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Abstract: Voriconazole is an antifungal drug used to treat invasive aspergillosis. Voriconazole
exhibits nonlinear behavior and considerable individual variability in its pharmacokinetic profile.
Invasive aspergillosis has a poor prognosis, and failure of treatment owing to low voriconazole blood
levels is undesirable. Thus, therapeutic drug monitoring (TDM) of voriconazole is recommended.
However, plasma voriconazole concentration is rarely measured in hospitals, and the TDM of
voriconazole is not widely practiced in Japan. We aimed to develop an ultra-simple method to
measure plasma voriconazole concentration. Ten microliters of plasma sample was extracted, and
proteins were precipitated using methanol extraction. Voriconazole and ketoconazole (internal
standard) were separated using high-performance liquid chromatography. A calibration curve was
prepared, which was linear over plasma voriconazole concentrations of 0.125–12.5 µg/mL, with
a coefficient of determination of 0.9999. The intra-day and inter-day validation coefficients were
0.9–2.2% and 1.3–6.1%, respectively. The assay accuracy was −4.2% to 1.6%, and recovery was >97.8%.
Our ultra-simple, sensitive, and inexpensive high-performance liquid chromatography ultraviolet
method to determine plasma voriconazole concentration will help improve the voriconazole TDM
implementation rate and contribute to effective and safe voriconazole use.

Keywords: high-performance liquid chromatography; voriconazole; ketoconazole; therapeutic
drug monitoring

1. Introduction

Voriconazole is a broad-spectrum triazole antifungal agent used as the first-line treat-
ment against invasive aspergillosis [1]; it is also used as an alternative therapy for can-
didemia [2]. Voriconazole is also used as a prophylaxis for patients who are at a high risk
for invasive fungal diseases (IFDs), such as those undergoing hematopoietic stem cell trans-
plantation. However, voriconazole exhibits nonlinear behavior and shows considerable
individual variability in its pharmacokinetic profile [3]. One reason for the individual
variability is that poor metabolizers, owing to genetic polymorphisms of cytochrome P450
2C19 (an enzyme involved in voriconazole metabolism), have higher plasma voriconazole
concentrations and are more likely to experience hepatotoxicity and other adverse events [4].
Moreover, plasma voriconazole concentration increases in patients with inflammatory con-
ditions [5,6]. In contrast, IFDs, including invasive aspergillosis, have a poor prognosis [7];
thus, failure of treatment or the occurrence of breakthrough IFDs owing to low plasma
voriconazole concentration must be avoided. Thus, therapeutic drug monitoring (TDM) is
recommended for voriconazole [8–10]. At trough concentrations (Cmin), the recommended
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therapeutic range for voriconazole is 1–5 µg/mL on days 5–7 (day 3 for dosage regimen
with loading dose) after the first dose [11].

Several reports have outlined various methods to determine plasma voriconazole con-
centration using high-performance liquid chromatography ultraviolet (HPLC-UV) [12–16]
and liquid chromatography with tandem mass spectrometry (LC-MS/MS) [17–21] Globally,
HPLC-UV instruments are more widely used than LC-MS/MS instruments. Furthermore,
HPLC-UV setups have low initial costs compared with LC-MS/MS setups. However, the
measurement of plasma voriconazole concentration using both HPLC-UV and LC-MS/MS,
in terms of learning operating techniques and preparing samples, is time consuming; hence,
only a few hospitals currently measure voriconazole concentration using HPLC-UV or
LC-MS/MS in regular clinical settings. Therefore, in Japan, the measurement of voricona-
zole concentration using LC-MS/MS is frequently outsourced. A limitation of outsourcing
is there is a delay of approximately 5 days in receiving the results. Voriconazole dosage
optimization can result in failure of IFD treatment if TDM is not performed within 1 week
after the initial dose. As voriconazole-induced hepatotoxicity occurs approximately 10 days
(median value) after the first dose [22], outsourcing voriconazole measurements may ham-
per the identification of the cause of hepatotoxicity or adjustment of dose. Therefore, the
rate of voriconazole TDM in Japan is low, ranging from 11% to 37.4% [23,24]. The situation
in Australia is similar, where the rate of voriconazole TDM is 35% [25]. Voriconazole
measurements should be performed in-house at all hospitals treating IFDs. Hence, the
development of a simple and rapid assay using HPLC is warranted. In this study, we
developed an ultra-simple method for measuring voriconazole concentration in human
plasma using HPLC-UV, such that the results can be obtained on the same day as blood
collection in clinical settings. We also developed an organic solvent extraction process to
eliminate the protein removal step that does not include the use of solid-phase extraction
columns; this leads to a shorter process time, lower costs, and less blood requirements for
the assay.

2. Materials and Methods

The HPLC apparatus comprised a pump (PU-4180; Jasco, Tokyo, Japan), a UV detector
(UV-4075; Jasco), and an auto-sampler (AS-4550; Jasco). An octadecylsilyl column (Capcell
Pak C18 MG II; 250 mm × 4.6 mm; I.D., 5 µm; Osaka Soda, Tokyo, Japan) with a Capcell
Pak C18 MG II guard column (10 mm × 4.0 mm; Osaka Soda) was used for the analysis.
Voriconazole and ketoconazole were obtained from Tokyo Chemical Industry, Co., Ltd.
(Tokyo, Japan). HPLC-grade acetonitrile, methanol, water (Kanto Chemical, Co., Inc.,
Tokyo, Japan), and KH2PO4 (Wako, Osaka, Japan) were used in the mobile phase. Human
plasma (pool) and EDTA-2Na was purchased from Cosmo Bio Co., Ltd. (Tokyo, Japan).

The detection wavelength was set as 260 nm for the analysis. The mobile phase com-
prised acetonitrile and 0.5% KH2PO4 (pH 3.0; 39:61 v/v), and the flow rate was maintained
at 1.0 mL/min.

Stock solutions (1 mg/mL) of both voriconazole and ketoconazole were prepared
in methanol. A calibration curve was prepared independently using the working stock
solution. The voriconazole stock solution was diluted with methanol to obtain working
solutions of 0.125, 0.25, 0.5, 1.25, 2.5, 5.0, 10, and 12.5 µg/mL. The ketoconazole stock
solution was diluted with methanol to obtain a working solution of 1.0 µg/mL. Both stock
and working solutions were stored at −60 ◦C until use.

The voriconazole working solution (10 µL) was vortexed with 10 µL of plasma for
30 s in a 2.0-mL microtube (ClickFit 2.0 mL; Trerf Lab, Switzerland). Voriconazole-spiked
plasma (20 µL), the internal standard (10 µL; 1.0 µg/mL ketoconazole), and methanol
(70 µL) that had been chilled to −20 ◦C were mixed, vortexed for 1 min, and centrifuged at
15,000× g for 10 min at 4 ◦C. The resulting supernatant (30 µL) was used as the sample for
HPLC analysis. The sample preparation method for patient plasma was shown in Figure 1.
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Figure 1. Simple flowchart of the patient plasma sample preparation method.

For the calibration of voriconazole, 10 µL of blank human plasma was added to 10 µL
of voriconazole working solution, at the following working concentrations: 0.125, 0.25, 0.5,
1.25, 2.5, 5.0, 10, and 12.5 µg/mL. The recovery, accuracy, and precision of the assay in
human blank plasma were determined using the working solution at these concentrations.
Using the working solution at the abovementioned concentrations, five sets of spiked
plasma samples were assayed on the same day (intra-day) and on five different days (inter-
day) to confirm assay precision. Specificity was tested by analyzing blank human plasma
to ensure that no endogenous substances in the plasma would interfere with voriconazole
or the internal standard. Selectivity was evaluated by comparing chromatograms obtained
from blank plasma and spiked plasma. The stability of voriconazole in the plasma samples
was evaluated at three different concentrations (0.125, 1.25, and 12.5 µg/mL). Bench-top
stability was evaluated using five samples (n = 5) stored at 25 ◦C for 6 h. The stabilities of
the processed samples (n = 5) were evaluated after they had been stored at 4 ◦C for 24 h.
One-week stabilities were evaluated using samples (n = 5) that had been stored at –60 ◦C
for 1 week. The freeze-and-thaw stabilities of five samples (n = 5) were evaluated after
three cycles of freezing at –60 ◦C and thawing.

2.1. Clinical Application

After obtaining written informed consent, blood samples were collected from a patient
with acute myeloid leukemia starting 13 days after the administration of voriconazole.
Blood was also collected each day before the oral administration of voriconazole, and
the Cmin of voriconazole was evaluated. Plasma was obtained by centrifuging the blood
samples at 1500× g for 15 min. The resulting supernatants were stored at −20 ◦C until
analysis. In addition, the plasma voriconazole concentrations in five blood samples from
the patient obtained using our HPLC-UV method were compared with those obtained
using LC-MS/MS through outsourcing (BML, Inc., Tokyo, Japan).

2.2. Statistical Analysis

The Spearman rank correlation coefficient was calculated to assess the correlation
between the voriconazole concentrations obtained through our method and the outsourced
measurement. We also evaluated the agreement between our method and the outsourced
method using the Bland–Altman analysis method [26]. Statistical analysis was performed
using EZR [27], and results with p < 0.05 were considered statistically significant.

3. Results

Typical chromatograms of plasma voriconazole at concentrations 0.125 and 5.0 µg/mL
are presented in Figure 2. The retention times of voriconazole and ketoconazole were
11.9 and 7.0 min, respectively. Each measurement cycle lasted 13.0 min.
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Figure 2. Typical chromatograms showing the determination of plasma voriconazole. (a) Blank
plasma sample. Spiked plasma samples containing voriconazole (VRCZ) at (b) 0.125 µg/mL (lower
limit of quantification) or (c) 5.0 µg/mL. (d) Patient plasma sample on day 22 (2.69 µg/mL).

The eight-point voriconazole standard calibration curve was linear over the range
of 0.125–12.5 µg/mL. The calibration curve was defined using the following equation:
y = 0.1866x + 0.0044 (r2 = 0.9999), where y and x are the peak height ratio and plasma
voriconazole concentration (µg/mL), respectively. The recovery of voriconazole was
0.125–12.5 µg/mL (>97.8%). At these concentrations, the intra-day and inter-day precision
(coefficients of variation, %) were 0.9–2.2% and 1.3–6.1%, respectively (Table 1). The assay
accuracy was −4.2% to 1.6%. The stability of voriconazole in plasma was assessed under
various conditions (Table 2). No significant degradation of voriconazole was observed, and
the final concentration was within 97.4–101.3% of the theoretical value.

Table 1. Intra-day and inter-day accuracy and precision.

Intra-Day (n = 5) Inter-Day (n = 5)

Theoretical Voriconazole
Concentration (µg/mL)

Mean ± SD
(µg/mL)

Precision
(%)

Accuracy
(%)

Mean ± SD
(µg/mL)

Precision
(%)

Accuracy
(%) Recovery (%)

0.125 0.13 ± 0.00 1.1 1.6 0.12 ± 0.00 6.1 −2.8 99.2
0.25 0.25 ± 0.00 1.2 0.7 0.25 ± 0.00 2.1 0.7 97.8
0.5 0.50 ± 0.00 2.2 0.7 0.49 ± 0.01 2.7 −1.9 101.4

1.25 1.22 ± 0.01 1.1 −2.5 1.21 ± 0.01 1.8 −3.4 100.6
2.5 2.46 ± 0.05 2.1 −1.7 2.44 ± 0.05 1.7 −2.2 100.2
5 4.96 ± 0.10 2.1 −0.9 4.93 ± 0.10 1.3 −1.5 101.7

10 9.83 ± 0.20 2.1 −1.7 9.58 ± 0.20 2.6 −4.2 101.6
12.5 12.5 ± 0.11 0.9 0.1 12.4 ± 0.11 2.0 −0.6 100.8

Table 2. Stability analysis under various conditions (n = 5).

Stability Condition (%)

Added Voriconazole (µg/mL) Benchtop
Mean ± SD

Processed Sample
Mean ± SD

One-Week
Mean ± SD

Freeze and Thaw
Mean ± SD

0.125 97.6 ± 4.6 98.1 ± 6.2 98.0 ± 5.7 98.7 ± 7.1
1.25 98.5 ± 2.0 97.4 ± 1.8 99.9 ± 2.5 100.1 ± 3.8
12.5 99.6 ± 5.5 98.9 ± 4.4 101.3 ± 4.9 98.9 ± 2.2

The plasma voriconazole concentration was determined using blood samples obtained
from a patient with acute myeloid leukemia. At the start, the patient received 200 mg of
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voriconazole orally twice daily. The day 3 Cmin measurement after voriconazole admin-
istration was outsourced; thus, Cmin was identified on day 10. The Cmin on day 3 was
2.42 µg/mL, which was within the target concentration range. However, owing to the
patient’s advanced age, the dose was reduced to 150 mg twice daily on day 10. The patient
had concurrently been using nicorandil, rosuvastatin, tocopherol nicotinate, furosemide,
amiodarone, venetoclax, epinastine, and levofloxacin. Blood was collected on days 13,
22, 37, 47, and 54, before voriconazole administration. Using our method, the plasma
voriconazole concentrations in the samples collected on days 13, 22, 37, 47, and 54 were
4.69, 2.69, 1.45, 1.61, and 1.29 µg/mL, respectively (Figure 3).
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Figure 3. Clinical course of both voriconazole trough concentrations.

The plasma voriconazole concentrations measured on days 13, 22, 37, 47, and 54 by
BML, Inc., the outsourcing vendor, using LC-MS/MS, were 3.91, 2.62, 1.47, 1.59, and
1.34 µg/mL, respectively. The Cmin of voriconazole determined using our method signifi-
cantly correlated with that obtained via outsourcing (r = 1; p = 0.017). The Bland–Altman
plot showed that the mean bias ± SD of voriconazole Cmin between our method and the
outsourced method was 0.16 ± 0.30 µg/mL, and the limits of agreement were −0.274 and
0.594, respectively (Figure 4b).
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4. Discussion

We developed an ultra-simple, sensitive, and inexpensive HPLC-UV-based analytical
method to determine plasma voriconazole concentration in clinical settings. Our results
will contribute to the treatment of patients with IFDs receiving voriconazole.

The results of precision (intra-assay and inter-assay variations, accuracy, and stability
under various conditions) obtained using our method comply with the recommendations of
the Food and Drug Administration [28]. The therapeutic ranges for the Cmin of voriconazole
are 1–2 µg/mL (lower limit) and 4–5 µg/mL (upper limit) [8,9]. The developed method
can detect voriconazole in the range of 0.125–25 µg/mL, and it is suitable for the TDM of
voriconazole in clinical settings.

The sample preparation process for previously-reported methods to determine plasma
voriconazole concentration using HPLC-UV requires complex steps, including protein
removal and long evaporation times for sample concentration [12–16]. Unlike our method,
the protein removal process in previously-reported methods involves solid-phase extraction
columns, which are expensive and require time-consuming column conditioning and
washing processes. There is no need to consider drug adsorption in our method, as it
does not require solid-phase extraction columns, resulting in high recovery rates and low
variability. Furthermore, because the supernatant can be directly injected into the HPLC
system after protein removal, the total time required for sample pre-treatment is only
approximately 15 min. This simplicity of sample preparation makes it possible to learn the
sample preparation techniques quickly, enabling even healthcare professionals involved
in routine medical care to use this method to measure plasma voriconazole concentration.
Reportedly, the minimum volume of plasma sample required for voriconazole measurement
is 49.75 µL [12]; however, our method requires a minimum volume of just 10 µL. Moreover,
no additional invasive procedures are required, because plasma voriconazole concentration
can be measured using the blood that remains after use in routine blood tests. Our method
is also easily applicable to pediatric patients because only limited amounts of blood can
be collected from these patients. Voriconazole TDM is recommended in pediatric patients
because of large individual differences in clearance; moreover, target trough concentrations
may not be achieved using adult doses [29–31]. As the target voriconazole Cmin in pediatric
patients is the same as that in adults, the accuracy and measurement range can also be
assumed to be similar. Furthermore, the results of the comparison among the five samples
measured using LC-MS/MS via outsourcing and the plasma voriconazole concentrations
measured using our HPLC method exhibited a significant correlation (p = 0.017), and the
accuracy of our method was considered comparable with that of the LC-MS/MS method.
However, in the Bland–Altman analysis, no agreement was observed in the measurement
of only one sample (day 13) among the five samples. The agreement may be poor when
the plasma voriconazole concentration is approximately 4.0 µg/mL. In a future study, the
agreement with LC-MS/MS will be reexamined by measuring a larger number of samples
using our method. If the outsourcing results pertaining to day 3 Cmin of our patient were
obtained even 1 day later, the Cmin on day 13 might have been above the target range.
The voriconazole dose was reduced from 200 to 150 mg on day 10 based on the Cmin of
voriconazole. This change allowed the patient to continue taking the treatment without
developing adverse effects, such as hepatotoxicity and visual disturbance.

Measuring voriconazole in the hospital yields rapid results and enables rapid optimiza-
tion of drug therapy. Our ultra-simple and inexpensive HPLC method allows in-hospital
measurement of voriconazole by healthcare professionals; hence, there is no need for out-
sourcing. We expect that our method will enable voriconazole TDM in not only Japan, but
also other countries, and contribute to enhancing clinical outcomes, including maximizing
therapeutic efficacy and minimizing adverse events. An increase in voriconazole-resistant
Aspergillus fumigatus has recently been reported [32]. Voriconazole is the first choice in the
treatment of invasive aspergillosis [1,33]. Our method may help stop the development of
voriconazole resistance by improving the rate of voriconazole TDM implementation.
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The novelty of this study lies in the fact that the experimental system, which com-
bines sample preparation using methanol and HPLC-UV analysis, has been improved
so that it can be easily performed with a small sample volume for clinical applications.
The advantages of our method are as follows: (1) only 10 µL of plasma is required for
the measurement, (2) a solid-phase column is not required for protein removal, (3) the
results can be obtained quickly and the procedure is ultra-simple, and (4) the initial and
maintenance costs are lower than those of LC-MS/MS.

Our study has some limitations. First, the samples assessed using our method were
obtained from just one patient. Therefore, it remains unknown whether voriconazole
concentration can be accurately measured in patients using drugs other than the eight
drugs the patient was using. Second, we could not assess the accuracy and precision of
voriconazole measurement performed by healthcare professionals in a hospital setting
using our method. Third, we have not performed dilution assays. In the future, we hope to
use this method to measure large numbers of patient samples and to evaluate the accuracy
of voriconazole measurements obtained by healthcare professionals in hospital settings.

5. Conclusions

We developed an ultra-simple, sensitive, and inexpensive method to determine plasma
voriconazole concentration using HPLC-UV for clinical application; our process shortens
the time required for protein removal and is cost effective. This method will improve
the implementation rate of voriconazole TDM and contribute to effective and safe use
of voriconazole.
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