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Abstract: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic
autoimmune disease that affects small sized blood vessels and can lead to serious complications in
the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates
B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs).
Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell
cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution
of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV
patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of
disease. However, not all patients respond completely, and this treatment does not target PCs,
which can maintain ANCA production. Hence, it is important to develop more specific therapies
for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they
can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and
contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain
signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic
effects. In this narrative review, B cell specific receptors and their downstream signalling molecules
that may contribute to pathology in AAV are discussed, including the potential to therapeutically
target these pathways.
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1. Introduction

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a sys-
temic autoimmune disease characterised by the presence of ANCA autoantibodies in the
serum of patients. Autoreactive B cells secrete ANCAs which in their turn initiate inflam-
matory signalling cascades, eventually leading to endothelium damage of small-size blood
vessels of mainly renal glomeruli and the respiratory tract [1]. Autoantibodies such as AN-
CAs are one of the major hallmarks of autoimmunity as they may target self-antigens and
promote inflammation. Their pathogenic role has not only been described in AAV, but also
in various other autoimmune diseases, including systemic lupus erythematosus (SLE) and
rheumatoid arthritis (RA) where anti-double stranded DNA antibodies or anti-citrullinated
protein antibodies (ACPAs) are present both in serum and inflamed tissues of patients,
respectively. The importance of autoantibodies in autoimmunity underscores the crucial
role of the cells involved in their generation and production: B cells and plasma cells (PCs).

Besides autoantibody production, B cells have been found to contribute to disease
pathogenesis in AAV and other autoimmune diseases through antibody-independent
functions, including cytokine secretion and antigen presentation to T cells [2,3]. Direct
confirmation of the role of B cells in AAV and other autoimmune diseases emerged from
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the beneficial effects of B cell depletion therapy using the anti-CD20 monoclonal antibody
rituximab (RTX) [4–7]. However, the variable efficacy in some patients and the inability
of RTX to target autoantibody-producing PCs, makes it necessary to improve existing
or to develop new B lineage targeted therapies [8]. In the search for potential targets, it
is essential to identify the key features of B lineage cells in AAV—including specific B
lineage cell populations, surface receptors, downstream signalling cascades, and effector
molecules—as better understanding of these features may contribute to defining specific
therapeutic targets that may only affect activated and/or autoreactive cells. This review
aims to recapitulate the latest findings on B lineage cells and their critical receptors and
downstream molecules in AAV.

2. ANCA-Associated Vasculitis (AAV): Brief Background on Clinical Picture and
Current Treatment Strategies

AAV encompasses three major types of vasculitides that have different clinical char-
acteristics, namely granulomatosis with polyangiitis (GPA, previously referred to as We-
gener’s granulomatosis), microscopic polyangiitis (MPA), and eosinophilic granulomatosis
with polyangiitis (EGPA) [9]. AAV vasculitides are characterized by pauci-immune features
(i.e., limited/absence of ANCA-immune complexes in renal glomeruli) [10,11] and by
the presence of circulating ANCAs in the serum of patients, which may be specific for
different neutrophil antigens, most commonly myeloperoxidase (MPO) and proteinase 3
(PR3). However, there are also minor antigens and even patients who are serologically
ANCA-negative (approximately 4–14%) [12–15]. Interestingly, most studies indicate that
ANCA-negative patients are more frequently diagnosed with GPA than with MPA [13–15].
GPA is identified by the presence of granulomatous inflammation and necrosis, mainly in
the small vessels of the respiratory tract and/or kidneys. Interestingly, GPA-AAV patients
mostly are PR3-ANCA positive (85%) [16], while a small percentage is MPO-ANCA posi-
tive [1]. MPA is characterized by necrotizing vasculitis, often with renal involvement, and
most patients are MPO-ANCA positive (60%). Clinical characteristics of EGPA are largely
similar to that of GPA, but in addition patients present with high eosinophil levels and only
50% of patients has circulating ANCAs, the majority being MPO-ANCA positive whereas
PR3-ANCA is rare in EGPA [1]. Recent studies that aimed to find a more robust classifica-
tion system of AAV patients revealed a more significant association of genotype, response
to induction and maintenance of remission, and risk of relapse with ANCA-specificity
(i.e., PR3 or MPO) [17,18] than with clinical diagnosis [19]. Hence, a gradual transition
towards a classification based on ANCA-specificity may lead to a better diagnosis and
more homogenous cohorts in clinical trials in the near future [19,20].

The aetiology of AAV is poorly understood and complex, involving genetics and
epigenetics, environmental factors such as drugs or (previous) infections, and ANCAs [1].
The pathogenicity of ANCAs relies on their ability to activate neutrophils, which subse-
quently release pro-inflammatory cytokines, reactive oxygen species (ROS) during the
respiratory burst, and lytic enzymes, leading to endothelial cell damage in glomeruli and
the respiratory tract. ANCAs can trigger a pathogenic inflammatory response, implicating
different immune cell types, to which the alternative pathway of the complement system
also contributes, as revealed by elevated serum levels of C5a in AAV patients [21]. Of note,
the pathogenicity of MPO-ANCAs is more firmly established than that of PR3-ANCAs [22].

Current AAV treatment strategies aim to induce disease remission and often include
cyclophosphamide or RTX [23–25], followed by maintenance therapy using immunosup-
pressive agents such as azathioprine, methotrexate, mycophenolate, or more recently also
RTX [26–28]. Cyclophosphamide, an alkylating agent, was the gold standard for immuno-
suppression in cancer for a long time and its effects on B cells, in particular the inhibition
of (auto)antibody production in autoimmunity was recognized [27,29], resulting in the
incorporation of cyclophosphamide in remission-induction treatment strategies in severe
manifestations of various autoimmune diseases. However, the severe adverse events of this
drug [30,31] lead researchers to search for alternative therapeutic agents for induction of
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remission in AAV. RTX depletes CD20-expressing B cells via distinct mechanisms of action,
including antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cyto-
toxicity, and induction of apoptosis [3]. The potential of RTX in the induction of remission
in AAV was investigated in several clinical trials, including the pioneering RAVE and
RITUXVAS studies, which demonstrated similar clinical effects of RTX compared to cy-
clophosphamide (both combined with glucocorticoids) in severe AAV, with comparable or
even less adverse events [23,24]. Furthermore, RTX seemed to be superior in patients with
relapsing disease [23]. One study focusing on the Wegener’s Granulomatosis Etanercept
and RAVE trials compared the ANCA-negative subgroup of patients diagnosed with GPA
versus the PR3-ANCA positive GPA patients, and concluded that the ANCA-negative pa-
tients had lower Birmingham Vasculitis Activity Scores at baseline (mainly due to less renal
involvement), but a similar rate of relapse during a 2-year follow-up [14]. In 2015, RTX was
tested in 14 patients with AAV presenting with severe renal disease in combination with
glucocorticoids, and all patients—both ANCA-positive and ANCA-negative—exhibited
high rates of remission [13]. Consequently, ANCA-negative patients can also benefit from
remission-induction using RTX.

Following induction therapy, methotrexate and azathioprine have similar outcomes
and safety profiles as maintenance therapy agents [32], and when compared with my-
cophenolate, the latter was found to be superior to azathioprine at suppressing cytokine
production by B cells in a small patient cohort [33]. Of note, RTX has been suggested to
be a better alternative than azathioprine for maintenance of remission [28], which was
confirmed in a more recent study [34]. However, both studies emphasize the need to
evaluate the long-term effects of RTX as maintenance therapy. Despite its clear clinical
benefits in many patients, RTX only targets peripheral circulating B cells, which allows
long-lived plasma cells to remain a source of ANCA production [23]. These results illustrate
the unmet medical need in AAV and warrants the search for new or improved therapeutic
approaches for AAV patients.

3. B Lineage Cells in AAV: Differentiation, Prevalence, and Function

B cells originate from hematopoietic stem cells in the bone marrow (BM) where they
undergo several differentiation steps to give rise to mature B cells. During this process, the
B cell receptor (BCR) undergoes genetic rearrangements creating a diverse repertoire [3].
Self-antigens are presented in the BM, and a subsequent rigorous selection mechanism
(central tolerance) ensures that autoreactive B cells do not egress the BM. In this manner,
only B cells expressing BCRs with no or low avidity for self-antigens are positively selected
and enter the circulation. Of note, during B cell development, all populations express CD19
and CD20 (coreceptors of the BCR), until they reach the PC stage which is characterized by
a downregulation of CD20.

Transitional B cells (CD24+CD38+) are immature BM emigrants that express IgM on
their surface (Figure 1). These cells can be found in circulation upon their homing to
the spleen [35,36], the main secondary lymphoid organ where they are able to complete
their maturation in three steps (T1, T2, and T3), defined by IgD upregulation and IgM
downregulation [37]. Studies regarding potential alterations in the number of transitional
B cells in AAV are not conclusive and a better understanding is needed. Some studies
report increased transitional B cells in GPA patients compared to controls [33,38], whereas
an earlier study found a reduction in transitional B cells in active disease compared to
patients in remission and HCs [39]. Transitional B cells give rise to the B lineage subtypes
B1, marginal zone B cells (MZB), or follicular B cells [35].
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response triggers the formation of germinal centers (GCs). During the GC reaction, the GC B cell 
may generate memory B cells (Bmem), plasmablasts, or plasma cells (PCs), which reduce the path-
ogenic anti-neutrophil cytoplasmic antibodies (ANCAs). PCs may be short- or long-lived and home 
to the bone marrow, whereas Bmem egress into the periphery. B regulatory cells (Breg) may arise 
from almost all B cell lineage populations. All the aforementioned B cell populations have been 
found to be dysregulated in AAV, being increased or decreased, as shown by the arrows in the beige 
boxes. Abbreviations: PR3 (proteinase 3), BCR (B cell receptor). 
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pendent antigen encounter, MZB cells may enter extra-follicular foci and differentiate into 
short-lived plasma cells that can produce antibodies of lower affinity and broad specificity 
(IgM) [26]. Both B1 and MZB cells are involved in innate and adaptive immunity [3], and 
they were found to be reduced in circulation in patients with active AAV [41]. This study 
also identified MZB cells as the main IgM producers of all circulating B cells and, together 
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healthy controls (HCs), suggesting a potential role for these cells in maintaining immune 
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Figure 1. B cell lineage development and altered B cell populations in ANCA-associated vasculitis
(AAV). Schematic representation of human B lineage cell differentiation. Beige boxes highlight the
effects of AAV on the indicated cell populations. The extra-follicular pathway of B cell differentiation
is not shown for simplicity. Transitional B cells migrate into secondary lymphoid organs, where
they differentiate into innate-like B1, marginal zone B (MZB) cells, or naive B cells. Naive B cells
enter lymph nodes and become follicular B cells, and it is within the follicle that a T-cell dependent
response triggers the formation of germinal centers (GCs). During the GC reaction, the GC B cell may
generate memory B cells (Bmem), plasmablasts, or plasma cells (PCs), which reduce the pathogenic
anti-neutrophil cytoplasmic antibodies (ANCAs). PCs may be short- or long-lived and home to the
bone marrow, whereas Bmem egress into the periphery. B regulatory cells (Breg) may arise from
almost all B cell lineage populations. All the aforementioned B cell populations have been found to
be dysregulated in AAV, being increased or decreased, as shown by the arrows in the beige boxes.
Abbreviations: PR3 (proteinase 3), BCR (B cell receptor).

B1 cells (CD27+CD43+CD70−) [40] are innate-like cells which produce IgM and pop-
ulate mainly the gut and lung epithelia. MZB (IgD+CD27+IgMhi), on the other hand,
mostly reside in the spleen and respond to mostly T cell-independent stimuli. Upon T
cell-independent antigen encounter, MZB cells may enter extra-follicular foci and differ-
entiate into short-lived plasma cells that can produce antibodies of lower affinity and
broad specificity (IgM) [26]. Both B1 and MZB cells are involved in innate and adaptive
immunity [3], and they were found to be reduced in circulation in patients with active
AAV [41]. This study also identified MZB cells as the main IgM producers of all circulating
B cells and, together with B1 cells, they secreted the anti-inflammatory cytokine IL-10 at
the same extent as healthy controls (HCs), suggesting a potential role for these cells in
maintaining immune homeostasis in AAV.

Follicular B cells are mature naive B cells found in specialized structures known as
follicles in secondary lymphoid organs—i.e., the spleen itself, lymph nodes, and Peyer’s
patches. Follicular B cells (IgD+CD27−CXCR5+) unlike MZB cells, are activated in a T
cell-dependent manner within follicular areas. During this process, cognate antigen ligation
and subsequent T cell help allow germinal center (GC) formation and the GC reaction to
occur [26]. This orchestrated process promotes extensive B cell proliferation and somatic
hypermutation to increase the affinity of their BCR for cognate antigen, followed by class
switch recombination, accounting for different effector antibody functions (i.e., IgA, IgG,
IgE) [35,42]. Hence—within GCs—a reservoir of memory B cells and long-lived plasma
cells which secrete specific, high affinity antibodies, is generated.
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It is important to note that T cell-dependent stimulation and antigen encounter may
occur extra-follicularly, generating short-lived plasma cells instead [3], but this is beyond
the scope of the current review article. In line with altered numbers of transitional B
cells in AAV, an increased percentage of naive B cells was discovered in AAV patients
regardless of disease activity [39] and in GPA patients in remission [33,38] compared to
HCs. Interestingly, transitional and naive B cells in active GPA patients seem to be more
responsive and sensitive to BCR stimulation [43], a characteristic normally attributed only
to memory B cells (Bmem) [3].

Both MZB and follicular B cells can differentiate into non-switched (IgD+CD27+)
or switched (IgD−CD27+) Bmem in a GC-dependent or -independent manner [44]. The
fate decision seems to be dependent on the duration of the contact between the B cell
and its cognate T cell: longer contact would favour GC reaction, whereas a shorter one
would promote GC-independent memory formation [44]. Switched Bmem cells are the
precursors of the antibody-producing plasmablasts/PCs, which makes them important in
the pathogenesis of AAV. A lower proportion of Bmem cells in GPA patients in remission
was reported [38], while others found reduced Bmem numbers in peripheral blood of active
AAV patients [41,45]. Of note, in the latter case Bmem frequency was restored during
remission [45]. Despite disease activity, the observed lower Bmem cells may be due to an
increased differentiation into plasma cells, which are absent in blood, or their migration to
inflammatory sites [38].

PCs (CD20−CD38+CD138+) are the most differentiated B lineage cells and specialized
in antibody production (reviewed in [46]). PCs can be short lived and found in secondary
lymphoid organs, or long lived and located at specialized niches in the BM. PCs come in
different flavours as both CD19− and CD19+ phenotypes have been described [47,48]. PCs
have also been found in inflammatory lesions of GPA patients [49], suggesting that they
play a role in the perpetuation of inflammation in AAV. Interestingly, the bone marrow of
patients with autoimmune diseases often contains activated plasmablasts [50], which may
also be the case in AAV, but this has not been formally investigated yet.

PCs in AAV are known to produce ANCAs, of which anti-PR3 and MPO are the most
clinically relevant [51]. ANCAs contribute to the pathogenesis of the disease by triggering
vascular inflammatory cascades upon recognition of mainly PR3 or MPO on neutrophils.
The ANCA levels in patients have been described to correlate with disease activity [52]
and are often higher in active disease when compared to remission phases. ANCAs can
also be present in HCs at lower levels [53], which suggests that the pathogenicity of
ANCAs may rely on epitope specificity [19]. For instance, only MPO-ANCAs targeting
pathogenic epitopes presented a correlation with disease activity in ELISA epitope-specific
assays [12]. Further (indirect) support for a potential pathogenic role of ANCAs arose
from therapeutic targeting of B cells with RTX, which resulted in reduced ANCA titers
and diminished disease activity [54,55], but it is not yet completely clear whether ANCA
titers correlate with disease activity or not [9], and thus better biomarkers for AAV are
needed. Immunoglobulin G subtype 4 (IgG4) was found in the serum and tissue of AAV
patients, and sometimes IgG4-expressing plasma cells were also present [56,57]. A recent
study investigating IgG4 as potential marker of disease activity in vasculitis [58] found
that the IgG4:IgG RNA ratio was higher in the peripheral blood of active GPA patients
when compared to patients in remission, which may make it a more sensitive marker than
ANCA titers. However, ANCA-specificity may provide a better correlation with the serum
cytokine profile of patients than with their clinical diagnosis [19,59], and could be a more
specific trait to classify patients in terms of disease activity.

The aforementioned B cell types (transitional, naive/follicular, Bmem) are mostly
found in the circulation or in secondary lymphoid organs. Interestingly, in agreement with
the localisation of PCs at sites of inflammation [49], CD20+ B cells have also been found
in-situ [49,60], which has been demonstrated to correlate with the occurrence of relapses
in GPA after peripheral B cell depletion with RTX [60]. Of note, the CD20+ B cells found
in granulomatous lesions express PR3 and exhibit features of Bmem. In 2017, researchers
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succeeded to identify and phenotype PR3-specific B cells in the circulation of patients
and HCs [61], demonstrating that the most enriched B lineage cells expressing PR3 in
AAV patients are switched Bmem cells and plasmablasts, suggesting that they are actively
selected and escape peripheral tolerance checkpoints in patients. However, transitional B
cells did not seem to be the main PR3-enriched population in AAV. Thus, further pheno-
typing of these cells which may also reside in LN or BM is required to elucidate potential
alterations in specific B lineage subsets, including aberrations in signalling pathways that
may contribute to development of autoimmunity.

Besides their antibody-dependent functions, B cells can also present antigen to T cells
in GCs, thereby promoting cellular immune responses. Interestingly, tertiary lymphoid
organs containing GCs (also called ectopic lymphoid structures) in which B cells function
as antigen presenting cells were observed in renal biopsies [62].

B cells not only secrete pro-inflammatory cytokines, such as IL-6 and tumour necrosis
factor (TNF)-α, but can also express the anti-inflammatory cytokine IL-10. B regulatory
cells (Bregs) producing IL-10 are essential to maintain immune homeostasis. Therefore, any
alteration in their number and/or function can lead to autoimmunity. Two Breg subsets
have been defined: CD24hiCD38hi and CD24hiCD27hi cells, which share some phenotypical
features with transitional B cells, including the high expression of CD38 and CD27. In the
context of AAV IL-10-producing Bregs were found to be decreased in the peripheral blood
of active GPA patients, whereas the opposite occurred after remission [63]. A different study
discovered an association between reduced Breg numbers with decreased IL-10 production
and higher T cell activation in vitro, which may favour the occurrence of relapses in
AAV [45]. Furthermore, a subset of IL-10 producing Bregs expressing CD5 was reduced
during active disease, and its increase during remission was associated with a decrease
in ANCA titers [64]. This study further confirmed the lower numbers of CD24hiCD38hi

in active AAV and CD24hi CD27hi cells in both disease activity states. However, despite
the numerical changes in these cells, IL-10 production in remission was not different from
HCs [39]. All in all, the suppressive capacity of Bregs may be reduced in AAV, which may
add to disease activity.

4. Key Features of B Lineage Cells in AAV

B lineage cells require various soluble factors and cell-cell contact interactions, which
are recognized by specific receptors, for their proliferation, differentiation, survival, and
function. These cell responses are dependent on downstream signalling pathways that
convey these signals to the nucleus [65]. Recent studies showed that AAV B lineage cells
have a dysregulation of various receptors and downstream effector molecules. Further-
more, serum concentration of ligands critical for B lineage cell responses are altered in AAV
patients in comparison to HCs. These alterations may contribute to disease pathogenesis
by enhanced differentiation towards plasmablasts and PCs, increased (auto)antibody and
cytokine production, and promotion of antigen presentation to T cells. Thorough under-
standing of these and other B-cell intrinsic mechanisms induced via distinct signalling
pathways in AVV is essential for the identification of critical targets in AAV pathology.

4.1. Receptors and Ligands

Among the ligands that are critical for B cell responses are B cell activating factor
(BAFF) and a proliferation-inducing ligand (APRIL) [66,67] (Figure 2), which belong to the
tumour necrosis factor (TNF) superfamily (TNFSF). During B cell differentiation, different
receptors from the TNFRSF are expressed, namely BAFF receptor (BAFF-R), transmembrane
activator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA),
which have key roles in B cell differentiation and function [68]. BAFF is one of the two
essential factors for proper B cell function, and after its processing, its soluble form may
bind to BAFFR, TACI, or BCMA with specific outcomes [69]. BAFF is expressed by different
cell types—including macrophages, neutrophils, dendritic cells, and monocytes [70–73]—
and it was described that increased BAFF concentrations may lead to a less stringent B cell
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selection process, favoring survival of autoreactive clones [74]. Interestingly, BAFF levels
were increased in active disease and even further increased after B-cell depletion with RTX,
which may favour survival of autoreactive B lineage cells in the BM or facilitate relapse
in some patients [70,73]. ANCAs themselves may be involved in BAFF induction as well,
since total IgG obtained from AAV patients, but not control IgG, was capable of inducing
BAFF production by neutrophils in vitro [73]. In patients, this could result in a vicious
circle of B lineage cell activation. Despite the increased levels of BAFF in PR3-AAV [70]
and MPO-AAV [65], few attempts have aimed to establish a relation between BAFF levels
and disease activity. Initial studies on the potential correlation between BAFF levels and
ANCA titers in MPO patients [65] led to the conclusion that this correlation existed only
between BAFF levels and disease activity and not with MPO-ANCA levels [75]. In another
GPA study, serum BAFF levels were higher in patients compared to HCs, but inversely
correlated with ANCA titers [76]. In summary, the correlation between ANCA titre and
BAFF levels remains unclear and the effect of BAFF on ANCA production still needs to
be elucidated. Targeting soluble BAFF using the monoclonal antibody belimumab [77]
resulted in beneficial effects in other autoimmune diseases, such as SLE [78,79], which
suggest a potential specific targeting of only autoreactive B cells and IgG autoantibodies
when compared to total IgG. Recently, a rationale was proposed for combination therapy
of RTX and belimumab in AAV, which may result in more broad depletion of B cell lineage
cells, including Bmem, both in the tissue and in the circulation (reviewed in [26]). Of note,
a phase II study of rituximab and belimumab combination therapy in PR3 vasculitis is
currently ongoing (COMBIVAS) [80].
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Figure 2. Selection of key receptors, ligands, signalling molecules, and transcriptional regulators
of B lineage cells in AAV. B cells present many different receptors on their surface, each triggering
specific signalling pathways that eventually lead to transcription of genes necessary for B cell specific
and essential functions. Blue: ligands; brown: receptors; cream: effector molecules/signalling
pathways. The circle represents the endosome, and the yellow semicircle the nucleus. Abbreviations:
BAFF (B cell activating factor), APRIL (a proliferation-inducing ligand), BAFF-R (B cell activating
factor receptor), BCMA (B cell maturation antigen), TACI (transmembrane activator and cyclophilin
ligand interactor), BCR (B cell receptor), TLR (toll-like receptor), BTK (Bruton’s tyrosine kinase),
SYK (spleen tyrosine kinase), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells),
JAK (Janus family tyrosine kinases), STAT (signal transducer and activator of transcription), PI3K
(phpsphatidylinositol-3-kinase), LYN (Lck/Yes related novel protein tyrosine kinase).

BAFF-R is expressed early during B cell maturation, particularly on transitional and
naive B cells [81,82], while its expression is lower in the GC. BAFF is the only ligand for
BAFF-R [83], their interaction being crucial in the earliest transitional B stage (T1) [84].
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BAFF-BAFF-R interaction triggers the activation of the nuclear factor kappa light chain
enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) path-
ways, promoting B cell survival [69,84]. BAFF-R expression on B cells in GPA was lower
compared to HCs [85]. Furthermore, this study reported an inverse correlation of BAFF-R
expression and circulating BAFF levels, which is consistent with previous data. This can be
explained from previous observations in which BAFF-R was internalized upon ligation of
ligands, BAFF levels also being negatively correlated with the expression of BAFF-R [86].

BAFF, as well as APRIL, can bind to TACI, which is expressed on some mature naive B
cells, Bmem and plasmablasts [66], and to the receptor BCMA, which is mainly expressed
on PCs (reviewed in [26]). Of note, BAFF and APRIL are present in high concentrations in
serum and in tissue lesions of AAV patients [69,70,87], suggesting that BAFF and APRIL-
induced B cell activation may take place both in target tissues and in periphery. However,
no correlation between ANCA titers and APRIL was found in AAV [65].

BCMA is mainly expressed on plasmablasts and PCs, and has the highest affinity
for APRIL, though it can also bind BAFF [69]. BCMA activates the MAPK pathway and
enhances anti-apoptotic processes to promote cell survival [88]. Upon expression of BCMA,
BAFF-R is downregulated [89], and BCMA is required to ensure long-lasting antibody
production by PCs [90]. Of note, secreted APRIL was found to colocalize with the PC
marker CD138 in inflamed nasal tissue of GPA patients, where a high expression of RANKL
(receptor activator of NF-κB ligand) in PCs was detected. The findings of this study
suggested that the increased RANKL expression may be indirect evidence of a potential
role of BCMA upon APRIL ligation in GPA pathogenesis [87].

CD40 is another member of the TNF receptor superfamily [91] expressed on B cells
and other antigen presenting cells. Signals downstream of CD40 are triggered by binding of
CD40 ligand (CD40L), a trimeric protein expressed by T cells [92,93]. Among the functions
downstream of CD40 signalling are B cell proliferation, GC formation and GC reactions,
and Bmem differentiation upon T-cell dependent responses [94]. CD40 is important for
NF-κB activation, and regulation of apoptosis [94,95], and its soluble form was found to be
upregulated in AAV [96].

The BCR is central in the differentiation and effector function of B lineage cells. For
instance, BCR triggering enhances BAFF-R signalling, which is necessary for a more ma-
ture transitional B cell population, named T2 cells. The importance of the BCR is further
illustrated by the implication of various of its downstream BCR signalling molecules,
including Lck/Yes related novel protein tyrosine kinase (LYN), spleen tyrosine kinase
(SYK), Bruton’s tyrosine kinase (BTK) [97], and phosphatidylinositol-3 kinase (PI3K) [98]
in antibody-mediated autoimmune diseases (reviewed in [99]). Interestingly, BCR sig-
nalling also contributes to the production of important effectors of the NF-κB signalling
pathway [26,100]. The BCR has different co-receptors, including CD19 and CD20, which
enhance its signalling capacity. CD19 has been found to be dysregulated both in SLE and
AAV, distinguishing between low and high expression in different B cell populations [101].
Naive B cells were CD19low, leading to weaker downstream BCR signalling and probably
the escape from selection mechanisms for self-recognition. However, Bmem were CD19hi,
which makes them more sensitive to BCR signalling and therefore to proliferation and
differentiation [101]. CD20 is a transmembrane protein on B cells [102] which was found to
be involved in BCR and CD40 signalling. CD20 is expressed throughout all B cell develop-
ment stages, but it is downregulated in PCs [103]. As mentioned, CD20 is one of the most
relevant targets on B cells, as shown by the benefits of B cell depletion by the anti-CD20
antibody RTX.

IL-21 receptor (IL-21R) is part of the T cell dependent response [104] and its ligand,
the cytokine IL-21, was first discovered to be produced by activated T cells [105]. IL-21R
is expressed by naive and GC B cells [106], and its expression increases in Bmem and
PCs during their differentiation. IL-21R is induced upon T cell dependent stimulation
via CD40 and the BCR and its signalling contributes to B cell activation [104,106]. Hence,
IL-21/IL-21R seem to have an important role in the B cell fate. Upon IL-21 stimulation,
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signalling pathways are triggered, including the Janus family tyrosine kinase (JAK)/signal
transducer and activator of transcription (STAT), PI3K/AKT and MAPK (reviewed in [104])
pathways, eventually leading to key B cell functions—including proliferation, GC reactions,
Ig production, and PC differentiation [107,108]. The JAK/STAT signalling pathway is
mainly triggered by cytokine stimulation, and very recently targeting of this pathway in
AAV resulted in promising results. This small study analysed the safety and efficacy of
tofacitinib, a JAK1/3 inhibitor in a small cohort of GPA, MPA, and EGPA patients [109].
Even though further research in a larger clinical trial is needed, AAV patients presented
improved clinical symptoms and inflammation markers, and tofacitinib showed both a
good toleration profile and effectivity as a potential treatment for AAV patients.

Toll-like receptors (TLRs) have an important role in B cell activation and they are
part of the innate immune response during infections [110], though an important role in
autoimmune diseases has also been described [111]. For example, stimulation of TLR9
with its ligand CpG, which is present in bacterial DNA induces B cell activation in a T cell-
independent manner [112]. It has been suggested that TLR9 and TLR7 may be implicated
in autoimmunity, either by promoting IFN production or by activating self-reactive B
cells. TLR9 may be an interesting target in AAV as CpG stimulation in combination with
BAFF/IL-21 signalling had a synergistic effect on PR3-ANCA production in vitro [85]. In
addition, in vitro stimulation of TLR9 with CpG increased the expression of TACI on naive
B cells, decreased the percentage of TACI+ Bmem, and increased IL-21R on Bmem of GPA
patients, which may favour their activation [85]. Furthermore, TLR9 stimulation with
CpG induced a significant increase of PR3-ANCA production by B cells obtained from
AAV patients [112]. Recently, it was shown that increased TLR9 expression in PCs upon
stimulation with high mobility group box 1 (HMGB1) in MPO-AAV correlated with disease
activity [113], suggesting—in line with the previous reports—that TLR9 expression could
be pathogenic in AAV.

4.2. Intracellular Signalling Pathways

Downstream of the aforementioned receptors on B cells, several molecular effectors
have been found to be dysregulated in antibody-mediated autoimmune diseases, reveal-
ing potential novel therapeutic targets that could be blocked with antibodies or small
molecule inhibitors. LYN is a non-receptor tyrosine kinase belonging to the non-receptor
Src-family kinases (SFKs) which can localize to the cell membrane and lipid rafts [114].
LYN can trigger several downstream effector molecules that promote B cell responses [115].
LYN on itself is activated through phosphorylation upon BCR signalling, leading to the
activation of downstream effector molecules like SYK [116]. However, LYN can also nega-
tively regulate B cell function. This negative loop is triggered via the phosphorylation of
inhibitory receptors on B cells, including CD22 and FcγRIIB [117], which allows for the
activation of important phosphatases that will downregulate signalling cascades mediated
by phosphorylation loops [114]. Another mechanism to regulate BCR signalling involves
LYN-mediated BCR internalisation [118]. B cell specific deletion of Lyn in mice leads to AKT
hyperphosphorylation, resulting increased BCR sensitivity to stimulation and autoimmune
features, such as autoantibody production and glomerulonephritis [119]. SLE patients
also exhibited decreased LYN expression [120,121]. As SYK is altered in AAV (see section
below), a dysregulation of its upstream effector LYN could account for this, but this has not
been investigated yet.

SYK is an important effector downstream of early BCR signalling. This kinase initiates
several signalling pathways: Ca2+ influx via nuclear factor of activated T cells (NFAT),
BTK and PI3K signalling (both leading to the activation of NF-κB), and MAPK signalling.
Fostamatinib, an oral SYK inhibitor, showed promising results at impairing B cell devel-
opment, particularly at the transitional B cell stage [122], in patients with B cell lymphoid
malignancies. Both BCR and BAFF-R receptor signalling promote the phosphorylation
of SYK, which was found to be upregulated in active inflammatory glomerular lesions of
AAV patients [123]. However, although this study focused on monocytes/macrophages,
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the results suggest that B cells also could over-express this protein. Upon BCR signalling,
SYK phosphorylates CD19, which promotes the recruitment of PI3K to the membrane and
subsequently results in activation of AKT [114,124–127] (Figure 2). AKT activation in turn
leads to the phosphorylation of the transcription factor FOXO, preventing apoptosis [128]
and promoting survival. AKT is also known to activate NF-κB signalling [129], thereby
further promoting cell survival. PI3K promotes positive selection of B cells during their
development, and once in the periphery, this kinase can be triggered in B lineage cells by
the BCR, CD40, and TLRs [130–133].

BTK has a key role in BCR-mediated signalling [134,135]. A recent study focused
on BTK activity in two B cell subsets in GPA patients: transitional and naive B cells [43].
Interestingly, BTK levels were found to be increased in both subsets in active disease when
compared to remission patients and HCs. Furthermore, targeting of BTK in these cells
inhibited B cell cytokine production, differentiation, and (auto)antibody production, the
effects being more significant in remission. Despite the lack of reports on dysregulated
PI3K signalling in AAV, the increased BTK levels in AAV B cells could provide indirect
evidence of aberrations in upstream kinases.

NF-κB signalling is essential for many B cell functions, including B cell proliferation,
differentiation, and antibody production [136], and it has been shown to be involved in
many B cell mediated diseases including B cell lymphomas [137] and various autoimmune
diseases (reviewed in [138]). NF-κB not only has an important role in early B cell develop-
ment, presumably via BAFF-R signalling [136], but also in Bmem cells for their survival and
antibody production. Hence, dysregulations of NF-κB signalling may favour maintenance
of autoreactive cells. NF-κB can be activated via two interconnected pathways: the canoni-
cal pathway, which can be activated for instance via wide range of receptors expressed by
B lineage cells—e.g., BCR, TLRs, CD40, BAFF-R, and the non-canonical pathway—which
can be activated upon triggering of only a specific subset of TNFRSF members, such as
CD40 and BAFF-R [139,140]. Of note, the two NF-κB pathways differ in their activation
kinetics: the canonical pathway governs a quick but time-limited activation, whereas the
non-canonical pathway needs to be induced, and induces a slow activation that is main-
tained in time [141]. The activation of these pathways converges in the transcription of
specific genes in the nucleus. Key regulators of both pathways are the IκB kinase complex
(IKK) consisting of three proteins (IKKα, IKKβ, and IKKγ) for the canonical, and NF-κB-
inducing kinase (NIK) for the non-canonical pathway, the latter having been successfully
targeted in SLE mouse models [142]. These findings, together with the relevance of NF-κB
for B cells, make it an interesting potential novel therapeutic target in AAV.

4.3. Cytokines and Chemokines

B cells require various cytokines produced by other cell types for survival and prolifer-
ation, among other functions. Dysregulation at certain levels in this process may promote
autoimmunity, as already discussed for the cytokines BAFF and APRIL. A recent study
examined the association of cytokine profiles and ANCA-specificity in AAV and found that
the different cytokine levels could better distinguish patients with AAV according to their
ANCA specificity than to their clinical diagnosis [59]. Among the increased cytokines in
PR3-AAV compared to controls were IL-6, granulocyte-macrophage colony-stimulating
factor (GM-CSF), sIL-2Ra, IL-15, and IL-18, whereas in MPO-AAV serum levels of sIL6R
and sTNFRII were increased, which is in agreement with previous findings [143]. These
cytokines contribute to the activation to the aforementioned signal transduction pathways
in B cells and could thus, in part, account for the dysregulated intracellular signalling that
is observed in AAV [59].

Besides alterations in cytokine levels, also several chemokines are upregulated in both
PR3-AAV and MPO-AAV, which could thus potentially be specific biomarkers for this dis-
ease. As an example, CXCL13 or B cell attracting chemokine-1 (BCA-1) levels were higher in
the serum of patients with active AAV, which may consequently be a potential biomarker to
distinguish active from remission AAV [143]. Thymus-and-activation-regulated chemokine
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(TARC) or CCL17 was also higher in AAV, however, it was not considered to be a potential
disease activity marker.

Not only cytokines affecting B cells are upregulated in AAV, but also cytokines pro-
duced by autoreactive B cells. As mentioned previously, the pathogenic role of B cells
in AAV involves antibody-independent mechanisms, including inflammatory cytokine
secretion and antigen presentation. B cells can secrete IL-6 and TNF-α upon CD40 [144],
TLR [27], and IL-21R induced signalling events. IL-6 and TNF-α were present at higher
levels in GPA and MPA patients when compared to HCs [145]. These cytokines contribute
to maintenance of inflammation and B cell responses, for instance via inducing the dif-
ferentiation of effector T cells [146]. However, more research is required to confirm that
these cytokines are produced by B cells in AAV [27]. A-disintegrin and metalloproteinase
domain-containing protein 17 (ADAM17) is responsible for ectodomain shedding of TNF-α,
among other substrates, and its concentration was higher in plasma samples from active
PR3-AAV when compared to remission state and HCs [147]. Interestingly, higher serum
levels of IL-10 were found in AAV patients, which may be indicative of immunomodula-
tory mechanisms including Breg function in active disease. However, data in the current
literature are conflicting, as other studies report lower Breg numbers in active disease that
returned to normal levels during remission [63], whereas others observed similar numbers
in active disease and remission [39].

5. Concluding Remarks and Future Perspectives

AAV is a complex autoimmune disease in which existing research suggests a crucial
role of B cells and plasma cells in its pathogenesis. Moreover, B lineage cells not only have
autoreactive antibody-dependent functions, but they can also act as antigen presenting
cells and secrete inflammatory cytokines. Although different therapeutic strategies to
target these cells—including the widely used B cell depleting agent RTX—are available to
treat AAV patients, there is still a need for additional therapies targeting B lineage cells.
Advanced understanding of the (intrinsic) molecular mechanisms driving autoreactive B
cell proliferation, differentiation, and autoantibody production in AAV may enable a more
targeted approach.

This review gathers evidence of dysregulated B cell lineage populations in AAV, which
suggests an essential role of some of them in the pathogenesis of this disease. Importantly,
research in AAV is now moving in the direction of finding more targeted therapies to fill
the existing gap, as is clear from more recent studies on B cell signalling and its targeting
in AAV that were discussed in this review. From these, some important receptors have
already been targeted, as well as some of their downstream effector molecules, including
BTK and SYK with promising results. B cell cytokines have also been subject of thera-
peutic targeting, such as the BAFF-targeting monoclonal antibody belimumab, yet deeper
knowledge on this subject and formal clinical trials are required. It is essential to remember
that even though it has been an important step in research in AAV, studies focused on B
cell signalling were mainly performed in B cells from peripheral blood, not knowing to
what extent aberrantly regulated pathways and potential therapeutic targets would also
be operational in plasmablasts and PCs, which predominantly reside in lymph nodes and
specific niches in the BM. Hence, it is crucial to advance our understanding of plasmablasts
and PCs by performing lymph node and BM analysis in AAV to achieve the unmet clinical
needs of specifically targeting these cell types in AAV. For instance, PCs could probably
be better targeted using anti-CD38 therapies or perhaps even CD19-directed CAR-T cell
therapy, as was found to be promising in SLE [148,149]. Currently, the only therapeutic
proven to be effective targeting PCs in AAV is bortezomib, a proteasome inhibitor which
efficiently depleted PCs in a mouse model of AAV [150], resulting in lower anti-MPO titers
and prevention of glomerulonephritis. Interestingly, bortezomib has also been effectively
applied and induced long-term remission in a therapy-refractory AAV patient [151]. How-
ever, this treatment has considerable side-effects and the effects of bortezomib on PCs were
not evaluated in the human studies.
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All in all, the current literature and ongoing research projects provide evidence that
unravelling the (intrinsic) signalling mechanisms in B cell lineage cells that contribute to
pathology may yield new potential therapeutic targets that could be exploited for specific
intervention in or depletion of activated and pathogenic B cell populations including PCs,
preferably without interfering with other functions of the immune system.
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