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Vision is the main entrance for environmental input to the human brain. Even if vision

is our most used sensory modality, its importance is not limited to environmental

exploration. Rather it has strong links to motor competences, further extending to

cognitive and social aspects of human life. These multifaceted relationships are

particularly important in developmental age and become dramatically evident in presence

of complex deficits originating from visual aberrancies. The present review summarizes

the available neuropsychological evidence on the development of visual competences,

with a particular focus on the associated visuo-motor integration skills in health

and disease. With the aim of supporting future research and interventional settings,

the goal of the present review is to constitute a solid base to help the translation

of neuropsychological hypotheses into straightforward empirical investigations and

rehabilitation/training protocols. This approach will further increase the impact, ameliorate

the acceptance, and ease the use and implementation of lab-derived intervention

protocols in real-life situations.
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NEURAL CORRELATES OF VISION

Visual perception permeates our life, not only for merely gathering information about the
environment, but also for having important influence on our motor skills. Revealing the neural
mechanisms of the multifaceted relationships between vision and other domains of human life,
visual neuropsychology goes beyond the traditional consideration of vision as a passive function,
and rather highlights how visual competences can impact typical and atypical development at a
more systemic, dynamic, and integrated level. The neurobiological machinery that brings from light
to vision starts in the eyes, where the photoreceptors of the retina are able to selectively respond to
the photons of light (entered through the cornea and projected to the retina) and “translate” them
into neural signals. These signals are transported by the optic nerves to subcortical structures (the
lateral geniculate and pulvinar nuclei of the thalamus) which relay signals mainly to the visual
cortex, in the posterior part of the brain, but also to the superior colliculus in the midbrain (Shipp,
2004). The occipital lobe is further organized in several sub-regional areas, including the striate
primary visual cortex (V1) and a series of interconnected, extra-striate, and progressively more
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specialized areas for higher-level processing of visual input
(Figure 1). Thus, while V1 is sensitive to basic features of the
visual input, such as line orientation, motion direction, and depth
perception, the secondary visual cortex (V2) receives fibers from
V1, projects to the third visual cortex (V3), and is already able
to perform figure/background distinctions (Qiu and Von Der
Heydt, 2005; Maruko et al., 2008), to process illusory contours
(Von Der Heydt et al., 1984; Anzai et al., 2007), and to build
binocular disparity (Von Der Heydt et al., 2000). V3 projects to
areas out of the occipital lobe, including the posterior parietal
cortex (Stepniewska et al., 2016) and the inferior temporal cortex
(Ponce et al., 2017), and is sensitive to global motion (Braddick
et al., 2001), covering larger portions of the visual field with
respect to V1 (Lui et al., 2006). The fourth visual cortex (V4) it
tightly connected to V1 and V2 (Liu et al., 2020) and projects
mainly to the inferior temporal cortex (Bohon et al., 2016). It is
involved in color perception, object recognition, and is sensitive
to top-down attentional modulation (Roe et al., 2012). The fifth
visual cortex (V5) receives input from V1, V2, V3, as well as
from the thalamus (Ungerleider and Desimone, 1986; Felleman
and Van Essen, 1991; Sincich et al., 2004; Warner et al., 2010)
and projects to the superior temporal gyrus (Handa et al., 2017;
Handa and Mikami, 2018), the frontal eye fields (Machner et al.,
2010) and lateral intraparietal cortex (De Azevedo Neto and
Amaro Junior, 2018). Some fibers reach V5 directly from the
thalamus, bypassing V1 (Warner et al., 2012). Encoding speed
and direction of visual input (Dubner and Zeki, 1971; Maunsell
and Van Essen, 1983), V5 is mostly important for motion
perception and smooth guidance of eye movements (Dursteler
et al., 1987) as well for “building” a continuous perception of
moving targets and scenes instead of a “crystallized” vision of
distinct frames (Hess et al., 1989; Baker et al., 1991). The sixth
visual cortex (V6) is located medially and connected to parietal
and pre/post-central regions (Shipp et al., 1998; Galletti et al.,
2001; Luppino et al., 2005; Smith et al., 2018; Serra et al., 2019)
of the brain is responsible for “subtracting out” the visual input
related to self-motion from the rest of the visual perception
(Pitzalis et al., 2013), as well as for visually guiding movements
(Pitzalis et al., 2015).

Traditional neuropsychological models of visual perception
indicate that the several interconnections among the visual
regions of the brain can be broadly classified according
to two functionally different main streams: the well-known
ventral and dorsal streams (Tong, 2003). The “what” ventral
stream would pass signals from V1, V2, V3, V4, up to the
inferior temporal cortex and would be implied mainly in
object recognition Conversely, the “where” dorsal stream would
comprise connections between V1, V2, V3, superior/medial
temporal sulcus, and parietal cortex and would be particularly
important for neurally encoding the visuo-spatial and motion-
related aspects of visual input (Hickok and Poeppel, 2004;
Almeida et al., 2010; De Haan and Cowey, 2011; Goodale, 2013).
Lesions in the ventral stream produce recognition deficits such
as prosopagnosia (the impossibility to recognize faces) (Mayer
and Rossion, 2007). Lesions in the dorsal stream determine
visuo-motor deficits, such as optic ataxia (impaired visuo-
motor coordination, e.g., impossibility to reach objects despite

FIGURE 1 | Visual neuropsychological model. Graphical representation of the

main cortical regions involved in visual perception and visuo-motor

coordination. The visual input is first processed by the primary visual cortex

(V1). Further processing is performed by the extrastriate visual regions (V2, V3,

V4, and V5) which triggers the recruitment of the dorsal or ventral stream as a

function of whether or not the visual input needs to be used to perceive or

move in the environment, respectively. EBA, extrastriate body area; FFA,

fusiform face area; ITC, inferior temporal cortex; FEF, frontal eye field; PPC,

posterior parietal cortex; M1, primary motor cortex; PMC, premotor cortex.

preserved visual and motor skills separately) (Himmelbach
et al., 2009). This sharp dichotomy between ventral and dorsal
streams has been progressively smoothened (Rossetti et al., 2017),
including the identification of bidirectional interactions between
the streams (Greulich et al., 2020), especially in the context of
adaptive behavior (Goodale et al., 2005) and visuo-motor skills
(Van Polanen and Davare, 2015). Interestingly, different visuo-
motor sub-pathways have been identified in the dorsal stream:
the dorso-dorsal stream would be recruited for online action
control; the ventro-dorsal stream would have be involved in
higher-level cognitive functions including action understanding
(Rizzolatti and Matelli, 2003). Altogether, it seems clear that the
fine precision of our visual skills and their importance in action-
related mechanisms are reflected in the high complexity of the
involved neural architecture.

NEURO-BEHAVIORAL DEVELOPMENTS
OF VISUAL SKILLS

Taking into consideration the temporal aspects of the
development of the visual streams, it appears that the pace
at which the ventral and the dorsal streams grow would be
different already in pre-born age, indicating that the ventral
stream would mature more quickly than the dorsal stream
(Tadros et al., 2015). Indeed, already at birth the ability of
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newborns to notice that a visual event occurs, even if the
classification of “what” that even is still need further cortical
maturation, has been considered an example of the importance
of subcortico-cortical visual functions (Bronson, 1974). In
addition, the fact that newborns are particularly attracted by
face-like visual stimuli (Simion et al., 2011) and, especially, by
familiar faces (Bushneil et al., 1989), suggests the functioning of
thalamo-V5 connections which would bypass V1. Then, during
the first 6 months, more specific functions associated with neural
activity in V1 progressively emerge in an ordered sequence.
The first functions are sensitivity to orientation, followed by
the ability to perceive directional motion, and finally binocular
interactions, e.g., for depth perception (Braddick and Atkinson,
2011).

Basic Functions
Visual Acuity
Visual acuity refers to our ability to perceive fine visual details. To
reach adult levels, visual acuity rapidly develops during the first
months of life and keeps improving up to 3 or 4 years (Norcia and
Tyler, 1985; Banks and Dannemiller, 1987). Together with visual
acuity, at birth also contrast sensitivity (the ability to discriminate
light and dark) is below adult levels and progressively improves
during the first months (Banks and Salapatek, 1978). From an
ecological perspective, newborns don’t need to perceive small
details of far objects, but rather they need to recognize persons
relevant for them (e.g., parents). Thus, newborns’ relatively low
visual acuity anyways allows them to efficiently interact with
the environment relevant at their scale, even if their visual
performance would be rated as “blindness” according to adult
scales. Their low visual acuity might derive from the immaturity
of foveal photoreceptors, retina, and eye-brain pathways, which
quickly develop in early life, including denser concentration and
better sensitivity of photoreceptors (Yuodelis and Hendrickson,
1986) and larger neural sprouting between the eyes and the brain
(Braddick and Atkinson, 2011).

Vernier Acuity
The simple visual acuity provides the means to perceive small
details, but it does not take into account the spatial relationship
between such details. This capacity is defined “vernier acuity”
and refers to the ability to perceive spatial incongruence, e.g.,
misalignment, with a resolution even higher than simple visual
acuity. The behavioral aspects of vernier acuity have been long
known, since the seminal work by Ewald Hering at the end
of the nineteenth century (Strasburger et al., 2018). As it goes
beyond the physical features of the eye, the vernier acuity is
one of the examples of the importance of cortical dynamics in
supporting visual skills (Manny, 1988; Skoczenski and Norcia,
1999). Indeed it progressively improves faster than the simple
visual acuity (Zanker et al., 1992; Brown, 1997), in parallel with
the maturation of the cortico-subcortical networks responsible
for the integration of spatial relationships between different
objects and their parts, and it reaches maturity much later
than simple acuity (Skoczenski and Norcia, 2002). Interestingly,
Braille reading triggers a progressive improvement of vernier

acuity on tactile perception (Loomis, 1979), suggesting the
influence of neuroplastic changes driven by specific habits.

Accommodation
Both visual acuity and vernier acuity depend on accommodation,
the possibility to adapt the focus to the distance of the
object by contracting or relaxing the muscles of the eye lens.
Accommodation at birth is limited to objects located within a
range of 40–50 cm (Horwood and Riddell, 2008), with a possibly
parallel ongoing attentional limitation (Downey et al., 2017). At
the neural level, accommodation is associated with brain activity
in the visual cortex (Mirzajani et al., 2017) and relies on an
extended cortico-cerebellar network, including links of the visual
cortex with cerebellar hemispheres/vermis and temporal cortex
(Richter et al., 2000), as well as with precentral and frontal regions
(Lv et al., 2020).

Color
All visual functions would not reflect the real world if they
would not comprise information about colors. Color perception
is strongly based on the early activity of cone receptors in the
eyes from the first months of life (Brown, 1990). It has roots
in the development of cortical functions starting from V2 and
V3 (Ting Siok et al., 2009) to allow the proper use of color
information including, for example, high-level functions such as
emotion (Yoto et al., 2007) or aesthetics (Maglione et al., 2017).

Integrative Functions
Contours and Motion
One the most important information about the environment
refers to the contours of an object: where an object ends and
another one or the background start. This type of information
is not present in the raw visual input, but it is rather built by
neural responses in V1 (Hubel and Wiesel, 1977). Newborns
start to discriminate orientation and therefore contours within
the first weeks (Slater et al., 1988), even before visual event
related potentials (VERPs; the stereotyped brain response to a
standardized basic visual input) associated with contours can
be recorded from their brains, between 3 and 8 weeks from
birth (Braddick et al., 1986). Considering the importance of
sensitivity to contours in development (Candy et al., 2001),
VERPs can be fundamental measures for early detection of at-
risk populations (Atkinson et al., 2008). Another fundamental
information to efficiently understand the environment is the
ability to distinguish static and moving objects. Like contours,
motion sensitivity is the result of a cortical construction based
on the neural responses in the visual cortices. Usually, newborns
start to perceive motion a bit earlier than 10 weeks (Braddick
et al., 2003), when their VERPs start to be detectable (Wattam-
Bell, 1991). The anatomical maturation necessary to discriminate
contours and motion occurs in the first months of life, depending
on neural sprouting and synaptic establishment (Huttenlocher
et al., 1982). The functional development of sensitivity to
orientation and motion (plus binocularity) occurs in sequential
order and based on neurally distinct pathways. For example, even
if newborns show some degrees of motion sensitivity in relatively
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early stages, this ability relies mostly on sub-cortical structures
(Morrone et al., 1999).

Global Motion
The perception of motion alone does not account for the
complexity of the environment, where different objects can move
at a different pace and/or according to different spatio-temporal
patterns. The capacity to perceive such a complexity seems to
appear already between the first 2–6 months of life (Kellman and
Spelke, 1983; Arterberry and Yonas, 2000; Johnson and Mason,
2002), with a specific ability for the recognition of human action-
like motion, or biological motion (Booth et al., 2002). Such a
relatively late development together with the need to convey
information from larger areas of the visual field suggest that
global motion skills rely on a neural architecture starting in
V1 (Robertson et al., 2014) and further extending to a broader
brain network (Koyama et al., 2005), likely encompassing V2
and V3 (Furlan and Smith, 2016), as well as V5 (Giaschi et al.,
2007) and possibly also more frontal motor regions (Saygin
et al., 2004; Wuerger et al., 2012). Already in about 5-year-
old children, the perception of global motion is independent
from simple visual acuity (Chakraborty et al., 2015) and is
strictly related to visuo-motor skills (Chakraborty et al., 2017).
In addition, sensitivity to global motion is neurally dissociable
from global form perception (Vachon et al., 2009), possibly
being linked to interregional neural connections (Pavlova et al.,
2005). A direct way to assess global motion skills is the so-
called “motion coherence sensitivity” test (Newsome and Pare,
1988), which evaluates the ability to recognize target motion
patterns within a background of differently moving dots. During
the first months of life, motion coherence sensitivity increases
progressively (Mason et al., 2003), the associated VERPs show
specificity for global motion (Wattam-Bell et al., 2010), and V5
is selectively activated by global motion in connection with other
motion-related areas (Biagi et al., 2015).

Static Forms vs. Global Motion
There seem to be a clear segregation between sensitivity to
global motion and static forms, as shown by the earlier readiness
of VERPs associated to global motion than to static forms
(Wattam-Bell et al., 2010), the larger variability of thresholds for
global motion than for static forms (Braddick et al., 2016), and
qualitative difference between global motion and static forms
skills ranging up to adolescence (Meier and Giaschi, 2014). At
the neural level, while sensitivity to global motion seems to
recruit mainly the dorsal stream, the perception of static forms
is mainly bound to the ventral stream. Accordingly, only the
development of global motion perception (not static forms)
correlates with anatomo-functional growth of neural connections
between the parietal and frontal lobes, beyond the solely visual
cortex (Braddick et al., 2016, 2017). This suggests that global
motion perception is a higher-order function recruiting also
sensorimotor integration mechanisms. Such a conclusion is
further supported by the observation that the performance in
global motion (not static forms) correlates with visuo-motor
skills already in developmental age (Braddick et al., 2016) and
that aberrancies in its parieto-frontal neural architecture might

be at the origin of the so-called “dorsal stream vulnerability” in
developmental deficits (Spencer et al., 2000).

3D and Depth Perception
The ability to merge and coordinate information from the
two perspectives of each eye provides one of the means
to perceive three-dimensionality and is a peculiar cortical
function, not happening in earlier levels of the visual input’s
processing. In children, binocularity emerges at about 3 months
(Thorn et al., 1994), depending on ocular convergence (Downey
et al., 2017), cortical maturation (Elberger and Smith, 1985),
neural plasticity (Chalupa, 2004), specific neurotransmitters
(Kameyama et al., 2010; Krahe and Medina, 2010), and cortico-
cortical interactions, both in humans (Jurcoane et al., 2007)
and other mammals (Dehmel and Lowel, 2014). The failure
of one or more of these cortical mechanisms can contribute
to the creation of the conditions for developing binocularity-
related functional deficits, such as strabismus (Berman and
Murphy, 1981; Freeman et al., 1982; Di Stefano and Gargini,
2002). Together with binocularity, depth perception relies on
a number of visual abilities, including shape/shade segregation,
sensitivity to differential texture density, interposition of near/far
surfaces, all of which start to be present between 4 and 7
months (Yonas et al., 2002), and it keeps progressing in parallel
with the development of fine visuo-motor skills both in health
(Braddick and Atkinson, 2013) and disease (Grant et al., 2014).
A specific function tightly linked to depth perception is the
ability to identify an object with respect to its background.
Such a figure-ground discrimination can be based, for example,
on the sensitivity to different textures between the object and
the background which starts to emerge in the first month of
child’s life (Brooks and Clair, 1971; Wattam-Bell, 1992), keeps
evolving up to adultness (Anderson et al., 2016), and is sensitive
to age-related ocular diseases like macular degeneration (Tran
et al., 2011). A related effect refers to the perception of the
so-called “illusory contours,” proper visual illusions inducing
the illusory perception of edges without physical borders, as
shown by the pioneering work by Gaetano Kanisza and his
famous illusory triangle (Kanisza, 1955). Children start to be
sensitive to the Kanisza triangle in the first 3–5 months of life
(Kavšsek, 2002; Otsuka and Yamaguchi, 2003), with increasing
sensitivity up to adolescence (Bondarenko et al., 2010), possibly
in parallel with improved cortico-cortical interactions (Ffytche
and Zeki, 1996), increased intracortical dynamics in V2 and
in V2-V5 exchanges (Grossberg, 2014), and exchanges between
the different compartments of the visual cortex (Weigelt, 2007).
Altogether, bidirectional interactions seem to be in place between
children’s improvements in perceiving basic visual features and
their developments in higher-level functions beyond the mere
visual perception. Such interactions typically start in the first
month of life (Granrud, 2006) and keep evolving up to about 10
years (Nardini et al., 2010; Dekker et al., 2015).

Face Perception
The human face is probably the most salient visual stimulus
in our life. The evolutionary and adaptive importance of the
recognizing, understanding, and interpreting human faces is
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demonstrated by the existence of a region in the extrastriate
cortex of the human brain, specifically dedicated to processing
face-related visual input: the fusiform face area or FFA
(Kanwisher et al., 1997). Behavioral evidence shows that
sensitivity to faces is one of the first visual abilities in newborns
(Goren et al., 1975; Ferrari et al., 1986), is based on contrast
polarity (Rosa Salva et al., 2012), can be functional even with
a relatively low resolution at short distances (Von Hofsten
et al., 2014), and can be shaped by life experience (Cobbett and
Snelgrove-Clarke, 2016). At the neural level, the early appearance
of the strong bias toward faces suggests that it is based on
subcortical mechanisms aiding the newborn to fixate a face
which in turn would favor a frequent exposure to faces and the
associated development of selective cortical processing. This idea
is supported by the supposed presence of visual pathways which
would allow face perception by directly connecting the thalamus
and the amygdala to FFA, bypassing V1 in both the human
(Morris et al., 2001) and the primate brain (Bourne andMorrone,
2017). Despite cortical electrophysiology suggests that the FFA is
sensitive to observation of faces already at 4 months (De Heering
and Rossion, 2015), face-related neural response (De Haan et al.,
2003) and cortical specialization (Peelen et al., 2009; Deen et al.,
2017) seem less pronounced in children than adults.

Body Perception
Together with face perception, also the visual perception
of the human body plays a crucial role in daily life.
Similarly to the fusiform face area, and in obvious anatomical
closeness, the extrastriate body area (EBA) is functionally-defined
brain regions, specifically sensitive to the observation of the
human body (Downing et al., 2001) and part of the lateral
occipitotemporal cortex possibly overlapping with V5 (Ferri
et al., 2013). The inhibition (Urgesi et al., 2007; Candidi et al.,
2008) or lesion (Peelen and Downing, 2007) of EBA support its
causal implication in selectively respond to the observation of
human bodies. Not only is EBA important for body-related visual
processing, but also it is involved in higher-level visual cognition
related to the human body, including identity attribution (Myers
and Sowden, 2008), emotional resonance (Ionta et al., 2020),
and mental imagery (Arzy et al., 2006; Costantini et al., 2011;
Perruchoud et al., 2016). Even if the development of EBA in the
life span remains largely unexplored, recent evidence suggests
that the development of the body-specific responsiveness of EBA
can take several years. Indeed neuro-functional differences of
EBA can be noticeable between 6 and 8 vs. 9–12 year-old children
(Walbrin et al., 2020), and the development of EBA can be
affected by neurological disorders in early age (Okamoto et al.,
2017).

Visuo-Motor Interactions
Moving is one of the most direct and evolutionary relevant
reason to have vision. Thanks to movements we can preserve
our body, and therefore our life, for example by escaping dangers
and reaching targets. Even if these functions can be technically
possible also without vision, in typical conditions human beings
are historically hardwired to vision. Therefore, it is not surprising
that a large part of visual functions is subsequently used to control

movements, as suggested by tight visuo-motor resonance already
in early age (Lepage and Théoret, 2007). The neural architecture
for such visuo-motor couplings would be present already at birth
(Meltzoff and Moore, 1977) and it would be promoted by the
repeated exposure to sensorimotor events (Cook et al., 2014),
being its development further depending on experience (Simpson
et al., 2014).

Eye and Head Movements
The first visuo-motor interactions in the newborns comprise eye
and head movements, followed by postural adjustments, manual
exploration, and locomotion (Adolph and Franchak, 2017). Eye
movements constitute a fundamental visuo-motor interaction,
combining the perceived changes from the environment (vision)
with a rudimental motor reaction (eye movements). The superior
colliculus in the midbrain plays a central role in such rudimental
visuo-motor interactions, initiating the saccades (Hainline et al.,
1984) and being connected to cortico-subcortical circuits to
disengage fixation during saccades (Braddick et al., 1992). The
fixation disengagement reaches functional maturity between 2
and 5 months (Hood and Atkinson, 1993), possibly reflecting
the maturation of frontal cortical regions (Csibra et al., 1998).
In order to track moving objects, it is necessary to (i) stabilize
the target image on the retina and (ii) follow its displacements.
The retinal stabilization can be achieved thanks to the optokinetic
nystagmus, which subsequently needs to be inhibited in order
to smoothly pursue the target’s movements. In newborns, noting
such ability depends on the features of the target, with smooth
pursuit movements exhibited even at a few weeks of life, but only
with slow and large moving targets (Phillips et al., 1997). The fact
that infants can also anticipate where a moving target will go by
staring at the expected location, supports that rudimental cortical
mechanisms for early visuo-motor interactions are already in
place in early age (Rosander, 2007).

Eye-Hand Coordination
It is not a secret that the ability to grasp objects contributed
fundamentally to render humans one of the most evolutionary
successful species worldwide. Grasping is the result of complex
interactions between sensory perceptions and motor control,
the largest part being taken by the coordination between
vision and hand movements. Such an eye-hand coordination
widely permeates daily life, including object manipulation,
environmental exploration, and social interaction. Without tight
eye-hand links, it is doubtful that fundamental human activities
like writing or driving (often given for granted, but in fact not
obvious), would have evolved at such a large scale, or perhaps
they would not have born at all. The existence of visuo-motor
links is supported by both behavioral and neural evidence,
suggesting the interaction between the ventral and the dorsal
streams. Early forms of reaching and grasping emerge around
the fourth month of life, supporting that the dorsal stream would
be already able to coordinate the motor output in response
to the visual input mediated by the ventral stream (Braddick
et al., 2003). Between the sixth and ninth month, children
almost compulsorily reach and grasp any object within their
arm’s length (Newman et al., 2001), establishing and reinforcing
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rich perceptual-motor connections which will constitute scaffold
for developing a broad visuo-motor neural architecture able
to be activated even by less complex inputs (Pulvermüller,
1999; Martin et al., 2000). For example it has been shown that
even just the observation of reaching movements activates the
sensorimotor cortex in 14-month-old children with a stronger
gradient as a function of older ages (Marshall et al., 2011).
Similarly, visual perception of letters is associated with brain
activations typical for the execution of handwriting movements
(Longcamp et al., 2003), which in turn activate also visual regions
typically involved in letter perception (James and Gauthier,
2006). Beyond action execution, vision can contribute also to
accurate action planning, including the ability to anticipate
the appropriate hand configuration to grasp a specific object
(Rosenbaum et al., 1992). Typically, this ability is achieved at
about 8 years (Smyth and Mason, 1997), but some delays can
be encountered in presence of clinical conditions that are likely
affect the interactions between the dorsal stream, ventral stream,
and frontal brain areas (Braddick and Atkinson, 2013).

Not only can vision guide movements, but also motor training
can affect visual perception. At the behavioral level, visuomotor
training improves letter recognition in 5-year-old children (Bara
and Bonneton-Botte, 2018). Similarly, handwriting improves
after haptic (not visual) exploration of letters even at younger
age (Bara et al., 2004), and is associated with better visual
recognition of letters with respect to typing (Longcamp et al.,
2005) and with better reading in general (Labat et al., 2010). At
the neural level, in addition to the anatomo-functional overlap
of brain regions activated by “seeing” and “doing” movements
(Halje et al., 2015), already in 9-month-old children the motor
components of the brain activity associated to observation
of reaching actions occur earlier than the associated visual
components (Southgate et al., 2009). This supports the existence
of visuo-motor anticipation mechanisms based on experience-
driven action understanding (Southgate et al., 2010). In addition
to reaching and grasping, locomotion occupies an important
position in visuo-motor coordination. In typically developing
children locomotion emerges around the first year of life, strongly
based on the ability of vision to provide information about the
target position, possible obstacles, variations of surfaces, and
edges. Thus, vision must have tight links also to the neural
correlates of locomotion. Indeed already the simple observation
of other children crawling or walking activates the sensorimotor
cortex in 7–9 month-old children (De Klerk et al., 2015) as well
as more frontal motor brain regions controlling locomotion in
14–16 month-old children (Van Elk et al., 2008), a resonance
mechanism that persists in adulthood even just imagining to walk
(Ionta et al., 2010).

VISUO-MOTOR NEUROPSYCHOLOGY

Conceiving bio-computational models to explain the causal link
between dysfunctional neural networks and clinical phenotypes is
the major challenge in neuropsychology. The following sessions
offer an overview of the most common visual and visuo-motor
disorders, including the possible associated neural explanations.

Broadly, the following disorders have been classified as “lower”
and “higher” level deficits, even if such a sharp distinction
might not reflect all the details of each disorder. The “lower-
level” classification comprises disorders mostly affecting the
perceptual level, with a high importance of basic mechanisms
associated with eye movements and convergence. The “higher-
level” classification comprises disorders affecting levels beyond
visual perception and rather extending to other spheres of human
competences, such as motor and cognitive skills, eventually in
absence of other possibly coherent deficits.

Lower-Level Dysfunctions
Strabismus
Strabismus is one of the most common visual disorders, affecting
the ability to maintain the alignment between the two eyes
and therefore causing a binocularity breakdown due to the
mismatch of the information provided by each eye to the visual
cortex (Cullen, 2015). The importance of cortical mechanisms
in the onset of strabismus is shown by the fact that, at least in
monkeys, a lack of intervention at the cortical level can nullify the
benefits brought by surgical treatment of the eye muscles (Pullela
et al., 2018). Both in humans and other mammals, already the
first weeks of life are fundamental for a proper oculomotor
development leading to accurate eyes alignment (Tychsen, 2007).
Due to the immaturity of V2 neurons with respect to V1 neurons,
in the infant brain abnormal visual input can dramatically affect
the neural wiring especially in V2 (Nakatsuka et al., 2007),
the maturation of which could be misled by inappropriate
experience/stimulation (Zheng et al., 2007). On this basis and in
combination with the above-mentioned tight visuo-motor links,
it is not surprising that the incongruent input received by V1
from the two eyes triggers a cascade of neural events ending
in incongruent motor commands sent from to the oculomotor
brain centers (e.g., the superior colliculus) back to the eyes (Das,
2016; Walton et al., 2017). Thus, the differential visual input
of each eye would contribute to the misalignment of the eyes
themselves, as supported by the inextricable relationship between
sensory input and motor output (Perruchoud et al., 2014),
including evidence that the onset of strabismus can derive from
aberrant visual input (Chino et al., 1997). In addition to such
aberrancies in the visual cortex, also disturbances in other brain
areas have been linked to strabismus, such as abnormal visual-
oculomotor behaviors in presence of dysfucntions in V5 and
superior temporal gyrus (Mustari et al., 2008; Mustari and Ono,
2011), as well as other neuroanatomical aberrancies affecting
the ventricles and corpus callosum (Ohtsuki et al., 2000). Such
breakdowns in the visuo-motor loop can impair the perception of
depth and also contribute to the onset of e.g., amblyopia (Sengpiel
and Blakemore, 1996; Niechwiej-Szwedo et al., 2019).

Oculomotor Apraxia
Optic apraxia refers to the impossibility to perform eye
movements, resulting in the so-called “sticky” vision: the
impossibility to voluntarily shift gaze between different objects
(Pena-Casanova et al., 1985). At the neural level, bilateral
lesions in a fronto-parietal network comprising the frontal
eye fields are considered at the origin of oculomotor apraxia,
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which therefore would not be necessarily associated strictly
with dorsal stream damage (Leigh and Zee, 2015), extending to
malformations/dysfunctions in the cerebellum (Shahwan et al.,
2006) and midbrain (Jissendi-Tchofo et al., 2009; Merlini et al.,
2010). In children, oculomotor apraxia can be present already
around the 10th year of life (Tsao and Paulson, 2005), with a
mean age of about 7 years and comprised between 2 and 18
years (Le Ber et al., 2003). Anatomo-functional aberrancies of
the cerebellum have been repeatedly associated with oculomotor
apraxia (Maria et al., 1999; Gleeson et al., 2004), with a particular
responsibility for a too small cerebellar vermis (Sargent et al.,
1997). The consequences of oculomotor apraxia do not remain
limited to the visual domain, but rather spread on cognitive and
social skills, especially in the case that oculomotor abilities are
recovered too late (Kondo et al., 2007).

Amblyopia
Amblyopia can emerge when the visual input from one eye
is not properly processed by the brain, which progressively
develops a “preference” for the other eye. It results in atypical
vision from one eye that otherwise appears organically normal
(Bretas and Soriano, 2016). At the brain level, typical functional
abnormalities associated with amblyopia converge in indicating
V1 as the most affected brain region (Blakemore and Vital-
Durand, 1986). However, the abnormal neural activity associated
with amblyopia is not necessarily limited to V1, rather extending
also to V2 and V3 (Barnes et al., 2001), even when V1 is normally
functioning (Clavagnier et al., 2015). Interestingly, amblyopia
patients present larger receptive fields in V1, V2, and V3, possibly
as a consequence of the oculomotor instability of the amblyopic
eye (Levin et al., 2010). Indeed there seem to be a sort of
propagation of dysfunctional neural dynamics from V1 up to V5
(Barnes et al., 2001), which would result in specific deficits in
extrastriate functions, including global motion (Simmers et al.,
2003) or contrast-based contours (Wong et al., 2001).

Akinetopsia
Our ability to perceive motion allows us to distinguish objects
from the background and to move in a three-dimensional
world (Barton, 2011). Commonly called also motion blindness,
akinetopsia refers to the impossibility to detect moving objects,
in absence of scotoma (Zihl et al., 1983), while other low-
level aspects like color or shape are normally detected (Zeki,
1991). Typically associated with an extrastriate brain lesion (Zihl
et al., 1983; Cooper et al., 2012; Otsuka-Hirota et al., 2014),
akinetopsia can indeed be experimentally induced by inhibiting
V5 (Beckers and Hömberg, 1992), as well as V1 but at a
smaller degree and with specific timing with respect to the visual
stimulus (Beckers and Hömberg, 1992). This is in line with
the observation that sensitivity to motion can survive cortical
blindness (Ruffieux et al., 2016), also in children that present a
congenital, but not acquired, lesion of V1 (Tinelli et al., 2013).
While blindness to first-order motion (e.g., luminance-based)
would result from lesions in V2/V3, blindness to second-order
motion (e.g., contrast-based) would derive from lesions in V4/V5
(Cowey et al., 2006). A particular case of motion blindness is
represented by the “form-from-motion” blindness, referring to

the impossibility to detect forms on the basis of visual motion
(Cowey and Vaina, 2000). Indeed form-from-motion blindness
with and without akinetopsia are neurally dissociable, being the
former associated with lesions in V5 and lateral occipital cortex
and the latter with occipito-temporal regions (Blanke et al.,
2007). Even if chronic cases have been reported (Cooper et al.,
2012), akinetopsia seems a rather transient condition (Shipp
et al., 1994), suggesting the existence of functionally neuroplastic
changes able to establish alternative neural interactions to restore
sensitivity to visual motion. Such a relative ease to naturally
react to akinetopsia makes it difficult to detect, especially in
populations characterized by high neural plasticity like children,
where in fact akinetopsia is relatively rare and usually present in
combination with the Alice inWonderland syndrome as a results
of encephalitis (Naarden et al., 2019).

Higher-Level Dysfunctions
Optic Ataxia
Originally described by Rudolph Bálint in 1909 as part of a
more complex syndrome (Rudolph Bálint, 1909), optic ataxia
refers to the incapacity to perform accurate visually-guided
movements, in absence of general motor impairments (Moreaud,
2003). Letting patients misplace the fork outside the plate, grasp
a coffee mug from its body instead of its handle, or point
to the wrong button on a computer keyboard, optic ataxia is
considered the typical visuo-motor integration disorder (Teixeira
et al., 2014). Not strictly limited to visuo-motor behaviors of
the upper limb (Evans et al., 2013), it can emerge as early
as in children aged between 5 (Dutton, 2003) and 10 years
(Drummond and Dutton, 2007). Possibly as a consequence of
premature birth (Dutton, 2013), optic ataxia has a confirmed
association with aberrancies in the (occipital-parietal) dorsal
stream (Philip et al., 2016). Indeed, the most accepted neural
underpinnings of optic ataxia are comprised within the dorsal
stream (Schindler et al., 2004), possibly also in interaction with
the ventral stream (Himmelbach and Karnath, 2005). Further
investigations reported that optic ataxia affects mainly the
peripheral vision (Pisella et al., 2009) and is especially evident
in contralesional visuo-motor tasks (Gaveau et al., 2008). This
suggests that optic ataxia should not be considered as a unitary
deficit, but rather presents various degrees and specifications
as a function of the lesioned dorsal stream module responsible
to coordinate visual perception and action. Nevertheless, recent
evidence is starting to challenge such a sharp dissociation
between perception and action in optic ataxia (Rossetti and
Pisella, 2018). In particular, optic ataxia would derive from
dorsal stream deficits in integrating multimodal sensory input
(Jackson, 2010), it can be stimulus/task-specific (Hesse et al.,
2014), and it can be bound to specific visuo-motor neurons
located in different regions of the dorsal stream and beyond
(Cooper and O’sullivan, 2016), especially the premotor cortex
(Battaglia-Mayer and Caminiti, 2002) and a parietal-precuneus
pathway (Teixeira et al., 2014).

Cerebral Visual Impairment
As one of the most common causes of visual impairment of
cortical origin, cerebral visual impairment (CVI) can result
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from early brain damage, including a potentially large panel
of correlated deficits beyond vision due to damages of the
dorsal stream, the ventral stream, or both (Bennett et al.,
2020). Behaviorally, it is possible to detect CVI by means
of dedicated questionnaires (Gorrie et al., 2019; Fazzi and
Micheletti, 2020). At the neural level, a relatively early detection
of CVI is based on the analysis of visual evoked potentials
which, already at 6 months of age, can appear abnormal and
therefore suggest the presence of CVI (Mercuri et al., 1997b),
further depending on the size (Mercuri et al., 1998) and location
(Mercuri et al., 1997a) of the brain lesion. In particular, the
basal ganglia seem to play a central role in coordinating the
information exchanges between the eyes and the visual cortex,
as well as in facilitating neural plasticity at the cortical level
(Mikellidou et al., 2019), possibly resulting in aberrant patterns
of anatomo-functional connectivity between different brain
regions (Muñoz-Moreno et al., 2016; Bathelt et al., 2020). It is
anyways important to note that CVI can impair a full range
of competences at different levels, including purely visual skills
(visual field, motion sensitivity, visual exploration) as well as
attention, memory, and visuo-motor coordination (Lueck et al.,
2019). This is the main reason why current trends in neuro-
ophthalmology highlight the importance of considering each
patient as an individual case that should be evaluated on the basis
of a personalized and multidisciplinary assessment combining
ophthalmology, neuropsychology, and pedagogy (Ortibus et al.,
2019).

Dorsal Stream Vulnerability
As already outlined, the dorsal stream is considered the main
neural architecture processing spatial aspects of vision and their
translation into relevant information for functions beyond the
mere sight. Converging evidence supports that the dorsal stream
is more vulnerable than the ventral stream to developmental
disorders (Grinter et al., 2010), due to genetic or contextual
factors (Atkinson, 2017) as well as interventional approaches
(Tonks et al., 2019). Possibly leading to cognitive decline (Ricci
et al., 2015), attentional/visuo-spatial deficits (Tonks et al.,
2019), and visuo-motor impairments (Atkinson and Braddick,
2011), the dorsal stream vulnerability can start in early age
and keeps affecting the individual competences from early
childhood across the life span (Sciberras-Lim and Lambert,
2017). Nevertheless, recent findings are starting to challenge
this view, by arguing that dorsal stream vulnerability might
be stimulus-specific rather than a general dysfunction (Joshi
et al., 2020), as shown for example by the relatively preserved
motion sensitivity in amblyopia (Hamm et al., 2014). Beyond
the stimulus-specificity, such a controversy might result also
from task-specificity since, for example, some dorsal stream
functions (e.g., time estimation and attentional tasks) seem
more sensitive to developmental disorders than others (e.g.,
numerical discrimination or mapping). In consideration of
such a variability among stimuli and tasks, it is clear that to
evaluate a wide range of symptoms like those related to dorsal
stream vulnerability implies the need of using multidimensional
scales for evaluating dorsal stream vulnerability (Atkinson et al.,
2002).

Developmental Coordination Disorder
The diagnosis of Developmental Coordination Disorder (DCD)
is based on the presence of motor impairments in absence
of other neuropsychological deficits able to explain patient’s
poor motor performance (cerebral palsy, neurodegeneration,
traumatic brain injuries, etc.) (Blank et al., 2019). The
characteristics of DCD include impaired control of ocular,
postural, and manual tasks, as well as motor imagery (Adams
et al., 2014). One of the possible interpretations of DCD explains
the disorder as the result of breakdowns in a visuo-motor
matching system which would allow to perform movements
on the basis of observing the same movements performed
by somebody else (Werner et al., 2012). Such a breakdown
would affect in particular the ability to process and exploit the
temporal binding between vision and movements (Nobusako
et al., 2018). The visuo-motor interpretation of DCD is in
line with evidence that DCD patients exhibit impaired visuo-
motor skills (Reynolds et al., 2017) and decreased brain
activation in regions typically involved in visuo-motor imitation
(Licari et al., 2015) and action planning (Reynolds et al.,
2019). In particular, even if a large consensus has not been
reached yet (Brown-Lum and Zwicker, 2015), it seems that the
brain dysfunctions associated with DCD are mainly located in
associative regions of the parietal and frontal lobe particularly
important for visually-based action imitation (Biotteau et al.,
2016). In sum, despite the little number of studies and the
large variability of their results, the is a tendency to consider
DCD as a visuo-motor integration deficit specifically affecting
the neural network responsible for visually interpreting actions
performed by other people and exploit such information for
guiding self-produced movements. However, further studies
are required and the present conclusions have to be regarded
with caution.

Prosopagnosia
The ability to recognize faces is one of the most important
abilities in the human world. The centrality of this function is
reflected in the fact that the brain dedicates a specific neural
substrate to process face-like visual input (Zeugin et al., 2020),
with a particular emphasis on the fusiform face area in the
(ventral stream) inferior temporal cortex (Kanwisher et al.,
1997). Prosopagnosia refers to the inability to recognize faces
(Mayer and Rossion, 2007) associated with occipito-temporal
brain activity (Dalrymple et al., 2014) and, in particular, with
bilateral lesion of the fusiform face area (Grüter et al., 2008).
It is dissociated from other objet-recognition deficits as, for
example, there are cases in which in consequence of a bilateral
fusiform lesion patients become unable to recognize faces while
their performance in object recognition remains at good levels
(Moscovitch et al., 1997). Since prosopagnosic people are largely
unaware of their deficit, prosopagnosia can dramatically affect the
cognitive development of otherwise typically growing children
(Schmalzl et al., 2008), including the preference for social
identification on the basis of whole-body configuration instead
of facial features (Wilson et al., 2010). This conditions can
trigger a cascade of aversive events and behaviors also in daily
contexts like schools, where both teachers and colleagues would
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not detect the prosopagnosic deficit and therefore might put
disproportionate reactions in place (Wilson et al., 2010). To
prevent and possibly overcome this risk, at present there are
strong trends toward the development of specific test to assess
face perception abilities in children, such as the Dartmouth
Database of Children’s Faces (Dalrymple et al., 2013) and the
Cambridge Face Memory Test for Children (Croydon et al.,
2014).

Somatoparaphrenia
The ability to recognize our own body also plays a central
role in adaptive behaviors and consciousness (Ionta et al.,
2013). Somatoparaphrenia refers to the inability to identify
one’s own body part as belonging to one self, both at the
subjective conscious (Invernizzi et al., 2013) and objective
physiological levels (Romano et al., 2014). Despite its psychiatric
component (Feinberg and Venneri, 2014), somatoparaphrenia
is largely associated with unilateral lesions, mostly in the
right hemisphere and therefore affecting the left side of the
body (Vallar and Ronchi, 2009). At a more specific neural
level the available evidence is controversial, with clinical
observations reporting damages in either the dorsal or the
ventral stream, as well as other brain regions. Thus, different
studies proposed that somatoparaphrenia would derive
from lesions in the posterior insula (Baier and Karnath,
2008), supramarginal gyrus (Feinberg et al., 1990), orbito-
frontal regions (Feinberg et al., 2010), posterior superior
temporal cortex (Vallar and Ronchi, 2009). In addition,
recent investigations highlighted the importance of more
complex fronto-temporal-parietal cortical networks as
well as subcortical circuits (Gandola et al., 2012). Even if
somatoparaphrenia is commonly associated with hemispatial
neglect, it can be present also in isolation and associated
with specific subcortical lesions, comprising the basal ganglia,
thalamus, and internal capsule (Invernizzi et al., 2013).
Interestingly when somatoparaphrenic patients observe the
misrecognized body part in a mirror (as from a third-person
perspective), their self-misattribution decreases (Fotopoulou
et al., 2011). Already rarely detected in adults, possibly due
to its comorbidity with hemispatial neglect and its confusion
with asomatognosia, evidence of somatoparaphrenia in
children is even more scarce. However, a study implementing
a neuroinvestigation technique with high spatial resolution
(electrocorticography) in awake humans, reported that following
abnormal neural firing in the right occipito-temporo-parietal
cortex, a 10-year-old child reported somatoparaphrenic
symptoms, being unable to recognize his left hand (Heydrich
et al., 2011). Altogether, it seems that the small numbers
to somatoparaphrenic reporting reflects a general lack of
episodes spontaneously mentioned by the patients together
with the confusion with other pathologies by the evaluators.
For this reasons, it would be important to explicitly assess
somatoparaphrenic symptoms using structured interviews
(Brandt et al., 2005) and/or standardized scales especially in
developing age.

Hemispatial Neglect
The absence of perception and action in half of the sensory fields
and peri-personal space, respectively, defines the hemispatial
neglect. Patients suffering from this syndrome to not perceive
sensory stimuli in any modality from the neglected hemifield
and do not performmovements in that hemi-peri-personal space.
The traditional test to assess neglect is the line bisection task, in
which patients are presented with a paper sheet with a number
of short lines distributed all over a paper sheet. Typically, when
patients are asked to draw a line over each short line (bisection),
they mark only half of the lines (those located in the non-
neglected hemifield). At the neural level, hemispatial neglect
seems to derive from dysfunctions in the right inferior parietal
lobule, possibly in association with deteriorated input from the
ventral stream (Milner and Goodale, 2008) or with impaired
ventro-fronto-parietal circuit distinct from the traditional dorsal
stream (Husain and Nachev, 2007). However, hemispatial neglect
can emerge also following lesions of the frontal cortex (Husain
and Kennard, 1996), basal ganglia or thalamus (Mort et al., 2003),
as well as from lesions of white matter pathways connecting the
parietal and frontal cortex (Bartolomeo et al., 2007). Altogether,
it seems that hemispatial neglect may be the result of a lesions in
a large-scale cortico-subcortical network, possibly implicated in
attention-related abilities. Interestingly, while most intervention
protocols eventually produce only temporary improvements, the
most efficient and relatively long-lasting treatment is based on the
use of prism adaptation (Rossetti et al., 1998). In particular, the
visual distortion brought by wearing prism lenses would trigger
the activation of otherwise silent visuo-motor circuits as valid
alternative neural pathways to allow visuo-motor coordination,
with benefit spreading also in the cognitive domain (Rossetti
et al., 1998). Even if hemispatial neglect is commonly associated
with adult and elderly patients, also children can be affected,
and not necessarily only in the visual domain (Martin and
Trauner, 2019). Cases of hemispatial neglect have been reported
for children as young as 3-year-old (Thompson et al., 1991), 6-
year-old (Ferro et al., 1984), and above (Hausmann et al., 2003;
Marsh et al., 2009). Actually, also at 6 months after birth, children
with pre- or post-natal brain damage can exhibit otherwise
unmotivated preference for interacting with objects located in
the hemi-peri-personal space ipsilateral to a unilateral lesion in
the left or right hemisphere (Trauner, 2003). Most of the studies
indicate that children can relatively quickly recover from neglect
symptoms within a few weeks (Kleinman et al., 2010) or months
(Thompson et al., 1991) after a stroke. Even children that suffered
from a perinatal stroke, especially in the right hemisphere, can
present hemi-neglect-like symptoms in the left hemi-field and
peri-personal space, including visuo-motor deficits (Vicari et al.,
1998), reaching and grasping (Trauner, 2003), as well as visual
cancellation and manual exploration (Thareja et al., 2012). These
studies further showed that, in contrast with the typical right-
hemispheric dominance of hemi-spatial neglect in adults, in
children a more dramatic bilateral neglect can result from a
left-hemispheric lesion (Trauner, 2003; Thareja et al., 2012),
whose resolution might require maturation up to adolescence or
adulthood (Yousefian et al., 2015).
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FINAL REMARKS

Understanding the behavioral and neural fundaments of the
complex interaction between vision and other sphere of
human life is the prerequisite for better targeted interventional
procedures in case of deficits, as well as for more efficient
training programs in typically developing populations. As a very
general overview, the present paper summarizes some of the
most relevant evidence about the neural basis of vision and
associated abilities in development and beyond. With the aim of
constituting a first-glance reference for researchers and clinicians
interested in vision and visuo-motor integration, this review
hopes to guide and trigger further investigations toward more
specific publications in case of specific interests.

Establishing the neural correlates of aberrant behaviors
helps identifying the neural networks responsible for a given
function which, in turn, can boost the development of more
effective training and rehabilitation protocols. Accordingly, the
knowledge summarized here sustains the importance of adopting
a systemic approach even in the evaluation of the impact of

supposedly purely visual deficits, which indeed can affect also
motor skills, cognition, social skills, and emotional processing.
Addressing such a complexity is the fundamental requirement
of current implementations of systemic approaches for visually-
related training in typical conditions or in response to visual
disorders, including virtual reality (Adams et al., 2018; Choi et al.,
2021), robotics (Mirkowski et al., 2019; Zhexenova et al., 2020),
and touch screen technology (Aslam et al., 2016; Sheehan and
Uttal, 2016; Dalecki et al., 2019).
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