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ABSTRACT

The primary function of microRNAs (miRNAs) is to
maintain cell homeostasis. In cancerous tissues miR-
NAs’ expression undergo drastic alterations. In this
study, we use miRNA expression profiles from The
Cancer Genome Atlas of 24 cancer types and 3
healthy tissues, collected from >8500 samples. We
seek to classify the cancer’s origin and tissue iden-
tification using the expression from 1046 reported
miRNAs. Despite an apparent uniform appearance of
miRNAs among cancerous samples, we recover in-
dispensable information from lowly expressed miR-
NAs regarding the cancer/tissue types. Multiclass
support vector machine classification yields an aver-
age recall of 58% in identifying the correct tissue and
tumor types. Data discretization had led to substan-
tial improvement, reaching an average recall of 91%
(95% median). We propose a straightforward protocol
as a crucial step in classifying tumors of unknown
primary origin. Our counter-intuitive conclusion is
that in almost all cancer types, highly expressing
miRNAs mask the significant signal that lower ex-
pressed miRNAs provide.

INTRODUCTION

Mature microRNAs (miRNAs) are short, non-coding RNA
molecules. They lead to post-transcriptional repression by
reducing the stability of mRNAs and attenuating the trans-
lation machinery (1). In humans, there are about 1900
miRNA genes that yield ∼2600 mature miRNAs. The ex-
pression levels of miRNAs in healthy tissues span five to six
orders of magnitude (2).

In all multicellular organisms including humans, miR-
NAs were implicated in embryogenesis, tissue identity and
development. As the gatekeepers of cell homeostasis (3),
miRNAs respond to alteration in cell regulation that oc-
curs during viral infection, inflammation and numerous
pathologies. In mammals, cell transformation and carcino-

genesis are accompanied by drastic alterations in miRNA
expression profiles (4,5). Those miRNAs that are associated
with carcinogenesis and metastasis are called oncomiRs (6).
They were implicated in targeting components of the cell
cycle, DNA repair, oncogenes or tumor suppressor genes
(7,8). Most oncomiRs are expressed in multiple cancer tis-
sues. However, some are specific to only certain cancer tis-
sues. For example, human miR-21 over-expression is asso-
ciated with almost all cancers while miR-15 and miR-16 ex-
pressions are mostly associated with B-cell neoplasm. Other
miRNAs (miR-143 and miR-145) directly regulate other
oncomiRs and thus are candidates for anti-tumor therapy
(9). Therefore, altered miRNA expression in cancerous ver-
sus healthy tissues is suggested as invaluable biomarkers, for
cancer diagnosis and prognosis and as a lead for novel ther-
apeutic approach (10). Despite advances in understanding
cell deregulation by miRNAs in cancers for most miRNAs,
a relation between expression level, diagnosis and prognosis
for specific cancer types cannot be drawn (see ‘Discussion’
section in (11,12)).

From a clinical perspective, profiling miRNAs is impor-
tant for: (i) selecting optimal treatment; (ii) monitoring the
disease’s progression; (iii) identifying the primary origin of
a metastatic cancer (12). For example, miR-10b level was
shown to be a prognosis indicator for chemotherapeutic
resistance in colorectal cancer (13) while miR-30c inhibits
tumor chemotherapy resistance in breast cancer (14). The
monitoring of minute miRNAs levels in patient’s body flu-
ids allows a follow up for treatment and a direct assessment
for disease’s progression (5,15).

The goal of our study is to use the miRNA expression
profile data from The Cancer Genome Atlas (TCGA) to-
ward the task of classifying different cancerous tissues and
their disease/healthy states. TCGA provides rich molecular
data from cancer patients on an unprecedented scale (16),
with samples of >25 cancer types. We focused on miRNA
profiles that report on the normalized expression level of
each of the 1046 analyzed miRNAs. Specifically, we ask: (i)
which miRNAs best capture the information needed to dis-
tinguish the various cancerous types and origin? (ii) Which
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tissues are prone to false classifications? (iii) Can we find a
biological interpretation of the set of informative miRNAs?

MATERIALS AND METHODS

Data collection

MicroRNAs (miRNAs) profiles were extracted from TCGA
(collected between October 2013 and January 2014) (17–
20). We defined a class by coupling the originating tis-
sue with the label of the sample’s state (i.e. cancer-
ous or healthy). We limited our analysis to classes with
over 50 samples. In total we collected 27 classes. Three
classes of healthy tissues are abbreviated as kidney, thy-
roid and breast. Additionally, 24 cancerous classes and their
acronyms are listed in Table 1.

The 27 classes include 8522 distinct samples. Each sam-
ple includes the expression values of 1046 miRNAs. We as-
sessed the similarity among patient samples by calculating
the cosine of the angle between the vectors of miRNA ex-
pression. These cosines were used as a proxy to the ini-
tial separation ability and similarity among classes. The co-
sine similarity over mean-centered vectors is very similar to
Pearson correlation. This similarity measure is less biased
toward the extreme values. The lists of all samples and miR-
NAs’ TCGA identifiers are provided in Supplementary Ta-
ble S1.

Data transformation

We apply a rough discretization to the data, according to
miRNA expression level, measured in reads per million
(RPM). The threshold for data transformation was care-
fully determined by a systematic analysis of the entire range
of thresholds. The threshold that performed best, and was
stable for the different datasets was found to be 30 RPM.
We used three data representations: raw, dichotomy and tri-
chotomy. Raw representation include the unprocessed data
as collected from the TCGA. For the dichotomy, there are
two categories: one for expression levels strictly between
0 and 30 RPM, and a second one for everything else. A
somewhat more refined classification is the trichotomy. For
this representation data was partitioned to non-expressed,
lowly expressed (expression levels from 0 to 30 RPM) and
highly expressed (>30 RPM). On average, each sample has
306 lowly expressed miRNAs (standard deviation (s.d.) of
43.91) and 163 highly expressed miRNAs (s.d. of 18.58).

Machine learning model

Human TCGA samples were classified to the 27 classes
(see above) by training a multiclass support vector machine
(SVM) classifier (21). We used a Python implementation
based on the scikit-learn package (22). The training sets for
the raw data, the dichotomy and the trichotomy were 40%
of the samples of each class. The sensitivity of the SVM clas-
sifier to the size of the training set was tested. The tests were
repeated with training set comprised of 20–80% of each
class of samples, with increments of 10%. Our results for
both data transformations were consistent and stable for
training sets between 40 and 80% of the samples. However,
reducing the training sets to <40% resulted in a gradual

decline in the recall rate results. Both dichotomy and tri-
chotomy schemes were run 1000–10 000 times each. Scikit-
learn cross-validation mechanism was used in order to pre-
vent over-fitting.

We added a majority vote procedure. The data were ran-
domly partitioned into 40% of unseen samples and 60%
seen, that were used for training. We created five train-
ing sets, each of which comprised of a random subset of
two-thirds of the seen part and generated using a cross-
validation as described above. For each set, two classifi-
cation matrices were created, one based on the 30 RPM
threshold, and the other based on a 60 RPM threshold.
The latter provides an additional assessment for the sensi-
tivity of the threshold on the performance. We then run our
machine-learning procedure on each of these five sets and
test them on the unseen part of the data. Our final classifi-
cation is chosen by carrying a plurality vote among these 10
classification results.

Performance evaluation and error analysis

We assessed our models according to their average re-
call rate for each of the classes. Recall is defined as [true
positive]/[true positive + false negative]. The average, me-
dian and s.d. were measured for over 300 independent runs
of the SVM protocol on raw or discretized data.

We carried out two types of error analysis: at the sam-
ple level and at the class level. First, we analyzed the errors
made per each of the samples over distinct runs (sample-
based error). A second error analysis concerns a class mis-
classifications and the identity of the faulty assignment
(class-based error). The plurality vote was implemented in
our final classification in order to overcome sample-based
errors. We have merged the classes rectum adenocarcinoma
(READ) and colon adenocarcinoma (COAD) in order to
reduce the extent of class-based errors.

Informative miRNA extraction

Several methodologies were applied to test whether there
is a selected set of miRNAs that are most informative to-
ward a successful classification task. Namely, whether we
can replicate our best results using only a subset of the
miRNA collection. To this end, numerous methodologies
were tested (e.g. SVD decomposition, a systematic removal
of individual miRNAs and testing the impact on the per-
formance). Our best and consistent results were obtained
using the following method: for each miRNA we create an
81-dimensional vector, with 3 coordinates for each of the 27
classes (24 cancer types and 3 healthy tissues). These three
coordinates are defined as follows: if there are N samples in
this class for the miRNA at hand, of which N 0 are not ex-
pressed, N 1 are between 0 and 30 RPM and N 2 are highly
expressed, then we set the first coordinate at N 0/N, the sec-
ond to N 1/N and the third to N 2/N. We then calculate the
s.d. of each of the expression levels among the 27 classes sep-
arately, and calculate the sum of the s.d. Formally:

sd (N 01, N 02, . . . , N 027) + sd (N 11, N 12, . . . , N 127)

+sd (N 21, N 22, . . . , N 227) .
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Table 1. List of the 24 cancerous classes and their acronyms

Cancer name Acronym

Adrenocortical carcinoma ACC
Bladder urothelial carcinoma BLCA
Brain lower grade glioma LGG
Breast invasive carcinoma BRCA
Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC
Colon adenocarcinoma COAD
Esophageal carcinoma ESCA
Head and neck squamous cell carcinoma HNSC
Kidney chromophobe KICH
Kidney renal clear cell carcinoma KIRC
Kidney renal papillary cell carcinoma KIRP
Liver hepatocellular carcinoma LIHC
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Pancreatic adenocarcinoma PAAD
Pheochromocytoma and paraganglioma PCPG
Prostate adenocarcinoma PRAD
Rectum adenocarcinoma READ
Sarcoma SARC
Skin cutaneous melanoma SKCM
Stomach adenocarcinoma STAD
Thyroid carcinoma THCA
Uterine carcinosarcoma UCS
Uterine corpus endometrial carcinoma UCEC

We expect miRNAs of higher summed s.d. values to be
more informative, since the s.d. captures the miRNA’s vari-
ability among different classes. We chose not to assign dis-
tinct weights to different classes despite their differing sam-
ples’ size (ranging from 57 for uterine carcinosarcoma to
1066 for breast invasive carcinoma; BRCA).

RESULTS

Many cancerous tissues have similar miRNA profiles

The main goal of our study is to classify cancer classes using
the information encoded by miRNA profiles from patients.
For most cancer types, a small number of highly expressed
miRNAs undergo a drastic change in expression level along
the progression of the disease. Therefore, it is a commonly
held view that uniquely expressed miRNAs might be used
for diagnosis, prognosis and possibly also for disease treat-
ment. Here we revisit this view and test the miRNA hetero-
geneity and expression consistency in an unbiased way. We
analyze many different cancer types and tissues, and thou-
sands of patient samples.

We wanted to get a sense of the similarity between the vec-
tors of miRNA expression values among samples from each
given tissue. We found high correlations among the miRNA
expression vectors when both samples are healthy or when
both are diseased (within the same tissue) and much lower
for healthy versus cancerous one (an average correlation co-
efficient of r = 0.97 versus 0.37). Figure 1 shows an analy-
sis for all pairs of patients with lung adenocarcinoma sam-
ples (521 samples, abbreviated LUAD) and matched healthy
samples (∼50 samples). The similarity between each pair is
indicated (cosine values, see ‘Materials and Methods’ sec-
tion). We show that healthy and cancerous tissues exhibit
different patterns. Importantly, healthy samples are similar
to each another as are the diseased samples.

We tested whether this property (Figure 1) extends to all
other cancerous and healthy tissues. We therefore restricted
our analysis to tissues for which samples from both healthy
and cancerous patients are available. As Figure 2A shows,
each healthy tissue is well characterized by its miRNAs’ pro-
file. For example, breast tissues in different patients have
very similar miRNA profiles and differ significantly from
liver profiles. Even the two types of lung tissues are visibly
distinguishable from each other. However, the distance ma-
trix for the diseased samples (5 classes, ∼2700 patients, Fig-
ure 2B) is relatively uniform. While all the diseased tissues
are rather similar using our similarity matrix, a somewhat
higher similarity is visible between the two lung diseases,
the adenocarcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC). We concluded that the trend that we ob-
served in Figure 1 applies to other tissues. Namely, the dis-
tance among all pairs of diseased tissues is lower than that
among the corresponding healthy tissues.

Figure 2C offers a bird’s eye view of miRNA-based in-
formation for all 8522 samples that were included in our
analysis, according to 27 classes discussed in this study. The
entries show the average of the correlations over all sam-
ples in each pair of classes. Note that the values on the di-
agonal are only slightly higher than the rest of the values
in this symmetric matrix. It is noteworthy that brain lower
grade glioma (LGG) markedly differs from other cancerous
tissues, yet exhibiting a significant self-similarity. Addition-
ally, sarcoma samples (SARC, diagonal, Figure 2C) exhibit
rather low (0.61) average correlation, suggesting high vari-
ability of the miRNA expression in this cancer type.

Lowest expressed miRNAs improve cancer type classification

In view of the relatively homogenous pattern of miRNA
profiles among diseased tissues (Figure 1), it is clear that
the identification of cancer classes using miRNA profiles
requires the use of a computational method that takes ad-
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Figure 1. Distance matrix of the relations between lung adenocarcinoma (LUAD) patients’ samples and healthy lung samples. There are 50 healthy samples
and 521 diseased samples. The distance is the angle between each pair of samples. The larger the angle, the larger is the distance between the paired miRNA
expression vectors. Blue to red indicating the range from similarity to maximal distance.

vantage of the comprehensive dataset. Thus, we sought a
classifier that can correctly label a tissue of origin based on
information that is globally captured by the miRNAs’ pro-
files. To this end, we applied a multiclass SVM classifier with
a randomly chosen training sets (Figure 3A). The flow of
the methodologies used in this study is shown. Our classifier
employs two variations of data transformation, followed by
a step that benefits from studying the typical errors in our
classification task (Figure 3A).

SVM applied to the raw data to identify the tissue of ori-
gin achieves an average recall rate of 58%, and a median of
69% (27 classes) (Figure 3B, blue). Note that naive guessing
would yield ∼4% recall rate for classifying a sample to any
of the 27 classes. Interestingly, for 10 out of the 27 classes at-
tains recall rate higher than 80%, and for 5 classes the recall
rate is even above 90%. However, the prediction for some
classes is very poor (<10%). The best performance is asso-
ciated with LGG, as could be anticipated from the observa-
tion in Figure 2C.

However, for clinical purposes, a recall rate of 58% is un-
satisfactory. We thus focused on searching a subset of miR-
NAs that are most informative toward the task of classifying
tissue of origin and sample status (diseases, healthy). The
expression levels of miRNA exhibit a high dynamic range
of 5–6 orders of magnitude and expression is expressed in
RPM. Furthermore, it turns out that only a small number of
miRNAs (20–25) account for the vast majority of the reads
in the samples (96–98%, not shown). Based on these obser-
vation, we tested the potential of discretizing miRNAs’ raw
values, thus allowing a representation that emphasizes the
contribution of lowly expressed miRNAs. We anticipated
that the long tail of miRNAs might be more informative
for the classification purposes with respect to a small set of
dominating miRNAs.

We applied a simple dichotomy that partitions the lowly
expressed miRNA (<30 RPM) versus the rest of the miR-
NAs. Typically, ∼70% of the miRNAs are expressed at the
range of >0–30 RPM. This simple transformation (see ‘Ma-
terials and Methods’ section) dramatically reduces the vol-
ume of data, and concentrates on only ∼ 0.02% of the origi-
nal signal (i.e. the sum total of miRNAs expression values).
Importantly, the application of naı̈ve dichotomy already im-
proves the performance of our classifier to an average recall
rate of 66% (median of 80%, Figure 3A).

We sought additional data processing procedures to fur-
ther improve the classification performance. In dichotomy
we treat equally miRNAs that are expressed at levels above
the threshold (>30 RPM) and those that are not expressed
at all in a specific class. We next separate these two sets,
and replace the data transformation to a trichotomy (Figure
3A, see ‘Materials and Methods’ section). This transforma-
tion yields a substantial improvement. The classifier thus
reaches an average recall rate of 88% (median 91%, Figure
3B and Table 2). Figure 3B shows the improvement in the
classification success for the trichotomy mode with respect
to the original raw data. It is clear that some classes benefit
more from this transformation than others. For 8 out of the
27 classes the observed improvement was >3-folds (Figure
3B).

We analyzed the dependence of the recall rate on the cho-
sen threshold. Figure 4 was generated using an identical
training and testing sets for each of the 200 classification
tests. As shown in Figure 4C and D, the recall rate remained
virtually unchanged for thresholds ranging between 5 and
30 RPM. This phenomenon remained robust when using
different training and testing sets. Moreover, the perfor-
mance per se is most stable for different training and testing
sets when using the threshold of 30 RPM. Note that raising
the threshold above 30 RPM affects the performance nega-
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Figure 2. Analysis of the relations between samples from different tissue origin. (A) Distance matrix of healthy samples from five sources. The healthy
samples are far more similar within the tissue than among tissues, substantial similarity is observed between healthy samples from LUAD and lung
squamous cell carcinoma (LUSC) that are marked as lung and lung2, respectively. (B) Matched diseased samples from the same tissues reported in (A).
The number of patients from each class is indicated (axis Y). We excluded classes that are supported by <50 samples (see ‘Materials and Methods’ section).
As oppose to the healthy samples, the distances between the patient samples are rather uniform with no clear partition between diseased classes. Blue to
red indicating the range from similarity to maximal distance. (C) A ‘bird view’ of the miRNA-based information for >8500 TCGA samples. All 27 classes
are listed in an alphabetical order. The classes that are associated with healthy samples (breast, kidney and thyroid) are marked by arrows. Note that the
correlation within the same class (the diagonal) is not necessarily maximal (e.g. 0.61 for Sarcoma, SARC). The brain lower grade glioma (LGG) is an
outlier with maximal distance to any other class.

tively, suggesting that at this range of parameter we actually
add noisy information (Figure 4).

It is evident that for both the dichotomy and trichotomy
modes, information within the very low expression levels is
critical for the classification task. The contribution of the
very lowly expressed miRNAs to the classification task was
further assessed. We zoomed on miRNAs expressed at lev-
els up to x, where x ranges from >0 to 30. We trained the
classifier again for different values of x and artificially re-
labeled miRNAs that are smaller than x as non-expressed.
When marking as non-expressed miRNAs with expression
levels under 10 RPM, there was no significant change to the

classification results, while applying x > 10 RPM led to a de-
cline in performance. Typically, only ∼8% of the miRNAs
are listed in the range of 10–30 RPM, while 25% of the entire
list of miRNAs are within the range of 1–10 RPM. We con-
clude that lowly expressed miRNAs that carry fundamental
information for the classifier, mostly (but not entirely) reside
in the 10–30 RPM range.

Not all tissue types are equally hard to classify

As mentioned, trichotomy has resulted in a substantial im-
provement for many classified tissues. For 11 out of the 27
classes, we consistently reached a recall rate of 95% or above
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Figure 3. Classification results following data transformation. (A) Average recall rates for each class while using raw data (blue), data in a dichotomous
representation (empty diamonds) and data following the trichotomous representation (red). (B) Fold improvement achieved by applying trichotomous
transformation with respect to the results from raw data without any processing. The classes are sorted alphabetically.

(Table 2). Importantly, the classification success does not
immediately reflect the sample size. For example, a 96% re-
call rate for adrenocortical carcinoma is based on only 80
samples while LUSC achieved only 84% recall rate with a
sample size which is 6-fold larger (Table 2). Specifically, we
are doing poorly on classifying esophageal carcinoma and
READ, with a recall rate of 43 and 39%, respectively.

We tested the sensitivity of the classification performance
with respect to alternative machine learning methods: Ran-
dom Forest and SVM with polynomial and radial basis
function (RBF) kernels. The results for Random Forest and
SVM with polynomial kernel were somewhat worse than
the used SVM (see ‘Materials and Methods’ section). RBF
kernel gave an improved performance on the raw data, but

failed to improve following data discretization and data
transformation.

A third of the classification errors are interpretable

We tried to refine our understanding on features that govern
the success/failure in the classification task. To this end we
inspected the results in view of the different errors that are
made. Figure 5 presents a ‘wheel view’ for all 27 classes with
a visual indication on the samples’ size for each class, and
the typical errors. Cross-edges in the graph and their color
indicate the extent and nature of all misclassifications. The
wheel indicates the true-positive and false-positive (inner
arc), as well as the true-positives and false-negatives (mid-
dle arc). From the outermost arc one can estimate the sum
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Table 2. Average classification recall rate for classification of the 27 classes by various data transformation protocols

Class # of samples Raw data Dichotomy Trichotomy Plurality vote

ACC 80 0.7 0.86 0.96 0.96
BLCA 275 0.3 0.57 0.8 0.77
BRCA 1066 0.86 0.96 0.97 0.98
Breast 102 0.7 0.23 0.91 0.92
CESC 258 0.23 0.33 0.75 0.78
COAD* 433 0.82 0.9 0.8 0.97
ESCA 127 0.03 0.02 0.43 0.52
HNSC 513 0.8 0.89 0.89 0.92
KICH 66 0.74 0.53 0.92 0.94
Kidney 71 0.19 0.55 0.99 1
KIRC 535 0.87 0.96 0.95 0.95
KIRP 258 0.77 0.74 0.91 0.91
LGG 518 0.99 1 1 0.99
LIHC 269 0.8 0.95 0.98 0.97
LUAD 499 0.78 0.83 0.9 0.94
LUSC 467 0.6 0.69 0.84 0.87
PAAD 96 0.12 0.46 0.91 0.89
PCPG 184 0.93 0.99 0.99 1
PRAD 421 0.97 0.99 0.99 1
READ* 159 0.03 0.02 0.39

SARC 196 0.32 0.8 0.97 0.99
SKCM 411 0.92 0.99 0.99 0.99
STAD 353 0.54 0.59 0.87 0.87
THCA 507 0.94 1 0.99 1
Thyroid 59 0.08 0 0.82 0.88
UCEC 542 0.7 0.93 0.94 0.95
UCS 57 0.08 0.15 0.79 0.8
AVERAGE 315.63 0.59 0.66 0.88 0.91

*COAD and READ classes were merged for the plurality vote protocol.

Figure 4. Average recall rate when applying 200 separation thresholds from 5 to 1000 RPM with 5 RPM increments. (A) The average recall rate obtained
for the dichotomous transformation. (B) The average recall rate obtained for the trichotomous transformation. (C) Zooming on results of the dashed
framed area in (A), with thresholds in the range of 0–200 RPM for the dichotomous transformation. (D) Zooming on results of the dashed framed area
in (B), with thresholds in the range of 0–200 RPM for the trichotomous transformation. The drop in performance supports the notion of increasing noisy
data by increasing the threshold. Note a difference in the average recall rate for the dichotomous versus the trichotomous transformations.
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Figure 5. A circular view including 27 classes according to the error types and the size of each class. Each class is associated with two quantifiers and
their summation. The inner arc displays the distribution of the classes classified as the subjected class (i.e. true-positive and false-positive), the middle
arc displays the distribution of classification of the samples which belong to the subjected class (i.e. true-positive and false-negative). The outer arc is the
summation of the inner and middle arcs. The number of edges and their color-coded display the extent and nature of all missed classifications. Note the
two-sided errors for the classes of colon adenocarcinoma (COAD) and READ. Each class is color coded and the errors are colored by the origin of the
misclassified classes. Supplementary Table S2 depicts the average classification results per class for 100 SVM runs.

of the two error types. The source data is available in Sup-
plementary Table S2.

We categorized the errors by biological relevance of the
classification errors: (i) cancerous state errors: correct clas-
sified tissue but failure in determining healthy versus dis-
eased state. These are restricted to the three instances of tis-
sues that are represented by both healthy and cancerous in-
stances. (ii) Intra-tissue errors: misclassification of one class
to another that is anatomically adjacent. Such errors are
limited to classes with multiple diseases of the same/related
organ. (iii) Inter-class errors: classification mistakes that are
not obviously interpretable. Figure 6A shows schematically
the possible error types for all 27 classes. Figure 6B indicates
the distribution of different error types among the relevant
categories of errors. Figure 6C focuses on an example for
inter-class error and the source for false positives. It shows
that in the case of BLCA, the majority of the false positives

(10.6 out of 12.7%) derive from misclassification from six
classes of cancer carcinomas (additional classes, that con-
tribute <1% of false positives each are not shown).

Improving classification success from errors’ consistency

As Figures 5 and 6 demonstrate, many errors are recur-
rent among specific classes. We tested the effect of merging
classes that are characterized by abundant, bi-directional
false assignments by the classifier. The most prominent case
involves READ and COAD, respectively. Merging these
two classes has improved the average recall rate, while merg-
ing other pairs of classes has worsened the overall classifi-
cation success (not shown).

When we examined the errors per sample it transpired
that for certain samples, classification varied with the (ran-
dom) choice of training sets. A plurality vote protocol was
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Figure 6. Analysis of classification errors from similar sources. (A) A diagram of the affiliated tissues. Healthy and cancerous tissues derived from the same
tissues are connected with a green arrow. Adjacent cancerous tissues are connected with a red arrow to reflect the anatomical relatedness. (B) The rate of
intra-tissue and cancerous state tissue out of the total errors for each of the relevant classes. The colors of green, red and blue indicate the cancerous state
errors, the intra-tissue errors and other errors, respectively. (C) An example for the source of misclassification focusing on the false positives. The fraction
of false positives occupies 12.7%. The main classes that contribute to the false positive are shown along their contribution. The indicated six classes shown
account for 85% of all false positives for this class (BLCA).

applied in order to reduce this dependency (see ‘Materi-
als and Methods’ section). The plurality vote led to an
additional improvement in the average classification re-
call rate. For most classes the improvement is rather mod-
est. However, merging the READ and COAD classes that
were reported with 39 and 80% recall rate, respectively was
highly beneficial. Actually the merged collection of samples

reached 97% recall. The average recall rate for the valid 26
classes has reached a further improvement to 91%, with a
median of 95% (Table 2).

A cancer type classification by a subset of miRNAs

Notwithstanding the impressive recall rate of the classifier
(91%, with 95% median), we are still unable to quantify
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the contribution of any specific miRNA to this success. To
this end, we designed a ranking score for miRNAs accord-
ing to their potential in contributing to the classifier suc-
cess (see ‘Materials and Methods’ section). Empirically, we
compared the results achieved when classifying with a re-
duced vector of miRNA expression. We randomly drew var-
ious groups of 50 miRNAs out of the 1046 miRNA dis-
cussed in this study (Supplementary Table S1) and tested
the classification results when using the data as is (raw data),
as well as following the trichotomy transformation (Figure
7A). We also tested the results when selecting the 50 most
informative miRNA (according to rank by sum of the sta-
tistical variation, see ‘Materials and Methods’ section). We
repeated this randomization test for a growing set of miR-
NAs. Note that as the set size grows, a random set tends to
include more informative miRNAs (e.g. for 200 miRNAs).
Consequently, the differences between the performance of
the randomized set and the most informative set is reduced.
Already the 50 most informative miRNAs attain an impres-
sive 75% recall rate, suggesting that much of the classifica-
tion signal is already captured by the set that is character-
ized by maximal variance (Figure 7A). With 300 of the most
informative miRNAs, recall rate reached on average 87%,
approaching the recall rate achieved when all miRNAs are
employed along with the trichotomy transformation (91%).

We tested whether the miRNAs that contribute most to
the classification task are indeed those that were implicated
in cancer progression, prognosis and diagnosis. To this end,
we analyzed the 20 most informative miRNAs by the crite-
rion used in Figure 7A. The source of variability is shown as
reflected by the s.d. associated with the three coordinates for
each class (no expression, lowly expressed (0 < x < 30) and
highly expressed (>30 RPM). For a complete rank of infor-
mative miRNAs see Supplementary Table S3. It is clear that
some informative miRNAs rely on variability in the vector
of highly expressed (Figure 7B, compare miR-205 to miR
934). For others, no variability is observed in the vector
for non-expressed (Figure 7B, blue). While both hsa-mir-
141 and hsa-mir-215 are among the most informative miR-
NAs, their source of variability is rather different. While
hsa-miR-205 is characterized by a very large variation to
in the highly expressed section, yet a substantial variability
is recorded for this miRNA also in the other two categories
(non-expressed and lowly expression).

DISCUSSION

Cellular quantities of miRNAs

Our results uncover the power of the least expressed miR-
NAs in distinguishing a large collection of tissues and can-
cerous types. The common notion is that the quantity of
mature miRNAs in the cell is critical for cell regulation.
Specifically, excess of a specific type of miRNA potentially
titrates out genuine mRNA targets (23). As a secondary ef-
fect, an overflow of specific miRNA will most likely result in
its binding to non-genuine targets, the so-called called ‘off
target’ effect (24). The overall quantitative effect of miRNA
levels is discussed in terms of competition (25,26) and co-
operativity (27). Most studies that consider miRNAs in liv-
ing cells tend to be biased toward the analysis of highly ex-
pressed miRNAs. Within such framework, lowly expressed

miRNAs are most likely discarded with the premise that
they have no impact of the mass effect.

In this study, we show for the first time that for the task
of cancer classification, miRNA-based information is en-
coded by the minute expression of miRNAs that together
account for only 0.02% of the total reads. Moreover, it is
apparently the long distributional tail of miRNA expres-
sion that carries the signal for correctly identifying multi-
ple cancer/tissue types. We actually show that including the
entire profile of miRNAs leads to poorer performance as
the principal, informative signal for class identification is
masked.

A practical consequence of our observation concerns the
preferred sequencing depth needed for a routine miRNA
profiling. The high coverage that is reported for all samples
in TCGA, entails a high sensitivity. Specifically, about 45–
50% of the miRNAs, in almost all classes are expressed at
a level of 0–1 RPM. The miRNA list with values of 1–10
RPM accounts for an additional 25% of the miRNA list.
Classically, when sequencing short RNA (<200 nt), most
protocols call for a coverage ranging from 0.5 to 1.5M reads,
under the assumption that discovery rate for new miRNAs
is extremely low above 2M reads (28). We argue that the
high coverage provided by the TCGA is essential for (i) in-
creased reliability of miRNA identification (i.e. reporting on
expression from a list of 1046 miRNAs); (ii) highlighting
non-classical and often low expressing miRNAs.

Low expressing miRNA act as intrinsic markers for tissue
specificity

An unexpected outcome of our study refers to the sta-
bility and consistency in the expression of the lowly ex-
pressed miRNAs through many samples of the same can-
cer class. Ample observations show that extreme conditions
(e.g. stress, transformation, viral infection, differentiation)
lead to drastic changes in miRNA expression profiles in cell
types. We postulate that in conditions where miRNA ex-
pression patterns dramatically change (e.g. cancer, stem cell
differentiation, hypoxia etc.), the tail of the miRNA distri-
bution is hardly affected and consequently cell identity and
the origin of the cells remain robust. This interpretation is
supported by the gradual manipulating of the data by re-
moval of miRNAs that belong to the lowly expressed tail
and assessing the robustness of the classifier to such manip-
ulations (Figure 4).

miRNA profile can be used for sub-classification of cancer
types

TCGA is a fast growing resource and has already reached
>10 000 samples which are assigned with 33 cancer types.
The methodology presented in this study is applicable for a
classification task for any number of diseases’ classes that
are supported by a large number of instances. We showed
that the classification performance is very high for a small
set of classes (Figure 3B and Table 2). For example, the re-
call rate for BRCA is 96–98%. However, a wide spectrum
of survival rates (29,30) is associated with breast cancers,
supporting the notion of heterogeneous molecular basis of
this disease. Therefore, managing the disease is likely to ben-
efit from a refined classification within the broad class of
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Figure 7. Average recall rate achieved when limiting the number of miRNAs. (A) The performance of the classification scheme following reduction of the
miRNA sample size to 50, 100 and 200 is shown. The blue markers show the results with randomly selected miRNAs in their raw form are used (i.e. when
using expression levels as obtained from TCGA). The red markers were run with randomly selected miRNA in the trichotomy format. The orange markers
were run with the top informative miRNA in the trichotomy form (see ‘Materials and Methods’ section). The filled square in the box-plot captures 75% of
the data. Note that the s.d. for each of the informative trichotomy runs is very low (0.1%) while the s.d. for the randomly chosen miRNAs is substantially
higher. (B) A list of 20 most informative miRNAs according to the s.d. of the three vectors used to define the trichotomous transformation. The miRNAs
are sorted according to the s.d. for the non-expressed vector. The full list of miRNAs associated with the s.d. for each of the three coordinates and ranked
by the variability sum is available in Supplementary Table S3.

BRCA. A prognosis profile combining mRNAs, miRNAs
and DNA methylation had been proposed (31). In addition
to the genes that were implicated as driver mutations, the
authors identified number of informative miRNAs such as
hsa-miR-328, hsa-miR-484 and hsa-miR-874. While these
miRNAs were associated with cell proliferation, angiogen-
esis and tumor-suppressive functions (32,33), they are poor
separators of BRCA from other major tumor types (34). Ac-

tually, these miRNAs were implicated in COAD (35) and
mostly in renal and lung carcinomas (34).

Importantly, each cancer type displays its unique miRNA
set. For example, overexpressed miRNAs that were im-
plicated in gastric cancer include miR-17-5p, miR-18a,
miR-18b, miR-19a, miR-20b, miR-20a, miR-21, miR-106a,
miR-106b, miR-135b, miR-183, miR-340-3p, miR-421 and
miR-658. In colon cancer, in addition to the validated on-
comiRs, miR-16, miR-31, miR-34a, miR-96, miR-125b and
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miR-133b were overexpressed. The list of cancer associated
miRNAs for pancreatic ductal adenocarcinoma includes
miR-15b, miR-95, miR-155, miR-186, miR-190, miR-196a,
miR-200b, miR-221 and miR-222 (reviewed (36)). Among
the under-represented miRNAs (called anti-oncomiRs) let-
7a-1, miR-143 and miR-145 were validated for a number of
cancer types.

We found no statistical evidence for an overlap between
the ‘most informative’ miRNAs (e.g. Supplementary Table
S3 and Figure 7B) and miRNAs that are reported in the lit-
erature to govern cancer progression. The later includes an
extended list of oncomiRs including miR-15, miR-16, miR-
17, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-92,
miR-125b, miR-155 and miR-569. We postulate that there
is no direct correspondence between the informative tail
of lowly expressing miRNAs and the dominating miRNAs
that best associated with a transition of a cell to its trans-
formed, cancerous state.

Among the top 20 most informative miRNAs, miR-205
and miR-141 exhibit maximal variability for the 27 classes
(by a vector of 81 values, see ‘Materials and Methods’ sec-
tion). Addition informative miRNAs (Figure 7B) include
miR-7-3, miR-31, miR-135a/135b, miR-149, miR-196a-1,
miR-200a/200b/200c, miR-215, miR-224, miR-328, miR-
429, miR-552, miR-934, miR-944 and miR-1251. In view
of the lack of any statistical enrichment between miRNAs
assigned as the most significant ones (Figure 7B) and the
collection of oncomiRs/anti-oncomiRs from the literature,
we postulate that the multiclass typing and markers for tu-
morigenesis representing different aspects in the character-
ization of the disease.

Inspecting the top 50 miRNAs from our results addresses
(indirectly) a question on the nature of miRNAs that cap-
ture most of the classification information. Among the most
variable miRNAs, three of the miRNAs (hsa-miR-141, hsa-
mir-200a and hsa-mir-200b) belong to one family (mir-8)
with a high correlation in their appearance in all 27 classes
( r 2= 0.71–0.74).

Clinical application and premises

Our results provide an additional component for the chal-
lenging task of identifying cancer sample origin. At present,
TCGA data do not provide samples tagged as Cancer
of unknown primary (CUP), and thus we could not test
our predictor on CUP samples. Other direct measurements
(e.g. immune-histochemical, polymerase chain reaction for
mRNA expression) are needed for selecting the optimal
treatment for these patients.

A set of miRNAs that best classify cancer samples by
tissue of origin was presented in view of the success in
diagnosis of CUP (37–39). A significant overlap between
the most informative miRNAs (extracted from (38)) and
our SVM protocol was found. By comparing informative
50 candidates from the two studies, we detected 10 shared
miRNAs (miR-122, miR-138-1, miR-141, miR-146a, miR-
196a, miR-200a, miR-200c, miR-205, miR-31 and miR-
9-3). Despite a large difference in the analyzed data (300
versus 8000 samples) and the methodology used (decision
tree versus SVM), the consistency among informative miR-
NAs is intriguing (P-value 2E∧-5). Ample evidence demon-

strated the impact of alteration in hsa-miR-200/hsa-miR-
141 expression on proliferation, morphology and aberrant
histone acetylation in numerous cancers and cell types.

At last, we inspected the features that specify the least
informative miRNAs in our study. There are 90 miRNAs
(out of 1046) that are completely non-informative to our
task. Namely, in the trichotomy transformation they are
uniformly expressed with respect to the 3* 27 miRNA rep-
resentation. For these miRNAs the sum of the s.d. (Supple-
mentary Table S3) for each of the trichotomy label is zero.
Obviously, these miRNAs cannot contribute to the classi-
fication task. Interestingly, several validated oncomiRs are
among these miRNAs (e.g. miR-16, miR-17, miR-18 and
miR-21). This emphasizes the uncoupling between the in-
formative low expressing miRNAs we have identified for the
classification task and highly expressed oncomiRs. The level
of expression of oncomiRs are used as valuable markers for
cell dysregulation and as such are the hallmark of prolifer-
ation and transformation in cancer.
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