in first-draw samples from households with
and without onsite water storage. Horizontal lines of each box indicate the first quartile, median,
and third quartile for each metal; vertical lines indicate the spread of the data up to ± 1.5 times the
inter-quartile range. Black diamonds show the mean value. Dashed red lines indicate the MPL for
As and Al. Dotted orange line indicates the MAL for Al. Pairwise comparisons highlight significant
differences (adjusted for multiple comparisons) between water storage types using Wilcoxon tests.
As showed no significant difference between water storage types, but Al did. Kruskal–Wallis tests
evaluate the overall significance of water storage on As and Al concentrations.

The presence of a cistern was positively associated with elevated Al concentrations,
however. The odds of exceeding the Al MPL increased by six times among households
reporting to have a concrete cistern (OR = 6.1, 95% CI: 1.3–37, p = 0.03) and by over 27
times among households with both a cistern and a plastic tank (OR = 27.3, 95% CI: 2.01–946,
p = 0.03) compared to households with no storage (Figures 5 and 6), possibly due to the
highly corrosive effect of concrete on aluminum-bearing components, such as valves or
screens, that may be in contact with concrete tanks [44]. The same association was not
observed for households with a plastic tank only.

3.5. Occurrence of PFAS in Tap Water

Low concentrations of six PFAS were detected in some households served by municipal
water supplies. No PFAS were detected above the reporting limits in samples from private
utilities, private wells, or cisterns served by trucked water. Overall, at least one PFAS was
detected above the reporting limit in 19% of samples (n = 21). The six PFAS detected, in
order of the maximum concentration detected from highest to lowest, were PFPeA, PFHxA,
PFBA, PFBS, 6:2 FTS, and PFHxS. Detected concentrations of these six compounds ranged
2.1–64.2 ppt (Figure 7). The sum of all targeted PFAS in the 21 positive samples ranged
2.1–91.5 ppt. No samples exceeded the EPA HAL of 70 ppt for PFOA and PFOS or the EU’s
total PFAS limit of 500 ppt, but 6% of samples exceeded the IBWA limit of 10 ppt for the
sum of PFAS. PFAS concentrations were not significantly different by zone (Kruskal–Wallis
test p = 0.13, Figure S4).
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± 1.5 times the interquartile range from the first and third quartiles, with individual outliers shown.

3.6. Effect of Water Storage on PFAS

Logistic regression analysis showed no significant effect of source water or service
provider on PFAS occurrence. Notably, however, the odds of having any detectable PFAS in
the sample was significantly higher among homes reporting the use of a plastic tank on the
roof of the home after controlling for water source and service provider (ORplastic only = 6.2,
95% CI: 1.2–48, p = 0.04; ORplastic + cistern = 10.6, 95% CI: 1.3–113, p = 0.03; Table S5). Concrete
cisterns were also positively associated with PFAS, but the odds ratio was not significant
(OR = 4.4, 95% CI: 0.99–31, p = 0.08). Of the 27 households with plastic tanks, 33% were
positive for any targeted PFAS, while only 15% were positive among households without a
plastic tank. No other variables, including source water type, provider, frequency of water
shutoffs, housing type or age, or household income, were significantly associated with
PFAS detections above the reporting limit.

4. Discussion

Rapidly growing metropolitan areas throughout Central America often do not have the
resources for advanced water quality testing and treatment. However, chemical monitoring
is essential to protect public health, ensure public confidence in water service, and make
progress toward Sustainable Development Goal 6 of safe drinking water for all. Thus,
this study provides crucial insight into the quality of urban drinking water supplies in
Guatemala City, with important implications for metropolitan areas throughout the region.

Out of 113 households, we found that 63% of homes exceeded the Guatemalan health-
based MPL for at least one metal, and 40% of homes exceeded the Guatemalan standards for
As or Pb alone. Higher As prevalence was associated with municipal groundwater sources,
but not with private well water, suggesting an effect of well depth on As concentrations.
Groundwater supplies in Guatemala City are drawn from wells ranging 20–600 m deep [11].
Municipal and company-owned wells may be deeper and draw from a different aquifer
with more geothermal influence than shallow private wells [45,46]. City zones served by
municipal groundwater were more likely to have As concentrations above the MPL. The
high prevalence of As above the Guatemalan MPL (33.6%) supports previous findings from
Guatemala City [47] and Latin America broadly highlighting geogenic As as a significant
health risk [45]. Despite awareness of As risk in the region, there remains a need for
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enhanced treatment of groundwater (i.e., coagulation and flocculation) for As removal
in urban zones [48]. Future research should also evaluate the potential co-benefits of
reduced As exposures from expanded use of surface water as a drinking water source,
which has been proposed as a strategy to reduce groundwater depletion in the Guatemala
City metropolitan area [49].

Existing surface water treatment processes also require optimization, however. We
found that homes served by surface water were more likely to exceed the Guatemalan
health limit for Al, which can be attributed to the standard use of aluminum sulfate as a
coagulant during conventional surface water treatment. None of the samples that exceeded
the Al MPL also exceeded the As MPL, further indicating that the occurrence of these
metals is a function of different source waters and treatment techniques. While monitoring
is a first step in understanding urban water quality, water utilities may need governmental
support to manage these sources and optimize treatment.

In contrast to As, there was no association between water source or provider and
the odds of Pb exceedances at the tap. Elevated Pb concentrations thus appear to be
randomly distributed and are likely related to onsite piping and plumbing and/or high
corrosivity in certain wells. Very little data exist regarding the presence of Pb service lines
in Guatemala City. Although first-draw Pb levels exceeded the Guatemalan MPL in only 8%
of households, the high prevalence of detectable Pb (94%) indicates widespread Pb-bearing
plumbing components which poses a health risk, particularly for pregnant women, infants,
and children [50]. With these findings, water providers and health authorities should
consider proactive measures to educate the public regarding the risks of Pb in drinking
water and actions that can be taken to reduce water Pb exposures, as well as improve access
to Pb-free faucet fixtures and water filters certified to remove Pb at the tap.

We also detected PFAS in Guatemala City tap water in 19% of household taps. To our
knowledge, this is the first study evaluating PFAS in drinking water supplies in Central
America. These findings are promising for water providers in Guatemala City in that they
indicate relatively good protection of source waters from potential PFAS sources such as
industry and wastewater, despite estimates that 95% of the country’s wastewater goes
untreated [10]. Interestingly, however, the occurrence of PFAS was significantly associated
with the use of plastic water storage tanks. High-density polyethylene plastic products
treated with fluorine for stability [51] and/or recycled plastic containers [52] could leach
PFAS into stored water. Overall, 68% of participants had some form of water storage
onsite. Further study is needed to understand the potential chemical risks of domestic
water storage in concrete cisterns and plastic tanks, including PFAS and metals, which are
widely used to minimize interruptions in water service worldwide [53]. Future research
could also evaluate onsite water storage systems for additional chemical risks, such as
asbestos cement [54].

A key limitation of this study was that recruitment on a university campus led to the
selection of households with higher education levels and socioeconomic status. Tap water
in these households may not be representative of the city overall; different or additional
factors may be associated with water quality in lower-income neighborhoods that may
have different housing characteristics and/or be supplied by informal water providers.
Importantly, however, this study demonstrates that participatory science can be an efficient
way to conduct water quality sampling in burgeoning urban zones to provide individuals,
utilities, and public health authorities with important water quality information. With
mounting pressure on FEW resources, policies and financial resources that support sus-
tainable and health-protective water service in Guatemala City will become increasingly
important.

5. Conclusions

In this study, tap water samples were collected at 113 households in the Guatemala
City metropolitan area using a participatory science approach. Water quality results were
correlated to socioeconomic, infrastructural, and geospatial information to evaluate risk
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factors associated with the presence of chemical contaminants. Results showed a high
prevalence of As, Al, and Pb in tap water across the city, and indicated a range of sources of
contamination, including geogenic, water treatment-related, and premise plumbing sources.
Household water storage practices, frequently used to manage intermittent water service,
may also introduce additional contaminants such as PFAS and Al into household tap water.
The results provide actionable information for individuals, public health authorities and
water service providers seeking to reduce drinking water-related exposures. As climate
change and urbanization present increasing environmental health challenges in Latin
America, engaging communities as participants in the scientific process can help generate
evidence that supports healthy and sustainable development throughout the region.
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concentrations in Guatemala City first draw tap water samples across all water service providers
and source water types; Table S4: Multiple logistic regression results to evaluate variables associated
with any detections of Al, Al, Pb, and Cu above MPLs (Al, As, Pb) and MAL (Cu) in tap water
samples; Table S5: Multiple logistic regression results to evaluate variables associated with any PFAS
detections in tap water samples; Figure S1: A copy of the study flyers in English and Spanish, which
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first-draw tap water throughout the Guatemala City metropolitan area; Figure S4: Distribution of the
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