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ABSTRACT Saccharomyces cerevisiae undergoes robust oscillations to regulate its phys-
iology for adaptation and survival under nutrient-limited conditions. Environmental cues
can induce rhythmic metabolic alterations in order to facilitate the coordination of
dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle
enables adaptation of the cells to varying nutritional status through oscillations in gene
expression and metabolite production levels. In this process, yeast metabolism is altered
between diverse cellular states based on changing oxygen consumption levels: quies-
cent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive build-
ing [RB]) phases. We characterized metabolic alterations during the yeast metabolic
cycle using a variety of approaches. Gene expression levels are widely used for condi-
tion-specific metabolic simulations, whereas the use of epigenetic information in meta-
bolic modeling is still limited despite the clear relationship between epigenetics and
metabolism. This prompted us to investigate the contribution of epigenomic informa-
tion to metabolic predictions for progression of the yeast metabolic cycle. In this regard,
we determined altered pathways through the prediction of regulated reactions and
corresponding model genes relying on differential chromatin accessibility levels. The
predicted metabolic alterations were confirmed via data analysis and literature. We sub-
sequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible
chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast
model. The use of ATAC-seq data considerably enhanced the predictive capability of the
model. To the best of our knowledge, this is the first attempt to use genome-wide chro-
matin accessibility data in metabolic modeling. The preliminary results showed that epi-
genomic data sets can pave the way for more accurate metabolic simulations.

IMPORTANCE Dynamic chromatin organization mediates the emergence of condition-
specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its
metabolic profile via regulation of genome accessibility and robust transcriptional
oscillations under nutrient-limited conditions. Thus, both epigenetic information and
transcriptomic information are crucial in the understanding of condition-specific met-
abolic behavior in this organism. Based on genome-wide alterations in chromatin
accessibility and transcription, we investigated the yeast metabolic cycle, which is a
remarkable example of coordinated and dynamic yeast behavior. In this regard, we
assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic
modeling. To our knowledge, this is the first attempt to use chromatin accessibility
data in the reconstruction of context-specific metabolic models, despite the exten-
sive use of transcriptomic data. As a result of comparative analyses, we propose that
the incorporation of epigenetic information is a promising approach in the accurate
prediction of metabolic dynamics.
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Biological oscillations are essential for organisms to sense changing environments
(e.g., nutrient-rich or -limiting growth conditions) and regulate their physiology

according to new conditions (1). Saccharomyces cerevisiae, which is an extensively used
model organism in industrial and medical applications, can exhibit self-sustaining oscil-
latory patterns in essential cellular processes like the cell division cycle (CDC), glucose
metabolism, and respiration (2). These processes are regulated via rhythmic alterations
in gene expression pattern and cell metabolism (1–3). The yeast metabolic cycle (YMC)
and CDC are well-known examples of cellular oscillations. Such cycles are mediators for
the comprehensive coordination of interconnected cellular activities (4, 5).

The YMC (also known as yeast respiratory oscillations and energy metabolism oscil-
lations) is commonly characterized by respiratory oscillations in nutrient-limited che-
mostat cultures at high cell density (5). Even though several studies have reported that
the carbon source limitation is not required to induce the YMC (4, 6), nutrient-limited
chemostat cultivation is widely used to trigger self-synchronization of the oscillations
in a yeast population. In this process, signal transduction plays an important role in the
metabolic synchronization via dispersal of the secreted metabolites (5). Thus, the coor-
dinated and dynamic nature of metabolic yeast behaviors can be retained through the
generation of robust oscillations with a period of 4 to 5 h (2, 3, 5). The oscillation peri-
ods are dramatically affected by a variety of factors, such as strain type, culture condi-
tion, dilution rate, and oxygen level (2, 7). Based on the level of dissolved oxygen (dO2)
in a yeast culture, two distinct YMC phases (growth-related high-oxygen-consumption
[HOC] and stress/quiescence-related low-oxygen-consumption [LOC] phases) were
described (3). In the LOC phase, yeast cells were reported to accumulate storage carbo-
hydrates such as glycogen and trehalose to provide energy supplies for the HOC phase (1,
5). Differential transcript, chromatin accessibility, and metabolite profiles were reported over
the course of these phases (6, 8–12). Robust periodic oscillations in gene expression allow
subdivision of the HOC and LOC phases into three major stages, including the oxidative
(OX), reductive building (RB), and reductive charging (RC) phases (2). In the quiescence-
related RC phase, expression of the genes primarily involved in glycolysis and stress- and
survival-related processes (e.g., stress resistance, heat shock, ubiquitination, and proteasomal
degradation) are activated (2, 10, 13). NADPH and acetyl coenzyme A (acetyl-CoA) produced
via the oxidation of fatty acids in this phase are transferred to the OX phase (9). NADPH acts
as a buffering agent against oxidative stress due to the increasing oxygen consumption in
the OX phase, while acetyl-CoA enables the acetylation of histones to induce growth-related
genes (9, 13). Accordingly, expression of the genes associated with the synthesis of ribo-
somal proteins, amino acid metabolism, RNA processing, translation initiation factors, and
sulfur metabolism are induced in the OX phase to prepare the cell for division in the next
phase (2, 9, 13). While the intracellular oxygen levels decrease in the RB phase, the cell divi-
sion-related genes encoding histone and spindle pole components as well as mitochondrial
biogenesis-related genes are activated. The reduced oxygen consumption prevents poten-
tial DNA damage in the replication process (5, 9, 13–15). Overall, the YMC reflects the life
cycle of yeast regulated by the interplay between growth, proliferation, and quiescent
phases under nutrient-limited growth conditions, and timing of the DNA replication demon-
strates the relationship between the CDC and YMC (1, 5, 14, 16). Thus, elucidation of the
metabolic oscillations can provide great insight into the regulatory mechanisms acting on
the growth programs of yeast cells (14).

Genome-scale metabolic network (GMN) models have been used as standard plat-
forms to analyze yeast metabolism since 2003 (17). GMNs are mathematical represen-
tations of the cellular metabolism based on all known stoichiometry-based chemical
reactions, metabolites, and their associated genes. Omics data-integrated yeast models
have been reported to be beneficial in the characterization of yeast metabolism, phe-
notype predictions, and metabolic engineering studies under diverse growth condi-
tions (18–22). Incorporation of different omics layers dramatically contributes to the
understanding of the condition-specific cellular processes, and hence, this approach is
used to develop next-generation genome-scale models of S. cerevisiae (23). The
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transcriptome is currently the most commonly used omics data to contextualize mod-
els due to its high accuracy and availability, compared to those of the proteome and
metabolome (24, 25). At present, many useful approaches, such as GIMME (26), iMAT
(27), INIT (28), E-Flux (29), PROM (30), and mCADRE (31), are available for the integra-
tion of the transcriptomic data in GMN models. In addition, several methods relying on
combinatory use of constraint-based models and differential expression profiles (e.g.,
DFBA [32], MOOMIN [33], and REMI [34]) have been developed for the inference of
metabolic changes from transcriptomic data. These methods are promising for condi-
tion-specific predictions on metabolic shifts without the need for specifying a biological
objective function. Thus, existing alternative approaches facilitate the combinatory use of
transcriptomics and metabolic modeling to represent cellular alterations under certain con-
ditions. In addition to the transcriptomics, epigenetics also contributes to the understanding
of cellular metabolism. Epigenetics is particularly promising due to its central role in shaping
the gene expression profile without any changes in genome sequence. It is based on a set
of combined modifications of DNA molecule and histone proteins (e.g., acetylation, methyl-
ation, and phosphorylation) that determine metabolic states under changing conditions
(35, 36). Histone levels are strictly regulated in S. cerevisiae due to their widespread effect on
transcriptional profile, and alterations in chromatin structure were reported to be crucial to
determine differential expression levels. Nucleosome occupancy can be altered by transcrip-
tional perturbations or histone-based epigenetic inheritance in the S phase (the phase of
DNA replication) (37, 38). Various metabolic cofactors play a key role in shaping chromatin
states via chromatin-modifying enzymes. Thus, fluctuations in metabolite levels are among
the prominent factors regulating epigenome. Almost all chromatin-modifying enzymes
need for metabolic cofactors. This relationship facilitates that metabolism-epigenome
communication is an area of active research (39, 40). In this regard, the term metaboloe-
pigenetics emerged to describe this reciprocal relationship (35, 41), and the potential
link between diverse metabolic states and epigenetics in different biological systems has
been reported (35, 42–44). For instance, the dependence of acetylation and methylation
on acetyl-CoA and S-adenosylmethionine concentrations provides clear evidence for the
relationship between epigenetic regulations and cell metabolism. The levels of chroma-
tin-modifying metabolites are regulated via multiple mechanisms (e.g., nutrient availabil-
ity), and metabolic regulation of the epigenome is essential to determine eukaryotic
transcription levels (40). The cross talk between cellular metabolism and epigenetic mod-
ifications is essential to shape chromatin-mediated transcription profiles (35).

A positive correlation between transcriptome sequencing (RNA-seq) and transpo-
sase-accessible chromatin using sequencing (ATAC-seq) results was reported for a cer-
tain part of the genome (45). ATAC-seq is an efficient method developed in 2013 (46)
to identify genome-wide chromatin accessibility. It is based on the use of hyperactive
Tn5 transposase enzymes to insert adapters into accessible (nucleosome-free) regions
of the genome prior to high-throughput sequencing (47). There is a growing interest
in ATAC-seq due to its superiorities over its counterparts (e.g., DNase I hypersensitive
sites sequencing [DNase-seq] and formaldehyde-assisted isolation of regulatory elements
sequencing [FAIRE-seq]), such as a requirement for a smaller sample size (500 to 50,000
cells), simpler/faster protocol, and a sensitivity and specificity higher than (or comparable
to) those of its counterparts (47–49). Such epigenetic information can improve our insight
into the cell metabolism by highlighting the effect of epigenetic modifications on the
expression patterns of metabolic genes (35, 41), and combinatory approaches can expand
the utilization of RNA-seq data in metabolic analyses. Despite the considerable effort to
understand the relationship between epigenetics and metabolism, to our knowledge, the
analysis of metabolic behaviors using ATAC-seq data in genome-scale metabolic model-
ing has not been reported yet. Importantly, genome-wide chromatin accessibility levels
may provide additional information to represent diverse cellular states in an accurate
manner and influence the predictive performances of GMN models. This prompted us to
assess the capability of chromatin accessibility measurements for the prediction of varying
cellular profile during the YMC in a comparative manner with RNA-seq data. We first
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characterized YMC phases using RNA-seq and ATAC-seq data sets. This enabled the evalu-
ation of the data sets in terms of their ability to represent cellular phenotypes. We only
considered metabolic genes in the current study and predicted YMC phenotypes in
agreement with the previously reported studies. This indicates that variations between
the phases could be successfully represented by both data sets. The phenotypic altera-
tions during the YMC were also confirmed using two different model-based methods. In
the first approach, we determined differential pathways consistent with data analysis
results and literature. In the second approach, we simulated the YMC process through the
contextualization of a generic GMN model using RNA-seq and ATAC-seq data sets.
Performances of the context-specific models were evaluated using measured flux data
sets across YMC phases, and more accurate results were obtained for the models inte-
grated with chromatin accessibility data. Thus, we suggest that epigenetic information
may be promising to shed light on dynamic metabolic cell behaviors.

RESULTS AND DISCUSSION

In this study, we evaluated the contribution of epigenetic information to the predic-
tion of metabolic profiles of S. cerevisiae across YMC phases. Chromatin accessibility
and transcriptome levels derived from ATAC-seq and RNA-seq methods were used to
achieve this goal. Integration of RNA-seq and microarray data sets into GMN models is
an extensively used approach in condition-specific simulations. On the other hand,
ATAC-seq data also provide a genome-wide information about dynamic cellular altera-
tions. Therefore, we focused on the incorporation of this information in a generic yeast
model for phenotype predictions across YMC phases.

As summarized in the flowchart in Fig. 1, we first analyzed the chromatin accessibil-
ity and transcriptomic data sets consisting of six samples associated with YMC phases:
RC (early and mid), OX (mid and late), and RB (early and late). For both data sets, we
used hierarchical clustering on Yeast8 genes and selected three clusters according to
the differential gene expression or chromatin accessibility levels. The biological proc-
esses in which clustered genes are involved were subsequently uncovered. In addition
to data analysis, we performed model-based analyses to assess the potential use of
ATAC-seq data in metabolic modeling. In this regard, two different approaches were
used. First, we identified the reactions with differential fluxes based on chromatin
accessibility changes. Pathways of the corresponding genes were uncovered during
the transition from early RC phase to OX (mid and late) and RB (early and late) phases.
Second, we reconstructed YMC models for three phases (early RC, mid OX, and late RB
phases) through the GIMME algorithm considering gene expression and chromatin

FIG 1 General flowchart for the analysis of ATAC-seq and RNA-seq data sets in addition to model-based analyses of
the yeast metabolic cycle.
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accessibility levels. The performances of these contextualized models were determined
using experimentally measured fluxes. This also allowed us to evaluate the capability
of ATAC-seq data in improving the model predictions (Fig. 1).

Analysis of the RNA-seq and ATAC-seq data sets. Robust oscillations in the oxy-
gen consumption trigger periodic changes in gene expression patterns, leading to os-
cillatory metabolic behaviors during the YMC (9, 10, 50). Therefore, characterization of
the transcriptional and epigenetic regulations in the YMC process can provide impor-
tant insight into the metabolic changes over time. We analyzed the RNA-seq and
ATAC-seq data sets of wild-type S. cerevisiae strain CEN.PK in a comparative manner to
examine the alterations in yeast metabolism across diverse YMC phases. We first
mapped transcriptomic (see Table S1A in the supplemental material) and chromatin
accessibility data sets (Table S1B) to the genes in the generic Yeast8 model. Using heat
map graphs, we characterized the YMC-dependent cellular variations considering dif-
ferential transcriptome and chromatin accessibility profiles across the YMC phases. We
also performed hierarchical clustering to group the genes and samples based on their
profiles. Thus, genes were grouped according to the phases in which they were pre-
dominantly upregulated. Three clusters, including phase-dependent upregulated
genes (cluster I, RC [early and mid] and late RB; cluster II, RB [early and late] and late
OX; and cluster III, early RB and OX [mid and late]) were selected for both RNA-seq
(Fig. 2A) and ATAC-seq (Fig. 2B) data sets. In both data sets, the samples associated
with early RC and late RB phases were found to be clustered together. Similarly, early
RB and late OX phases share similar gene expression and chromatin accessibility pat-
terns (Fig. 2A and B).

In RNA-seq data, cluster I includes 152 genes (Fig. 2C), which are predominantly up-
regulated in early RC phase. Gene Ontology (GO) enrichment analysis of this cluster
indicated that these genes are mainly involved in lipid and carbohydrate metabolic
processes (Table S2A). Tu and colleagues reported that fatty acid oxidation and break-
down of various storage carbohydrates are upregulated in the RC phase in order to
contribute to available acetyl-CoA pool (8, 9). Accordingly, coenzyme metabolism was
revealed to be enriched, as well. In ATAC-seq data, 170 genes in cluster I were found to
be upregulated in particularly early RC phase. A total of 59 out of 170 genes were com-
monly identified through the analysis of RNA-seq data (Fig. 2C). They are mainly
involved in oxidative stress response as well as lipid and cofactor metabolism. In fact,
NADPH has a protective role against oxidative stress and its enhanced level was shown
in the HOC phase (1). Previously, NADPH production was also reported in RC phase,
and this metabolite is transferred into OX phase (9). Thus, oxidative stress response
may be initiated during LOC-to-HOC transition. In a similar vein, we demonstrated that
the NADP metabolic process was enriched for the 170 genes in cluster I. Furthermore,
these genes were found to be associated with a set of biological processes such as car-
bohydrate (e.g., trehalose), alcohol, and coenzyme metabolism. As previously dis-
cussed, the accumulation of trehalose in the LOC phase is significant to fuel the energy
production in the HOC phase. Trehalose has also protective roles during stress and
starvation (1, 5, 51). Hence, an increase in the abundance of such carbohydrates was
previously reported for the stress-related RC phase (8). In addition, it is not surprising
to uncover alcohol metabolic process among overrepresented GO terms considering
the reduced oxygen consumption in RC and late RB phases (Table S2B). Alcohol dehy-
drogenase and acetyl-CoA synthetase enzymes are induced in RC phase, and these
mediate the production of acetyl-CoA, which is required for the activation of growth-
related genes via acetylation in OX phase (9).

In contrast to the quiescence-related RC phase, OX phase is characterized by a
growth-related phenotype. Energy required to drive these processes is supplied by oxi-
dative phosphorylation. In this regard, the acetyl-CoA produced in RC phase is trans-
ferred into OX phase and used in oxidative processes, including the tricarboxylic acid
(TCA) cycle and electron transport chain for ATP production (9). The enhanced levels of
acetyl-CoA and oxygen consumption lead to an elevated respiration rate in this phase
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(2, 7, 9). Indeed, we identified the overrepresentation of aerobic respiration for cluster
II with 157 genes from RNA-seq data (Fig. 2C; Table S3A) and 75 genes from ATAC-seq
data (Fig. 2C; Table S3B). In addition, acetyl-CoA plays a remarkable role in entry into
the CDC by dynamically inducing histone acetylation for the expression of G1 cyclin
CLN3. In the OX phase, the level of CLN3 peaks in response to fresh medium (52). Thus,
acetyl-CoA-mediated histone acetylation can serve as a perfect bridge for the coordi-
nated timing of growth (OX phase) and proliferation (RB phase) (13). In agreement
with the growth-related profile of S. cerevisiae in OX phase, we demonstrated the over-
representation of several fundamental biosynthetic processes, such as lipid, nucleotide,
carbohydrate, and amino acid metabolism. These preparations are crucial to promote
proliferation in the next phase. Similarly, the biosynthesis of amino acids (e.g., aspar-
tate, lysine, and serine) and nucleotides were determined as enriched among the 95
common genes in cluster III, whose upregulations were shown in the differential analy-
ses of both chromatin accessibility and gene expression profiles. This gene cluster rep-
resents upregulated genes in particularly mid OX phase: 254 genes for the RNA-seq
data and 262 genes for the ATAC-seq data (Fig. 2C). In agreement with the overrepre-
sented amino acid metabolism of cluster III genes (Table S4A and B), the elevated lev-
els of lysine and serine in OX phase were previously reported by Tu and colleagues (8).
In the translation process, such individual amino acids are delivered to the ribosome
via aminoacyl-tRNAs (53). Accordingly, we demonstrated an enrichment for the metab-
olism and aminoacylation of tRNAs for protein synthesis. Another enriched process is
de novo nucleotide synthesis. In OX phase, the overrepresentation of nucleotide me-
tabolism under transcriptional control by Bas1 was reported. Bas1 is among the promi-
nent regulators of the cell cycle in S. cerevisiae. This transcription factor regulates the

FIG 2 (A and B) Hierarchical clustering analysis of RNA-seq (A) and ATAC-seq (B) samples. Three gene clusters (designated I, II, and
III) are selected based on the differential gene expression and chromatin accessibility levels. They are highlighted with bars in
different colors. Clustered samples are also represented by the dendrograms. (C) Venn diagrams showing the numbers of common
and distinct genes in each differentially expressed/accessible gene cluster.
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synthesis of histidine, purines, and pyrimidines (2). Even if the relationship between
Bas1 and the cell cycle is not clear (54), it may be significant to prepare the cells for di-
vision via the regulation of nucleotide and histidine pathways. Sulfur metabolism is
another relevant process associated with the cell cycle. It is critical for the initiation of
cell division in yeast (55). We identified this metabolic process to be enriched in OX
phase, consistent with previous reports (7, 9). Thus, the analyses of RNA-seq and ATAC-
seq data sets supported the literature-based evidence suggesting the activation of
growth-related processes in OX phase to prepare yeast cells for cell division in RB
phase (Table S4A and B).

Model-based investigation of differential activity in yeast pathways. Characterization
of the differential metabolic genes through the analysis of both RNA-seq and ATAC-
seq data sets was shown to be useful in order to gain a biological understanding of
altered processes during progressive YMC phases. This encouraged us to further assess
the power of ATAC-seq data. Therefore, we used this epigenomic information in meta-
bolic modeling to examine phase-dependent metabolic changes. Using the DFBA
approach, the Yeast8 reactions regulated by phase transitions were identified. This
facilitated the elucidation of significantly altered KEGG pathways during the metabolic
shift from early RC phase to OX and RB phases via corresponding genes.

The metabolic alterations in mid OX phase relative to early RC phase were first
investigated. A total of 83 genes were identified in the regulated reactions. Similarly,
125 genes were uncovered to be associated with differential metabolism between
early RC and late OX phases. As illustrated in Fig. 3, these OX-specific genes are predomi-
nantly involved in fundamental pathways (e.g., amino acid, fatty acid, carbohydrate, and
purine metabolic pathways), in agreement with the growth-related phenotype of yeast.
In addition, the pentose phosphate pathway (PPP) was found to be overrepresented in
both mid (Table S5A) and late (Table S5B) OX phases. As explained in the data analysis
part, amino acid synthesis is required to prepare yeast cells for cell division (2, 55).

FIG 3 Bar plot of significantly enriched KEGG pathways that are regulated during the metabolic shift from early RC phase to OX (mid
and late) and RB (early and late) phases. For each pathway, the horizontal axis (count) shows the number of the genes involved in
that pathway.
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Aerobic respiration is another activated process in response to increasing oxygen consump-
tion levels. Consistently, we determined the enrichment of oxidative phosphorylation in the
late OX phase (Table S5B) similarly to the cluster II defined in the previous section (Fig. 2A
and B). The changing oxygen intake also leads to regulation of the oxidative stress
response. A variety of metabolites (e.g., homocysteine, serine, glutathione, and S-adenosyl-
homocysteine) participating in the regulatory pathways of sulfur metabolism were reported
to display robust oscillations during the YMC (8). The sulfur-containing amino acids (methio-
nine and cysteine) are synthesized from homocysteine in yeast (2, 56). Of these amino acids,
cysteine can be subsequently used in the production of glutathione to avoid oxidative
stress, which emerges due to varying oxygen consumption levels (8). Another key factor in
glutathione production is NADPH. It is crucial for the conversion of sulfate to sulfide, which
is important for the synthesis of homocysteine and hence glutathione (8, 56). NADPH can
be produced by the oxidative branch of the PPP. Thus, this branch provides protection
against oxidative stress, while the nonoxidative branch supports the biosynthesis of vital
cellular components, including nucleic acids, fatty acids, and amino acids (57). The PPP was
found to be overrepresented in mid (Table S5A) and (Table S5B) late OX phases.
Importantly, we also determined enriched riboflavin metabolism in late OX phase
(Table S5B) and RB phases (Table S5C and D). Its deficiency was reported to reduce glutathi-
one reductase activity in liver cells. This leads to oxidative stress-induced DNA and protein
damages as well as cell cycle arrest in G1 phase (58). Collectively, yeast cells appear to pri-
marily concentrate on metabolic adaptation to the current nutritional status and prepara-
tion for the following phase. Consistently, the overrepresentation of carbon flow through
oxidative phosphorylation and TCA cycle continues in the early RB phase for the adaptation
into periodic oscillations in the oxygen consumption (Table S5C). Thus, this metabolic shift
toward higher oxidative phosphorylation activity can also allow a decline in dissolved oxy-
gen level for both establishment of characteristic features in the early RB phase and the ini-
tiation of cell division in the late next phase (Fig. 3; Table S5C and D) (2, 10).

In early and late RB phases, we revealed coordinated regulation of nucleotide me-
tabolism, carbon metabolism, riboflavin metabolism, and cofactor synthesis (Fig. 3;
Table S5C and D). As highlighted above, the regulation of amino acid biosynthesis and
oxidative phosphorylation are maintained in early RB phase, indicating the importance
of metabolic alterations for the adaptation between consecutive phases (Table S5C).
The metabolic relationship between early RB phase and late OX phase is consistent
with the observed clustering profiles of these phases. At early stages of the prolifera-
tion-related RB phase, a similar expression profile with late OX phase is exhibited
(Fig. 2A and B). We identified fewer genes (n = 46) associated with the regulated path-
ways in the late RB phase than in early RB phase (n = 89) and OX phases (n = 83 [mid]
and n = 125 [late]). Differential chromatin accessibility and gene expression patterns
also confirmed this result. As described in the previous section, early RC and late RB
phases were clustered together (Fig. 2A and B). Thus, we did not expect extensive dif-
ferences between their metabolic profiles. Unsurprisingly, carbohydrate metabolism
and nucleotide metabolism were shown to be enriched in the late RB phase (Fig. 3;
Table S5D). Carbon metabolism is especially prominent for the glycosylation process
and cell wall integrity, which are required for viability and appropriate cell division. For
instance, defective O-mannosylation was reported to cause a reduction in yeast growth
(59). We could successfully predict the dynamic metabolic status of the YMC phases via
the differential ATAC-seq data-based analysis of the Yeast8 model. The metabolic predic-
tions were found to be consistent with data analysis results (see previous section) and lit-
erature. Therefore, these findings indicated that genome-wide epigenetic information
holds promise for metabolic modeling.

Model-based analysis of differential flux profiles. To further confirm the impact
of chromatin accessibility data on metabolic predictions, we also used this epigenetic
knowledge in the contextualization of the generic yeast model. In this regard, we
investigated the efficiency of these data for the prediction of differential flux profiles
and assessed their predictive capacity in a comparative manner with RNA-seq data.
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Context-specific GMN models have been extensively used to characterize yeast metabo-
lism (18–22). Therefore, we surveyed altered yeast phenotype through the reconstruction
of YMC models. Using the GIMME algorithm (threshold of 25th percentile), we generated
four different GMN models (RNA-seq-based, ATAC-seq-based, intersection, and union
models) for each selected phase (early RC, mid OX, and late RB) (Fig. 4). Of these models,
intersection models were created according to the reactions that are active in both RNA-
seq-based and ATAC-seq-based models, while union models were created considering the
reactions active in either model. Maximum growth rates were predicted to be between
;0.10 h21 and ;0.12 h21 for all models simulated in minimal medium, and this range of
values is consistent with the measured growth rate of the aerobic chemostat S. cerevisiae
culture (60). The contents of the YMC models are presented in Table 1.

We evaluated the performances of the reconstructed YMC models based on the met-
abolic fluxes measured by Zhang and colleagues (60). They investigated dynamic meta-
bolic flux distributions associated with major carbon utilization pathways across diverse
CDC stages (G0/G1 entry, G0/G1 phase, and late G1/S phase transition). A clear relationship
between metabolic cycling and G0/G1 phase was reported for slowly growing budding
yeasts, while transcriptional cycling was also identified in G2 phase for fission yeasts (50).
To explain the relationship between the CDC and YMC, a simple YMC-CDC coupling
model has been proposed. It is based on gating of the CDC by metabolic cycles in differ-
ent yeast strains and under distinct nutrient conditions in order to coordinate the timing
of cellular growth and division (4, 61, 62). The CDC requires the accumulation of suffi-
cient energy sources to reach a critical cell size, and OX phase enables achievement of
this commitment threshold known as “Start.” Thus, yeast cells irreversibly commit to the
CDC through the expression of hundreds of G1/S genes (5, 10). As explained before,
CLN3 is among the activated growth-associated genes in OX phase. It regulates the
length of G1 phase and cell size for transition into S phase (14, 52, 63). DNA replication
and cell division were proposed to start at a very late stage of the OX phase and con-
tinue in RB phase under a relatively small amount of the intracellular oxygen (9, 10, 13).
These phenomena occur once per YMC (5). The relationship between the YMC and CDC
oscillators allowed us to use the measured flux data set obtained by Zhang and col-
leagues (60) for evaluation of the YMC models.

FIG 4 Reconstruction process of the contextualized models. (A) Feeding-aided induced YMC phases (growth-related
OX phase, proliferation-related RB phase, and stress/quiescence-related RC phase). (B) Incorporation of RNA-seq or
ATAC-seq data sets dedicated to each YMC phase into the Yeast8 model allowed the reconstruction of RNA-seq-
and ATAC-seq-based yeast models. Using the reaction activity information in these models, intersection and union
models were also reconstructed for each YMC phase. (C) Thus, each YMC phase is represented by four diverse
models.
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Prior to the use of measured fluxes, we matched the YMC phases and sampling
time points of flux measurements according to dO2 levels. We identified three time
points overlapped with early RC, mid OX, and late RB phases. At least 37 reactions with
measured fluxes were used to assess the flux prediction performances of YMC models
(Table S6B). Phase-specific flux maps were first created for RNA-seq- and ATAC-seq-based
models. Increased glycolytic flux into TCA cycle in OX phase was shown through the
ATAC-seq-based model in Fig. S1 to S3, which is conceivable considering the elevated oxy-
gen consumption levels during OX phase, as previously highlighted. The experimental and
predicted fluxes of the yeast reactions were subsequently compared for all models
(Table 1) through Pearson’s correlation coefficients and mean squared errors (MSE) to mea-
sure the capability of the models in the prediction of differential flux profiles in a compara-
tive manner (Fig. 5). According to both metrics, integration of the chromatin accessibility
data sets dramatically improved the model predictions, with higher correlation (r = 0.85 to
0.95) and predominantly lower error values (MSE = 0.07 to 0.64), compared to the generic
Yeast8 model (r = 0.59 to 0.76 and MSE = 0.18 to 1.38) and RNA-seq-based YMC models
(r = 0.61 to 0.77 and MSE = 0.18 to 1.32). The significance of the differences between the
correlation coefficients was evaluated using two-sample z test at a P value cutoff of 0.05.
Apart from the RC phase (P value = 0.065), significant correlation differences were found
between ATAC-seq- and RNA-seq-based models (OX phase P value = 0.0005 and RB
phase P value = 0.023). Furthermore, integration of ATAC-seq data resulted in significant
correlation differences in comparison with the generic Yeast8 model for all YMC phases.
Flux prediction capacity was also evaluated for the combinatory YMC models, which
were contextualized by both transcriptomic and chromatin accessibility data. Fluxes from
intersection models also exhibited higher correlation to experimental values (r = 0.85 to
0.91) than those from RNA-seq-based models. These correlation values were shown to be
significantly different at RC phase (P value = 0.031) and RB phase (P value = 0.019) from
those of the RNA-seq-based models. Similarly, the correlation differences were found to be
significant (RC phase P value = 0.022 and RB phase P value = 0.013) in comparison with
Yeast8 models, although we did not find a significant difference between the performan-
ces of OX models (P value = 0.088) at the significance level of 0.05. On the other hand, we
did not observe considerable significant differences between the correlation values calcu-
lated for the union models and Yeast8 model. This indicates that the union models are
less powerful to represent the condition-specific behavior of yeast cells.

Compared to RNA-seq-based models, chromatin accessibility further supports to gen-
erate accurate YMC models for the inference of carbon metabolism (Fig. 5). To confirm
the effect of these data sets on metabolic flux predictions, we also reconstructed YMC
models using additional threshold values (35th, 45th, and 50th percentiles) in the
GIMME algorithm (Table S7). ATAC-seq data improved the capability of models to predict

TABLE 1 Four different models developed for each YMC phase using transcriptomic and
chromatin accessibility data setsa

Model

No. of:

YMC phaseReactions Metabolites Genes
RNA-seq-based model 3,161 2,431 931 Early RC

3,010 2,360 903 Mid OX
3,215 2,446 960 Late RB

ATAC-seq-based model 3,338 2,526 968 Early RC
3,295 2,515 951 Mid OX
3,354 2,532 971 Late RB

Intersection model 2,763 2,323 835 Early RC
2,543 2,214 803 Mid OX
2,796 2,314 848 Late RB

Union model 3,737 2,619 1,065 Early RC
3,765 2,608 1,057 Mid OX
3,774 2,648 1,084 Late RB

aThe numbers of reactions, metabolites, and genes involved in YMC models are listed.
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intracellular distributions regardless of the selected thresholds, leading to higher correla-
tion and lower MSE values for both ATAC-seq-based models and intersection models.
Collectively, the contextualization of Yeast8 models via chromatin accessibility data sets
extensively increased the power of yeast models for the system-wide quantification of
intracellular fluxes across diverse YMC phases.

A subset of the genes in RNA-seq data set that were not measured in ATAC-seq data
set. To test if the difference between the measured gene compositions in RNA-seq and
ATAC-seq data sets plays a role in the differences observed in the metabolic predictions,
we removed the genes that were measured only in RNA-seq data set, and we repeated
the analyses with this dataset. This allowed us to consider only commonly measured
genes of both data sets in the model reconstruction process. Using the filtered data sets,
four distinct YMC models were developed across each YMC phase (early RC, mid OX, and
late RB phases) (Table 2). We subsequently examined the model performances to detect
whether the superiority of chromatin accessibility data in terms of flux correlations is
due to the variations in the measured gene sets. Despite an increase in the flux predic-
tion capability of RNA-seq-based models (r = 0.72 to 0.86 and MSE = 0.22 to 0.87), incor-
poration of the chromatin accessibility levels was shown to result in higher correlation to
the experimental measurements once more in both ATAC-seq-based models (r = 0.85 to
0.91) and intersection models (r = 0.78 to 0.88). For the filtered data sets, union models
also exhibited considerably better correlation values than did RNA-seq-based models for
RC and RB phases as a result of more stringent constraints imposed by the filtered data.
Furthermore, the integration of chromatin accessibility data sets led to a reduction in
MSE values in comparison with gene expression data sets (Fig. 6). Overall, chromatin
accessibility information allowed more accurate estimation of diverse metabolic states
for the same measured gene sets, as well.

FIG 5 Comparison of the predicted and measured flux distributions for different GMN models (I, generic Yeast8 model; II, RNA-seq-based model; III, ATAC-
seq-based model; IV, intersection model; V, union model) across early RC, mid OX, and late RB phases (colored blue, gray, and red). Mean squared error
(MSE) and Pearson’s correlation coefficient (r) are shown for each model.

Metabolic Network-Driven Analysis of Cellular Dynamics mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.01347-21 11

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01347-21


Although it is not intuitive to find a higher-level cellular regulation layer (chromosome
accessibility) to better represent a lower layer (metabolism), rather than an intermediate layer
(RNA-seq), there may be several reasons for this outcome. One reason may be the lower sig-
nal/noise ratio in RNA-seq data than in ATAC-seq data, leading to less accurate metabolic
models. Or, the success of ATAC-seq data in the network contextualization for dynamic
events may be explained by the fact that mRNA levels reflect a pool of molecules produced
in a certain time period, whereas the ATAC-seq profile reflects the momentary regulation
state of the gene at a specific time point. Hence, the ATAC-seq profile may be more accurate
reflection of the cell state at a given time point. For instance, ATAC-seq and RNA-seq patterns
were reported to differ in the S/G2 phase of the CDC for embryonic stem cells (64) even if a
strong correlation between transcriptome and chromatin accessibility data sets was observed
for the housekeeping genes in eukaryotic cells (45). This phenomenon was validated
through the analysis of protein-coding genes by showing the weak coupling between the
dynamics of chromatin architecture and transcriptional induction during early differentia-
tion. Alterations in chromatin organization were suggested to occur rapidly during differen-
tiation to prevent alternative cell fate decisions in the CDC (64). Similarly, Liu and colleagues
demonstrated that the combinatory use of steady-state expression level and chromatin sta-
tus is beneficial to understand the profiles of periodically regulated genes and regulatory
mechanisms in breast cancer cells during the CDC (65).

Nevertheless, this preliminary work requires further validation for especially higher
eukaryotic organisms. Even though S. cerevisiae provides remarkable information on the
epigenetic processes underlying the establishment and maintenance of histone modifi-
cation-dependent chromatin states in higher eukaryotes, this organism has a relatively
simple epigenetic system without many mammalian histone variants, repressive histone
mark (H3K9 methylation), DNA methylation, and RNA interference machinery (37, 66,
67). Yeast cells also lack the complicated cross talk between the DNA methylation and his-
tone modification pathways, unlike animal cells (66, 67). Therefore, ATAC-seq data-guided
model analyses should be applied for higher eukaryotes to assess the comprehensive utiliza-
tion of such data sets. In this regard, available methods for the simultaneous measurement
of DNA accessibility and gene expression dynamics (68–70) and the increasing popularity of
integrative analysis of ATAC-seq and RNA-seq data sets (71–73) may facilitate further evalua-
tion of the efficacy of ATAC-seq data in future metabolic modeling studies.

Conclusion. ATAC-seq is a recent technology to understand epigenetic changes based
on genome-wide chromatin accessibility (46, 74). It can be easily applied for diverse cell
types and tissues with a lower cost and sample volume (74). These advantages support the
higher popularity of ATAC-seq data sets in large genomics consortiums (e.g., ENCODE [75],
TCGA [76], and TaRGET [77]) than other technologies associated with genome-wide

TABLE 2 Four different models developed for each YMC phase using filtered transcriptomic
and chromatin accessibility data setsa

Model

No. of:

YMC phaseReactions Metabolites Genes
RNA-seq-based model 3,209 2,440 936 Early RC

3,074 2,362 923 Mid OX
3,218 2,449 953 Late RB

ATAC-seq-based model 3,338 2,526 968 Early RC
3,295 2,515 951 Mid OX
3,354 2,532 971 Late RB

Intersection model 2,833 2,337 853 Early RC
2,619 2,218 830 Mid OX
2,836 2,330 859 Late RB

Union model 3,716 2,612 1,053 Early RC
3,753 2,605 1,050 Mid OX
3,738 2,631 1,067 Late RB

aThe numbers of reactions, metabolites, and genes involved in YMC models are listed.
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chromatin accessibility profiling (e.g., DNase-seq, micrococcal nuclease sequencing [MNase-
seq], and FAIRE-seq) (74).

Incorporation of the gene expression profiles to GMN models is a powerful approach
to characterize condition-specific metabolic behaviors of organisms. On the other hand,
there is still a gap in metabolic modeling to use the dynamic epigenetic information on
gene expression regulation, which is provided by ATAC-seq technique (78). The relation-
ship between epigenetics and cell metabolism encouraged us to investigate the effect of
ATAC-seq data in GMN-based prediction of cell metabolism. Therefore, we first confirmed
the successful application of these epigenetic data in metabolic modeling through the pre-
diction of differential yeast pathways. In addition, we evaluated the contribution of chro-
matin accessibility information to the characterization of the YMC metabolism in terms of
differential flux profiles. Contextualization of the generic yeast model by ATAC-seq data
sets was shown to enhance the predictive performance of the models in comparison with
RNA-seq data-integrated models. In other words, ATAC-seq-based models exhibited per-
formances superior to those of the other context-specific models (i.e., RNA-seq-based
models and combinatory models) reconstructed in the scope of this study.

Taken together, the results lead us to propose that accessible chromatin states may
provide promising insight for the discovery of altered dynamic metabolic processes
during metabolic cycles. In other words, the elucidation of dynamic epigenetic land-
scapes may be remarkable for a deeper understanding of variations in cell metabolism.

MATERIALS ANDMETHODS
Metabolic network model. We used the recent consensus genome-scale metabolic network model

of S. cerevisiae, Yeast8, consisting of 1,147 genes and 2,691 metabolites which take part in a total of
3,991 reactions (79). This compartmentalized model is publicly available via GitHub (https://github.com/
SysBioChalmers/yeast-GEM/releases/tag/v8.3.5). Growth-associated maintenance, referring to the energy

FIG 6 Comparison of the predicted and measured flux distributions for different GMN models based on filtered data (I, generic Yeast8 model; II, RNA-seq-
based model; III, ATAC-seq-based model; IV, intersection model; V, union model) across early RC, mid OX, and late RB phases (colored blue, gray, and red).
Mean squared error (MSE) and Pearson’s correlation coefficient (r) are shown for each model.
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required for biomass formation, was set to 55.3 mmol ATP/g dry weight (gDW). Non-growth-associated
maintenance responsible for the energy dedicated to cellular functions apart from growth was used as
0.7 mmol ATP/gDW/h (79). This model allowed identification of the metabolic genes in RNA-seq and
ATAC-seq data sets in addition to the simulation of YMC phases as explained in the following sections.

Analysis of the RNA-seq and ATAC-seq data sets. The RNA-seq and ATAC-seq data sets (GEO
accession number GSE101290) that were generated and processed by Gowans and colleagues for wild-
type S. cerevisiae strain CEN.PK (10) were used in the current study. The researchers generated the robust
recurring oscillations of the YMC by following the protocol in the study of Tu et al. (9). They measured
gene expression and chromatin accessibility levels across three YMC phases. Samples from two time
points were collected for each phase: (i) early and mid RC, (ii) mid and late OX, and (iii) early and late RB
(10). Each time point has two biological replicates, and we used the averages of replicates per time
point. We subsequently mapped the measured gene expression and chromatin accessibility data sets to
Yeast8 genes (Table S1). To investigate the relationship among YMC phases, we applied hierarchical
clustering to the log-transformed data based on Euclidean distance between the samples via the cluster-
gram function in MATLAB R2017b and also generated heat maps. Considering the differential expres-
sion/chromatin accessibility profiles, we selected three subclusters including upregulated genes in
diverse YMC phases: (i) RC (early and mid) and late RB, (ii) RB (early and late) and late OX, and (iii) early
RB and OX (mid and late). The clustered genes were characterized through the investigation of the
related biological processes using GO Term Finder tool (version 0.86) (80) provided by Saccharomyces
Genome Database (81) at a false-discovery rate (FDR) of 0.01 (Tables S2 to S4).

Model-based investigation of differential activity in yeast pathways. In the first part of the model
analysis, we investigated differential activity in yeast pathways based on ATAC-seq data. To do so, chromatin
accessibility fold changes of gene promoter regions were calculated relative to the control (early RC phase)
for OX (mid and late) and RB (early and late) phases. For each phase, we discarded the genes with no signifi-
cant alterations in their accessibility levels (FDR [also known as q value] $ 0.01), which were identified
through R (version 4.1.0) limma-trend (default settings) (82). Using the mapExpressionToReactions function of
COBRA Toolbox (83) in MATLAB 2017b, these filtered fold change values were mapped to the reactions in
the Yeast8 model via gene-protein-reaction (GPR) associations. This function assigned minimum gene acces-
sibility fold change to a reaction if the corresponding genes were linked with the “AND” operator, whereas
maximum gene accessibility fold change was assigned for the genes linked with the “OR” operator. We used
a recent approach, DFBA, in order to identify flux changes during metabolic shifts. This approach is based on
a two-step optimization procedure that maximizes the consistency and minimizes inconsistency (L2-norm
minimization) between flux changes (Dv) and the mapped differential accessibility levels (32). Thus, this
method does not need a priori knowledge of a cellular objective such as biomass formation or ATP produc-
tion (32). We predicted Dv distributions for both OX and RB phases in comparison with early RC phase. The
altered reaction sets showing flux changes above a relaxed threshold value (« = 0.1) were determined. The
corresponding genes in these reactions were uncovered via GPR rules. Significantly enriched KEGG pathways
associated with these genes were identified using g:Profiler web server (84) with FDR at a 0.05 level.

Reconstruction of the YMC models. In the second part of model analysis, we evaluated the contribu-
tion of RNA-seq and ATAC-seq data sets to the predictive power of the Yeast8 in terms of differential flux
patterns. The GIMME algorithm was used to generate the context-specific GMN models representing YMC
phases (here referred to as YMC models) through the integration of transcriptome and chromatin accessibil-
ity data sets to the generic Yeast8 model. Distinct models were built for three time points (early RC, mid OX,
and late RB phases) using RNA-seq and ATAC-seq data sets (Fig. 4A and B; Table 1). To do so, the data sets
were first mapped to the reactions in Yeast8 based on GPR rules via the COBRA mapExpressionToReactions
function. In the GIMME algorithm, the gene levels mapped to the reactions are used as an input. Other
inputs are threshold value, GMN model, and objective fraction (26). We applied the threshold of the 25th
percentile for the identification of active/inactive genes in the Yeast8 model for each data set. GIMME solves
an optimization problem relying on mass balance constraints. In this regard, it minimizes the number of reac-
tions corresponding to lowly expressed genes below the threshold while maximizing the number of the
reactions in the model associated with active genes (26). We set the objective fraction value to 0.5, which
allows growth rate to decrease to 50% of its model-based maximum value.

In addition to the RNA-seq-based and ATAC-seq-based models (early RC, mid OX, and late RB mod-
els) reconstructed as described above, we developed mass-balanced combinatory models (intersection
and union models) using multi-omics information. To this end, we generated a binary vector to repre-
sent the active/inactive state of reactions. Reactions that were active in either of the ATAC-seq and RNA-
seq models were represented as 1 in this binary vector for the union model, while the rest of reactions
were set to zero. Similarly, another binary vector was created to generate intersection models such that
only reactions active in both ATAC-seq and RNA-seq models were represented as 1 (Fig. 4B; Table 1).
These binary vectors were used as input to the GIMME algorithm with a threshold value of 0.5, which
ensured that the algorithm tried to keep reactions represented with 1 in the model while trying to
remove the reactions represented with 0 from the model by satisfying mass balance constraints. Overall,
a total of four different YMC models (i.e., RNA-seq-based, ATAC-seq-based, intersection, and union mod-
els) were developed for each phase (Fig. 4C).

We repeated the model reconstruction steps for filtered data sets to test the impact of measured
data compositions on the performances of the YMC models. In the RNA-seq data set, there are genes
whose levels were not detected in the ATAC-seq data sets. We removed these genes from the data sets.
Then, the filtered data sets were integrated to the generic Yeast8 model using the GIMME algorithm as
explained above. In other words, only commonly measured genes were considered in the model recon-
struction process. Thus, an additional model was developed for each YMC phase. These models are listed
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in Table 2. As highlighted, this step is significant to investigate whether the difference between model
performances is due to the variations in sizes of the measured gene sets (see the following section).

Model-based analysis of differential flux profiles. YMC models were simulated under minimal me-
dium (9, 85) for the glucose uptake rate of ;1.45 mmol/gDW//h (60). Flux balance analysis (FBA) is the
most common constraint-based modeling approach to simulate particularly microbial metabolism at
steady state (86, 87). Using the FBA approach, we simulated growth profiles to identify intracellular flux dis-
tributions. In the optimization step, two different objective functions were used consecutively to represent
yeast metabolism in an accurate manner. In the first optimization problem, we aimed the maximization of
cellular growth because this biological objective was reported to represent the best fit with experimental
data (88) and it is widely used to simulate microbial metabolism in FBA modeling (89, 90). The maximum
growth rate predicted in the optimization step was subsequently constrained by allowing its 10% reduction,
and minimization of the sum of absolute intracellular fluxes was introduced as the secondary objective to
narrow down solution space (91). The FBA approach is formulated as follows:

Xn

j¼1

SijVjð Þ ¼ 0 (1)

lbj # Vj # ubj (2)

maximizeVgrowth 1st objective functionð Þ (3)

0:9� Vopt # Vgrowth # Vopt (4)

minimize
Xn

j¼1
jVjj 2nd objective functionð Þ (5)

Equation 1 indicates the mass balance around each metabolite at steady state, where the stoichio-
metric matrix represented as Sij with the coefficient of metabolite i within a total of m metabolites, and
Vj represents the flux of the jth reaction within a total of n reactions. In addition to the assumption on
mass conservation, an assumption on the reversibility of biochemical reactions is used in the FBA
approach. Accordingly, lbj and ubj are the flux boundaries (lower and upper bounds) for the jth reaction
as shown in equation 2. Equation 3 demonstrates the optimization step used for the prediction of opti-
mal growth rate (Vopt), which satisfies the given primary objective function. Predicted growth rate was
used as a constraint in the next step. In equation 4, we allowed the growth rate to be flexible by 10% of
Vopt. A secondary optimization (minimization of the enzyme production) was subsequently applied
based on the minimization of sum of absolute intracellular fluxes as formulated in equation 5 (91). Here,
we solved the optimization problems using Gurobi solver (version 8.0.1). All simulations were performed
for both the generic Yeast8 model and YMC models using MATLAB R2017b.

Validation of differential flux profiles. To evaluate the capacity of YMC models in the prediction of
flux distributions, we compared predicted fluxes with the measured counterparts derived from 13C metabolic
flux analysis (MFA) for S. cerevisiae strain CEN.PK117-5D (60). Similar to the study of Gowans and colleagues
(10), the minimal cultivation condition described by Tu et al. (9) was used to obtain the measured fluxes.
Hence, cultivation conditions of the ATAC-seq/RNA-seq data (10) and flux data (60) were the same. Using the
13C-MFA method, Zhang and colleagues examined the metabolic transition between CDC phases via addi-
tional glucose intake by the synchronized yeast cells, and reaction fluxes were determined for selected sam-
pling points (60). Here, we first matched the flux sampling points and YMC phases. Cycling oxygen level is a
prominent factor to coordinate the timing of cellular growth and division (4, 61, 62). Therefore, we used oxy-
gen oscillation as a gold standard to ensure a reliable matching between samples. Accordingly, we considered
the changing dO2 levels reported in the 13C-MFA study (60) and the RNA-seq/ATAC-seq study (10). Thus, over-
lapped time points between both studies were detected in terms of dO2 profiles. The matched time points
correspond to early RC, mid OX, and late RB phases. Hence, flux comparisons were merely applied for these
three phases. To do so, we mapped 43 experimentally detected fluxes (60) to the reactions in the generic
Yeast8 model for each YMC phase (Table S6A). At least 37 out of 43 matched reactions were found to be
shared across yeast models (RNA-seq-based, ATAC-seq-based, intersection, and union models) for each YMC
phase (Table S6B). For these reactions, we compared the experimental and predicted fluxes via two metrics:
Pearson’s correlation coefficient (r) and mean squared error (MSE). We also compared the significance of the
differences between correlation coefficients. Using Fisher’s z transformation, each correlation coefficient was
first converted to z-score, which is approximately normally distributed (92, 93). Then, test statistic was calcu-
lated to compare the correlation coefficients (z-scores) of samples based on two-sample z test (93). We identi-
fied significantly different correlation coefficient values (P value cutoff, 0.05).
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