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Abstract

Autoassociative artificial neural networks have been used in many different

computer vision applications. However, it is difficult to define the most suitable

neural network architecture because this definition is based on previous knowledge

and depends on the problem domain. To address this problem, we propose a

constructive autoassociative neural network called CANet (Constructive

Autoassociative Neural Network). CANet integrates the concepts of receptive fields

and autoassociative memory in a dynamic architecture that changes the

configuration of the receptive fields by adding new neurons in the hidden layer,

while a pruning algorithm removes neurons from the output layer. Neurons in the

CANet output layer present lateral inhibitory connections that improve the

recognition rate. Experiments in face recognition and facial expression recognition

show that the CANet outperforms other methods presented in the literature.

Introduction

Computer models developed based on theories of the human brain structure have

been applied in various problems in computer vision. While the human brain has

not been fully well understood, these models inspired many methods used in

pattern recognition, such as Artificial Neural Networks (ANNs) [1]. ANNs have

been improved using concepts based on theories of the human brain such as the

receptive and inhibitory fields (also known as lateral inhibition) [2–5] and the

autoassociative memory [6]. Receptive fields concepts have been used in neural

networks for implicit feature extraction of input images, where neurons are

connected to predefined regions in previous layers [7–10]. The lateral inhibition

concepts are applied in order to improve the neural network stability and

efficiency, making the model less sensitive to image distortions [11–14].
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Autoassociative memory inspired the development of neural networks for one-

class classification tasks, enabling the models to be suitable for learning with only

positive patterns. Consequently, this establish closed decision boundaries in the

input space.

In previous works, we proposed two neural networks for visual pattern

classification: LIPNet [7] and AAPNet [15]. The former is a pyramidal neural

network (i.e. a neural network with 2-D layers connected in cascade where each

layer is smaller than the previous layer) with lateral inhibition that showed good

results for dichotomous problems, such as face detection and forest detection. The

latter is an autoassociative pyramidal neural network for one-class classification

without lateral inhibition that achieved good recognition rates in the multiclass

task of object categorization.

LIPNet, AAPNet, and other neural networks presented in the literature that use

at least one of the discussed biological concepts (receptive fields, lateral inhibition,

autoassociative memory) share the same problem: the configuration of the model

have to be defined prior to the learning step generating a neural network with a

static structure. The learning procedure of such neural networks are then

restricted to the changing of the synaptic connections weights and dependent on

knowledge from a specialist for the prior architecture configuration. Constructive

learning [16] algorithm can overcome these limitations including new neurons or

connections in the neural network topology as a function of the learning process.

Ma and Khorasani [17] proposed a model with a constructive feedforward neural

network for facial expression recognition. Additionally, a pruning step [18] was

performed to reduce the size of the architecture without sacrificing the

performance of the neural network. The technique proposed by Ma and

Khorasani outperforms the methods using fixed neural network structure in

computational efficiency, generalization and recognition performance capability.

In this paper, we propose the Constructive Autoassociative Neural Network

(CANet) that incorporates the concepts of receptive fields, autoassociative

memory, and lateral inhibition. The receptive field concept is used for implicit

feature extraction preserving the spatial topology of the extracted features.

Implicit feature extraction [19] enables the neural network to learn patterns from

raw data integrating feature extraction and pattern classification in the same

structure. On the other hand, the autoassociative memory is applied to

reconstruct the input image with the features implicitly extracted from the raw

image by CANet. A constructive-pruning algorithm dynamically updates the

neural network architecture during the learning process in order to reduce the

difference between the input image and the output of the CANet. The lateral

inhibition in the output layer of CANet improves the recognition capability of the

neural network [7, 13]. The parameters for the lateral inhibition are experimen-

tally defined in this work.

Constructive Autoassociative Neural Network for Facial Recognition
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Definitions and Related Works

Receptive and inhibitory fields

Receptive fields concept refers to an area in which the presence of an appropriate

stimulus produces response in a sensitive neuron and it was already identified in

the visual, auditory and somatosensory systems of the human brain [2]. On the

other hand, the inhibitory fields correspond to a region surrounding a given

neuron that sends inhibitory stimulus simultaneously to the excitatory effect of

the receptive field.

The concepts of receptive and inhibitory fields have already been used in image

processing to improve texture analysis and contour detection accuracy [20–22],

while ANNs inspired by such concepts have been proposed to incorporate feature

extraction in their architecture for visual pattern recognition tasks [8–10, 23, 24].

In another work, we presented a study about receptive fields and lateral inhibition

and proposed a pyramidal neural network for image classification that integrates

both concepts, called LIPNet [7]. This neural network obtained low error rates,

fast performance and low memory consumption.

Autoassociative memory

Autoassocative Artificial Neural Networks (AANNs) have the advantage of

allowing non-linear correlations [25]. AANNs are based on autoassociative

memory that is a type of memory where the input pattern and the desired output

are the same. The classifiers based on such memory are useful to determine

whether or not a pattern is known. AANNs have been successfully applied in

many computer vision tasks. Thompson et al. [26] applied AANNs for novelty

detection demonstrating that the learning is more ample than a simple

memorization. Cavalcanti et al. [27] applied an AANN in a face verification

problem. Wang and Chen [28] proposed an autoassociative model, called

EFMAM, to perform pattern recognition tasks obtaining improvements in

comparison with the not autoassociative version of the proposed model. Rao et al.

[29] performed emotion recognition in image sequences by extracting features

from face regions with a five layers AANN.

The output of the AANNs is the reconstruction of the input pattern presented

to them. They have a bottleneck structure with fewer neurons in the hidden layers,

responsible for data compression, than in the input and output layers. The pattern

is mapped to a new feature space in the hidden layers and then the neural network

learn the inverse mapping with respect to the minimization of the distance from

the input to the output pattern. The AANNs have the ability to implicitly select

and extract the features of the input data without any a priori knowledge or

specific instruction [27]. However, this kind of representation is likely to have a

high computational complexity due to the high number of neurons and synaptic

connections.

AAPNet [15] is an autoassociative pyramidal neural network that achieved

good results in object categorization. This neural network has a pyramidal

architecture composed of receptive fields and shared weights reducing the number

of synaptic connections between the neurons.

Constructive Autoassociative Neural Network for Facial Recognition
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Constructive neural networks

Constructive algorithms [30] are learning methods used to adaptively adjust the

architectural models of the ANNs. Many algorithms have been proposed to

update the architecture of a neural network [31], such as:

N Constructive: add layers, neurons and connections to provide a minimal

neural network architecture during the training.

N Pruning: remove layers, neurons and connections that are redundant from a

neural network with a larger and deeper structure during the training.

N Constructive-Pruning: hybrid approach in which the neural network is

pruned after a constructive process.

N Regularization: add or remove a punish term to the error function for

discard not important connections during the training [32].

Sharma and Chandra [31] and Kwok and Yeung [33] presented a literature

review for the constructive algorithms, emphasizing two approaches: Cascade-

Correlation (CC) and Dynamic Node Creation (DNC). The CC algorithm [34]

creates neural networks with multiple hidden layers with one neuron each that is

connected to all other neurons previously added. This algorithm enables the

neural network to detect high order features in the input pattern. However, the

neural network generalization ability decreases as the number of the neurons

added increases and the stimulus propagation might become very slow [33]. CC

expansions have been proposed to allow, for example, more than one neuron in a

same layer, but the decision about in which layer a new neuron should be added is

not trivial and algorithms like the proposed by Ma and Khorasani [35] and Islam

et al. [36] have been used limiting the number of neurons that can be added in

each layer.

DNC is a model proposed by Ash [37] to dynamically add neurons in a hidden

layer until the neural network reaches an approximation of the precision of its

output. This algorithm creates neural networks with one hidden layer training the

entire neural network every time a new neuron is added. DNC is a simple

algorithm which follows the convergence properties of the universal approx-

imators [38] of the underlying architecture. The main disadvantage of DNC is

that the search space is too large, increasing the computational cost and the

convergence time [39].

The constructive algorithm of an one-hidden-layer feedforward neural network

(OHL-FNN) [33] is an extesion of the DNC algorithm used to avoid high

computational cost. OHL-FNN freezes the neural network weights that have been

previously trained and with an addition of a new neuron, the weights affected by

the insertion are retrained. Ma and Khorasani [17] used the OHL-FNN strategy

for facial expression recognition achieving a better classification rate than other

neural network models with fixed structure.

In problems of one-class classification with many patterns, like facial

recognition, constructive learning is particularly interesting since each neural

network is evolved to individually learn each expression. The main advantages of

using constructive methods are the following [31, 40]:

Constructive Autoassociative Neural Network for Facial Recognition

PLOS ONE | DOI:10.1371/journal.pone.0115967 December 26, 2014 4 / 23



N The model becomes more flexible allowing a search in the space of possible

configurations of the neural network.

N The initial configuration of the model is easily defined because it should be

as simple as possible.

N If the constructive algorithm is successful, the obtained neural network can

be used to estimate the complexity of the learned problem.

N It is possible to incorporate domain specific knowledge in the neural

network that can be modified with the emergence of new training patterns.

N A different neural network configuration can automatically be defined for

each learned pattern instead of using the same predefined neural network

architecture for all known patterns.

Constructive Autoassociative Neural Network

The CANet is a model designed to implicitly extract features in a dynamic

architecture aiming to reconstruct the input image in the output layer that

belongs to the OHL-FNN [33] approach. It uses the concepts of receptive fields

and autoassociative memory to represent a visual pattern with implicit feature

extraction in an one-class classification model. In order to optimize the

architectural configuration for each known pattern, a constructive algorithm for

the neural networks with one hidden layer is used, this choice was motivated by

the work of Ma e Khorasani [17].

Fig. 1 presents the CANet training model. In each new training iteration, the

learning algorithm evaluates if it should change the neural network architecture to

improve the reconstruction accuracy. New neurons are added to the hidden layer

in order to approximate the neural network output to the input image. It is

important to note that each neuron in the hidden layer is connected to receptive

fields in the same location of the input and output layers without any overlap

between adjacent receptive fields. Thus, since neurons in the output layer do not

have a bias connection, all the neurons in the same receptive field region return

the same value. In order to avoid noisy pixels in the reconstructed image that

could impair the image classification, a pruning algorithm [18] eliminates the

neurons in the output layer that present the highest error rates in the training set,

reducing the computational cost of the CANet without compromising its efficacy.

In this section, we present the neural network architecture, the connectivity

model, the training algorithm, the constructive and prunning algorithms and the

multi-class recognition system. Table 1 presents the notation and definitions used

to describe CANet.

CANet Architecture

Fig. 2 presents the CANet architecture that is composed of 2-D layers connected

in cascade, i.e., the output of one layer is the input to the next one. First, the input
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pattern is reduced to a feature map that is smaller than the input layer. The

extracted features are then used to reconstruct the input image in the output layer.

The CANet architecture is composed of three layers:

N Input layer: each neuron in this layer represents a pixel in the input image

and is associated with a weight wI
i,j. Thus, the images used as input to the

neural network must have the same size of the input layer.

N Constructive layer: this layer is responsible to extract the features from the

input image. New neurons are added in this layer during the training based

on the error sensitivity of the neurons in a same receptive field of the

reconstruction layer, dR,k
i,j , where k denotes a given training image.

N Reconstruction layer: responsible for returning the reconstruction of the

input image using the features extracted in the constructive layer. Neurons

in a same receptive field in the reconstruction layer share the same weight

from the constructive layer.

The receptive field of a neuron is given by ru,v
i,j |ru,v

i,j where (i,j) denotes the

position of the neuron in the constructive layer that was previously generated

from the neuron (u,v). The output of a neuron in the constructive layer, yu,v
i,j ,

depends on the pixel value, Ik
m,n, and on the weight associated to it, wI

m,n, of all the

pixels in the receptive field of the neuron. The constructive neuron output and the

weight associated to it, wu,v
i,j , are used to reconstruct the input image along with

the inhibitory stimulus sent by the neurons in the reconstruction layer with the

size of the inhibitory field given by hR. The output of the neuron in the

reconstruction layer, yR
s,t, is the neural network output and it is an approximation

of the pixel in the position (s,t) of the input image.

Connectivity Model

The first layer of the CANet is the input image. The second layer is the

constructive one. Each neuron in the constructive layer is associated to another

neuron from which it was previously generated. The label of a neuron is given by

Fig. 1. CANet training model for a set of training images from the class C. CANet-C is the output of the model.

doi:10.1371/journal.pone.0115967.g001
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two pairs of coordinates, the lower index (i,j) and the upper index (u,v). (i,j) is the

coordinate of the neuron after the division process, while (u,v) corresponds to the

lower index coordinate of the previously divided neuron. The first neuron is

located in position (1,1) of the constructive layer and it is not associated with any

neuron, represented by (0,0). All the other neurons are generated from this

neuron or from one of its descendants. Neurons in the constructive layer are

connected to receptive fields with different sizes in the input and output layers.

Table 1. Notations and definitions used to describe the CANet.

Symbol Description

Ik
m,n Value of the pixel in the (m,n) position of the k-th input image

ru,v
i,j Receptive field size of the neuron (i,j) expanded from the neuron (u,v)

of the CANet constructive layer

hR Size of the inhibitory field in the reconstruction layer

yR Strength of the lateral inhibition in the reconstruction layer

wI
m,n and wu,v

i,j Weights associated with the position (m,n) in the input layer I to the constructive

layer and with the neuron (i,j) expanded from the neuron (u,v)

of the constructive layer to the reconstruction layer, respectively

Fu,v,I
i,j and Fu,v,R

i,j
Receptive fields of the neuron (i,j) expanded from the neuron (u,v)

of the constructive layer in the input and reconstruction layers, respectively

bu,v
i,j Bias of the neuron (i,j) expanded from the neuron (u,v) of the

constructive layer

yu,v
i,j and yR

s,t Outputs of the neuron (i,j) expanded from the neuron (u,v) of the

constructive layer and of the neuron (s,t) in the reconstruction layer

f Activation function

du,v,k
i,j and dR,k

s,t
Error sensitivities for the neuron (i,j) expanded from the neuron

(u,v) of the constructive layer and for the neuron (s,t) in the reconstruction

layer R for an image k, respectively

su,v,k
i,j and sR,k

s,t
Weighted sum input for the neuron (i,j) expanded from the neuron (u,v)

of the constructive layer and for the neuron (s,t) in the reconstruction layer

for an image k, respectively

D(t)
i,j

Adaption rule of the RPROP algorithm

gz and g{ Increase and decrease factors of the RPROP algorithm

p Maximum number of hidden neurons

q Number of neurons not removed by the pruning algorithm in the reconstruction layer

eMaxu,v
i,j and Maximum and minimum mean error rates of the neurons in the output layer contained

eMinu,v
i,j in the receptive field of the neuron (i,j) expanded from the neuron (u,v)

of the constructive layer, respectively

eMedR
s,t Mean error rate of the neuron (s,t) in the reconstruction layer

LE Error gradient

Notation and definitions used to describe the CANet.

doi:10.1371/journal.pone.0115967.t001
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The output of each neuron in the constructive layer consists in the application

of a non-linear activation function over the weighted summation of the neurons

in its receptive field. Thus, considering that (i,j) is the position of a neuron

expanded from the neuron in the position (u,v) of the constructive layer, (m,n)

the position of a pixel in the input layer and bu,v
i,j the bias associated to the neuron

in position (i,j), the output yu,v
i,j of the neuron in the constructive layer is given by

yu,v
i,j ~f

X
m,n[Fu,v,I

i,j

wI
m,nIk

m,nzbu,v
i,j

0
BB@

1
CCA, ð1Þ

where Fu,v,I
i,j is the receptive field in the input layer of the neuron in the position

(i,j) in the constructive layer.

The output of a neuron in the reconstruction layer, yR
s,t, depends on the output

of the neuron in the constructive layer that contains it in its receptive field,

represented by yu,v
i,j and on the lateral inhibition effect caused by neurons in its

neighborhood. yR
s,t is calculated in three steps:

N Excitatory stimulus: for each neuron in the reconstruction layer, the

excitatory stimulus is calculated using the following equation

xR
s,t~yu,v

i,j wu,v
i,j , ð2Þ

Fig. 2. CANet architecture composed of 2-D layers in a bottleneck shape for image autoassociation: (a)
network layers in which neurons are connected to receptive fields with different sizes in the input and output
layers; (b) connectivity model of a neuron in the constructive layer.

doi:10.1371/journal.pone.0115967.g002

Constructive Autoassociative Neural Network for Facial Recognition

PLOS ONE | DOI:10.1371/journal.pone.0115967 December 26, 2014 8 / 23



where wu,v
i,j denotes the weight associated with the neuron in position (i,j)

expanded from (u,v) in the constructive layer that contains the neuron (s,t)

of the reconstruction layer in its receptive field, Fu,v,R
i,j .

N Inhibitory stimulus: for each neuron in the reconstruction layer, the lateral

inhibition is calculated using the following equation

iR
s,t~ yR

XxzhR

i~x{hR

XyzhR

j~y{hR

xR
i,j

0
@

1
A{xR

s,t

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
InhibitoryField

: ð3Þ

N Activation function: the excitatory and inhibitory stimulus are combined as

input to a non-linear activation function that is monotonically increasing,

continuous, differentiable and bounded, given by

yR
s,t~f xR

s,t{iR
s,t

� �
: ð4Þ

In this work, f is the sigmoid function.

CANet Training

CANet is a supervised neural network that tunes its weights during the training in

order to reduce the error calculated through the output obtained and the input

image. In each training step, first the error sensitivity for each neuron in CANet is

calculated. Thus, the error gradients for the weights are derived. Finally, the

weights are updated in order to learn a visual pattern with a pre-defined

architecture configuration. The constructive algorithm that optimizes the CANet

configuration is shown in the next section.

The error sensitivity d for each neuron in the reconstruction layer for an input

image Ik is calculated in three steps:

N Image error: difference from the obtained output and the pixel intensity,

given by

Ex,k
s,t ~yR

s,t{Ik
s,t, ð5Þ

where yR
s,t is the neuron output and Ik

s,t is the pixel intensity

N Sensitivity of the same layer: calculated using the image error summation of

the neurons in the reconstruction layer that contains the neuron in the (s,t)
position in the inhibitory fields, given by

Constructive Autoassociative Neural Network for Facial Recognition
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Ei,k
s,t~yR

XyzhR

i~x{hR

XyzhR

j~x{hR

Ex,k
i,j

0
@

1
A{Ex,k

s,t

0
@

1
A: ð6Þ

N Sensitivity of the neuron:

dR,k
s,t ~ Ex,k

s,t {Ei,k
s,t

� �
f ’ sR,k

s,t

� �
, ð7Þ

where sR,k
s,t is the input for the neuron (s,t) at the reconstruction layer, f ’ is

the differential of the activation function f and k is the index representing

each training image.

The error sensitivity for the neurons in the constructive layer is given by

du,v,k
i,j ~f ’ su,v,k

i,j

� �
wu,v

i,j

X
s,t[Fu,v,R

i,j

dR,k
s,t : ð8Þ

Furthermore, the error gradient, LE, of the weights and the biases can be

derived as follows.

N Error gradient of the weights in the constructive layer, wu,v
i,j :

LE
Lwu,v

i,j
~
XK

k~1

yu,v
i,j

X
s,t[Fu,v,R

i,j

dR,k
s,t

8>><
>>:

9>>=
>>;; ð9Þ

N Error gradient of the weights in the input layer, wI
m,n, where du,v,k

i,j represent

the error sensitivity of the neuron in the constructive layer that contains the

neuron (m,n) of the input layer in its receptive field:

LE
Lwm,n

I
~
XK

k~1

Im,ndu,v,k
i,j

n o
; ð10Þ

N Error gradient of the biases:

LE
Lbu,v

i,j
~
XK

k~1

du,v,k
i,j : ð11Þ

Finally, the weights in the neural network must be updated following a given

learning rule. In this work, the Resilient Propagation (RProp) [41] is used. The

RProp is known as an algorithm that converges fast with high accuracy and

robustness [42]. The RProp updates the weights taking in account only the sign of

Constructive Autoassociative Neural Network for Facial Recognition
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the partial derivative over all patterns. Thus, the weights are adaptively updated

based on the gradient signal, according to the following rule:

w(t)
i,j ~w(t)

i,j {sign
LE

Lw(t)
i,j

(t)

 !
D

(t)
i,j , ð12Þ

and D
(t)
i,j is the adaptation rule given by

D
(t)
i,j ~

gzD
(t{1)
i,j , LE

Lw(t)
i,j

(t) LE

Lw(t)
i,j

(t{1)w0

g{D
(t{1)
i,j , LE

Lw(t)
i,j

(t) LE

Lw(t)
i,j

(t{1)v0

0, otherwise

0
BBBB@ ð13Þ

where gz
w1 and 0vg{

v1 are the increase and decrease factors, respectively,

that define the jump given in each learning step.

Constructive and Pruning Algorithms

Constructive learning algorithms optimize the neural networks configurations for

pattern classification without ad hoc choices [40]. On the other hand, pruning

algorithms delete redundant connections in the neural network improving the

efficiency of the model without compromising the effectiveness. Algorithm 1 in

Table 2 presents the hybrid constructive-pruning algorithm proposed to train the

CANet.

Initially, there is only one neuron in the hidden layer with a receptive field

containing all the neurons in the input and output layers and new neurons are

iteratively added to the hidden layer. With the addition of each neuron in the

hidden layer, the neural network is retrained by updating only the new

connections. The criteria chosen to add new neurons in the hidden layer is based

on the mean error rate for the receptive fields of the hidden neurons in the output

layer. At each iteration, the neuron with the highest difference between the

maximum and the minimum error values, eMaxu,v
i,j {eMinu,v

i,j , is expanded by

dividing its receptive field in other four equal size receptive fields and three new

neurons are added to the hidden layer.

The receptive fields are divided aiming to connect the neurons to homogeneous

regions of the input image and they are indexed using a quadtree model. Fig. 3

presents this structure. Initially, there is only one receptive field with the same

height and width of the output layer, given by H and W, respectively. The

receptive field is divided into four receptive fields with sizes H
2 and H

2 . Finally, the

receptive field denoted by F1,2,R
1,1 is divided into four receptive fields with sizes H

4

and H
4 . The quadtree model of CANet indicates how the homogeneous regions are

distributed along the input patterns. After the expansion of the quadtree, each one

of the new neurons are related to one of the generated receptive fields and the

Constructive Autoassociative Neural Network for Facial Recognition
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Table 2. Algorithm 1: Pseudocode of the constructive-prunning algorithm.

Require: trainingSet : training images

p : maximum number of neurons in the hidden layer

q : number of neurons not removed by the pruning algorithm in the reconstruction layer

Ensure: bestCanet : trained

canet/ new CANet with one neuron in the hidden layer;

bestCanet/canet

evolve/true;

while canet:sizeHiddenLayer()vp do

canet:train(trainingSet);

neuronu,v
i,j /canet:chooseWorstHiddenNeuron()

canet:divideReceptiveField(neuronu,v
i,j );

canet:addNeuronsExpandedFrom(neuronu,v
i,j );

canet:connectNeuronsToReceptiveFields();

if canet:validationError()vbestCanet:validationError then

bestCanet/canet;

end if

end while

for all neuronR
s,t in bestCanet:getReconstructionLayerNeurons() do

neuronR
s,t :validationError();

end for

bestCanet:removeHighestMeanErrorRateNeurons(q));

Algorithm 1: Pseudocode of the constructive-prunning algorithm.

doi:10.1371/journal.pone.0115967.t002

Fig. 3. Quadtree model of the receptive fields hierarchy. Initially, there is only one receptive field with the
same height and width of the output layer, given by H and W, respectively. The receptive field is divided into
four receptive fields with sizes H

2 and H
2 . Finally, the receptive field denoted by F1,11,2,R is divided into four

receptive fields with sizes H
4 and H

4 .

doi:10.1371/journal.pone.0115967.g003
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CANet is retrained. The receptive fields division process repeats until the

maximum number of neurons in the hidden layer p is achieved.

At the end of each expansion iteration, the validation error is calculated and the

constructive algorithm returns the CANet with the lowest validation error

disregarding the number of hidden neurons.

During the CANet training, it is possible that some neurons do not learn well

the representation of some pixels. Thus, after the constructive training, a pruning

step is performed in the CANet reconstruction layer and the neural network

output is obtained considering only the q most similar pixels between the input

image and the neural network output for all training images. The pruning

algorithm keeps in the reconstruction layer only the neurons that approximates

the neural network output to the input image with highest accuracy.

Fig. 4 presents an illustration of the pruning algorithm. First, the mean error

rate for each neuron in the reconstruction layer for all images used in the CANet

training is calculated

eMedR
s,t~

XK

k~0

yR,k
s,t {Ik

s,t

�� ��, ð14Þ

where yR,k
s,t is the output of the neuron (s,t) in the reconstruction layer for an input

image k, K is the number of images used to train the CANet and Ik
s,t is the intensity

of the pixel in position (s,t) of the input image k. Second, the mean error rates are

sorted and the q lowest mean error rates are selected. Finally, the neurons in the

reconstruction layer associated with the selected rates are kept while the remaining

neurons are removed.

Multi-class Recognition System

CANet is a neural network for one-class learning. The CANet training defines a

closed decision boundary and the distance from a pattern to such boundary is a

Fig. 4. CANet pruning algorithm. The mean error rates are sorted and the neurons associated with the n~4
lowest rates are kept in the reconstruction layer.

doi:10.1371/journal.pone.0115967.g004
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measure of dissimilarity between the pattern and the class represented by the

CANet. In multi-class tasks, a CANet committee is created for each class.

Fig. 5 presents the multi-class recognition system of the CANet. The test image

is used as input to each trained CANet and a decider assigns the recognized class

using the distances from the input image to the obtained outputs, given by

D(input,output)~
XH{1

m~0

XW{1

n~0

0 if pruned neuron

EIk
m,n{yR

m,nE otherwise

 
: ð15Þ

In this work, the classification is set using the minimum operator. Therefore,

the committee output is the minimum distance obtained among all trained neural

networks.

Experiments

In this section, we compare the results obtained by the CANet with other methods

in the literature in order to demonstrate the effectiveness of the proposed model.

Three public databases were used: ORL [43] and AR [44] databases for face

recognition; and JAFFE [45] for facial expression recognition. The experiments

Fig. 5. Multi-class recognition system of the CANet.

doi:10.1371/journal.pone.0115967.g005
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with the JAFFE database were also performed to determine the CANet parameters

that were used in the face recognition experiments with ORL and AR databases.

JAFFE Database

JAFFE (Japanese Female Facial Expression database) [45] was created to evaluate

different methods for facial expression recognition [46–49]. JAFFE contains

images from the six basic facial expressions plus the neutral expression, collected

from 10 persons, presenting 3 or 4 images of each expression for each person.

Experiments with the JAFFE database were performed using downsampled images

leading to a lower computational cost. The original images are cropped to

128|128 pixels to reduce the background influence. Cropped images are then

scaled to 40|40 pixels with the histogram equalized. Feature extraction methods

are not used and the pre-processing steps are independent of the image class.

Fig. 6 presents some images after the pre-processing.

CANet has 4 parameters that have to be experimentally determined: maximum

number of neurons in the hidden layer p, the number of neurons considered in

the output layer q, the size of the inhibitory field hR and the lateral inhibition

strength yR. The following experiments show the influence of each parameter in

CANet facial expression recognition using the first test approach with two

randomly chosen images of each expression per person for training and the

remaining for test.

The number of neurons in the hidden layer determines how sensitive the

constructive algorithm is to the error. Fig. 7 presents the facial expression

recognition rate for different numbers of neurons in the hidden layer using all the

output neurons q~1600, i.e., no prunning is performed, and with no lateral

inhibition. The highest recognition rate of 90.1% is achieved with approximately

25% of neurons in the hidden layer in comparison with the input size, such

configuration is used in the following experiments.

The number of neurons considered in the output layer by the prunning

algorithm, given by q, determines how sensitive is the CANet to variations in the

learning for different image pixels, allowing the classification only with the pixels

that better represent a class. The facial expression recognition rate is evaluated

using only 50% of the neurons in the reconstruction layer that reaches a rate of

Fig. 6. JAFFE images after pre-processing.

doi:10.1371/journal.pone.0115967.g006
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91.2%, being 1.1 percentile point higher than the rate obtained considering all the

neurons in the CANet output. We experimentally evaluated other values for q, but

they did not present improvements in the recognition. Thus, for the following

experiments q is set equal to 800.

Different configurations for lateral inhibition in the reconstruction layer of

CANet are evaluated with the inhibitory field size and its strength varying from 1

to 10 and 1 to 25, respectively. Table 3 presents only the best results obtained

varying the inhibitory field size, hR, and strength, yR. The highest recognition rate

is obtained with the inhibitory size of 6 and strength equals to 17. Hypothesis test

using t-Student with 5% of significance level between CANets with and without

Fig. 7. Facial expression recognition rate (%) for different values of maximum number of hidden
neurons p.

doi:10.1371/journal.pone.0115967.g007

Table 3. Facial expression recognition rate (%) for different configurations of inhibitory field size, hR, and inhibition strength, yR, of the CANet in the JAFFE
database.

Inhibitory configuration Recognition rate (std)

hR~2,yR~14 92:1(2:2)

hR~2,yR~17 92:4(2:5)

hR~4,yR~14 92:3(2:4)

hR~4,yR~17 92:0(2:7)

hR~6,yR~14 92:6(1:8)

hR~6,yR~17 93:0(2:2)

hR~8,yR~14 88:1(2:9)

hR~8,yR~17 91:1(2:1)

Facial expression recognition rate (%) for different configurations of inhibitory field size, hR, and inhibition strength, yR, of the CANet in the JAFFE database

doi:10.1371/journal.pone.0115967.t003
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lateral inhibition statistically demonstrates that the presence of inhibitory fields

improved the results obtained by the neural network.

Two approaches are used to evaluate CANet in facial expression recognition

using the JAFFE database in comparison to other methods in the literature. In the

first approach, we use the same methodology applied by Zhi et al. [46] that

randomly chooses two images of each expression per person for training and uses

the remaining images for test. Bashyal and Venayagamoorthy [50] used a similar

approach. In the second approach, called leave-one-image-out cross-validation,

each image in the database is used to test in one iteration while the remaining

images are used for training. Such approach was used by Cheng et al. [47]. Each

approach was repeated 30 times and the average recognition rate is presented.

Table 4 presents a comparison between the CANet, the AAPNet [15] and

different methods with feature extraction. The first approach is used and the

feature extraction methods which CANet is compared with are the ones presented

by Zhi et al. [46] and Bashyal and Venayagamoorthy [50]. The best method with

feature extraction presents a facial expression recognition rate of 91.5%, while

CANet presents a rate of 93.0% indicating that process of implicit feature

extraction is able to generalize the CANet learning with no need of any prior

feature extraction method. Also the CANet classification rate is 3.2 percentile

points higher than the one obtained by AAPNet. Table 5 presents the confusion

matrix obtained with CANet.

In the second approach used to test the method, one image is used for test at

each iteration while the remaining images are used for training. The results

obtained by CANet with such approach are compared with other classifiers

without feature extraction. Cheng et al. [47] proposed a gaussian classification

process without any feature extraction method. Following the same approach,

Cheng et al. [47] obtained a facial expression recognition rate of 93.4%. The

CANet obtains a recognition rate of 99.9%. Table 6 presents the results obtained

Table 4. Comparison between the facial expression recognition rate (%) obtained by CANet and different methods with feature extraction with the first test
approach in the JAFFE database.

Method Recognition rate (std)

CANet 93:0(2:2)

AAPNet [15] 89:8(2:5)

Gabor + LVQ [50] 87:51

GSNMF [46] 91:5

SNMF [46] 87:2

DNMF [46] 88:7

NMF [46] 82:9

Laplacianfaces [46] 84:3

Fisherfaces [46] 85:7

Eigenfaces [46] 80:0

Comparison between the facial expression recognition rate (%) obtained by CANet and different methods with feature extraction with the first test approach
in the JAFFE database.

doi:10.1371/journal.pone.0115967.t004
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by the CANet, the AAPNet, the gaussian process and the k-NN classifier without

feature extraction using the best value calculated for the neighborhood size. The

autoassociative neural networks presents a recognition rate much higher than the

other classifiers without feature extraction and the CANet presents the highest

recognition rate.

ORL Database

The ORL (Cambridge Olivetti Research Lab) face database [43] contains 400

different images, taken at different times from 40 people of different gender, age

and race. The face images include variations in expression (such as open or closed

eyes and smiling or not smiling), details (such as glasses/no glasses), rotation (up

to about 20 degrees) and scale (up to about 10%). In this face recognition

experiment, the main concern is to recognize thumbnail-sized face image, which

requires less storage memory and recognition time. Thus, all the images were

subsampled to 28|23 pixels.

Table 5. Confusion matrix of the CANet presenting the probability of an expression in the row to be classified as an expression in the column with the first
test approach in the JAFFE database (SU: surprise, HA: happiness, AN: anger, DI: disgust, SA: sadness, NE: neutral, FE: fear).

SU HA AN DI SA NE FE

SU 0:96 0:00 0:00 0:00 0:00 0:00 0:04

HA 0:01 0:89 0:00 0:00 0:02 0:08 0:00

AN 0:00 0:00 0:99 0:00 0:01 0:00 0:00

DI 0:00 0:00 0:03 0:96 0:01 0:00 0:00

SA 0:01 0:03 0:00 0:02 0:83 0:08 0:04

NE 0:00 0:00 0:00 0:00 0:00 1:00 0:00

FE 0:04 0:00 0:00 0:02 0:02 0:02 0:90

Confusion matrix of the CANet presenting the probability of an expression in the row to be classified as an expression in the column with the first test
approach in the JAFFE database (SU: surprise, HA: happiness, AN: anger, DI: disgust, SA: sadness, NE: neutral, FE: fear).

doi:10.1371/journal.pone.0115967.t005

Table 6. Comparison between the facial expression recognition rate (%) obtained by CANet and different methods without feature extraction with the second
test approach in the JAFFE database.

Method Recognition rate (std)

CANet 99:9(0:1)

AAPNet [15] 98:5(0:1)

Gaussian process [47] 93:4

3-NN 91:5

Comparison between the facial expression recognition rate (%) obtained by CANet and different methods without feature extraction with the second test
approach in the JAFFE database.

doi:10.1371/journal.pone.0115967.t006

Constructive Autoassociative Neural Network for Facial Recognition

PLOS ONE | DOI:10.1371/journal.pone.0115967 December 26, 2014 18 / 23



Table 7 shows the comparison between the error rate obtained with the CANet

and the results presented by Zhu et al. [51]. The CANet presented the lowest error

rate in all the experiments using 3, 4 and 5 training images.

AR Database

The last experiment was conducted on the AR face database [44] using a cropped

version with images from 50 males and 50 females [52] downsampled to 40|40
pixels. Twenty six images divided in two sessions were captured from each person.

The same experiment protocol of Mi et al. [53, 54] was used and for each

individual 7 images from the first session without any occlusion were used for

training, while the 7 correspondent images from the second session was used for

testing. Table 8 shows that the CANet achieves the highest recognition rate in

comparison with the methods presented by Mi et al. [53, 54] such as Linear

Regression-based Classification (LRC), Robust Linear Regression-based

Table 7. Comparison between the error rate for face recognition (%) obtained by CANet and different methods from the work of Zhu et al. in the ORL
database.

Method Number of training images per class

3 4 5

CANet 7:82 5:12 3:25

IMSEC [51] 11:07 5:83 4:50

CMSE [51] 13:93 7:92 7:50

CRC [51] 15:36 9:17 8:00

SRC [51] 19:29 15:00 14:50

Eigenface [51] 26:07 20:00 14:00

Fisherface [51] 22:01 22:64 23:29

1-NN [51] 20:36 15:00 14:00

2DPCA [51] 14:29 11:25 9:50

2DLDA [51] 11:79 7:92 9:50

Comparison between the error rate for face recognition (%) obtained by CANet and different methods from the work of Zhu et al. in the ORL database.

doi:10.1371/journal.pone.0115967.t007

Table 8. Comparison between the face recognition rate (%) obtained by CANet and different methods from the works of Mi et al. in the AR database.

Method Recognition rate

CANet 79:9

RLRC 1 [53] 75:4

RLRC 2 [53] 73:4

LRC [53] 70:6

SRC-KNS [54] 76:5

Comparison between the face recognition rate (%) obtained by CANet and different methods from the works of Mi et al. in the AR database.

doi:10.1371/journal.pone.0115967.t008
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Classification (CLRC) and Sparse Representation-based Classification on K-

Nearest Subspace (SRC-KNS).

Discussion

In this paper, we proposed a novel neural network inspired by biological concepts

present in the brain, called CANet. The proposed model is a constructive

autoassociative neural network that returns as output an approximation of the

presented input image using a dynamic architecture. CANet presents the concepts

of receptive fields for implicit feature extraction and lateral inhibition and

autoassociative memory for image reconstruction.

The CANet is an one-class classifier that connect the hidden neurons to

homogenous regions in both input and output layers of the neural network. A

constructive algorithm is applied in order to find the number of neurons in the

hidden layer that minimizes the mean distance between the input images and the

neural network outputs. After the CANet training, a prunning algorithm is used

to keep in the output layer only the neurons with the highest accuracy in the

training set, improving both the classification accuracy and the computational

cost. It is important to note that the constructive algorithm improves the implicit

feature extraction process performed in the hidden layer, while the pruning

algorithm removes the redundancy of the output layer. Finally, the recognition

system presented allows the use of the CANet in multi-class tasks. We showed that

CANet outperforms other state-of-the-art algorithms in facial recognition tasks.

Improvements in the CANet could be applied, such as to create an overlapped

region among adjacent receptive fields and to define different shapes for the

receptive and inhibitory fields. In this way, allowing more hidden layers, which

creates a deeper model. It is also interesting the possibility of using evolutionary

techniques to find the most suitable architecture for the neural network.

Moreover, experiments with other tasks rather than facial recognition should also

be addressed.
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