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Abstract

Background: Tissue microarrays  (TMAs) are an important tool in translational 
research for examining multiple cancers for molecular and protein markers. Automatic 
immunohistochemical (IHC) scoring of breast TMA images remains a challenging problem. 
Methods: A two‑stage approach that involves localization of regions of invasive and in‑situ 
carcinoma followed by ordinal IHC scoring of nuclei in these regions is proposed. The 
localization stage classifies locations on a grid as tumor or non‑tumor based on local 
image features. These classifications are then refined using an auto‑context algorithm 
called spin‑context. Spin‑context uses a series of classifiers to integrate image feature 
information with spatial context information in the form of estimated class probabilities. 
This is achieved in a rotationally‑invariant manner. The second stage estimates ordinal 
IHC scores in terms of the strength of staining and the proportion of nuclei stained. 
These estimates take the form of posterior probabilities, enabling images with uncertain 
scores to be referred for pathologist review. Results: The method was validated against 
manual pathologist scoring on two nuclear markers, progesterone receptor  (PR) and 
estrogen receptor (ER). Errors for PR data were consistently lower than those achieved 
with ER data. Scoring was in terms of estimated proportion of cells that were positively 
stained  (scored on an ordinal scale of 0‑6) and perceived strength of staining  (scored 
on an ordinal scale of 0‑3). Average absolute differences between predicted scores and 
pathologist‑assigned scores were 0.74 for proportion of cells and 0.35 for strength of 
staining (PR). Conclusions: The use of context information via spin‑context improved the 
precision and recall of tumor localization. The combination of the spin‑context localization 
method with the automated scoring method resulted in reduced IHC scoring errors.
Key words: Tissue microarrays, tumor localization, immunohistochemical scoring

Copyright: © 2013 McKenna SJ. This is an open‑access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Access this article online
Website:  
www.jpathinformatics.org

DOI: 10.4103/2153-3539.109871

Quick Response Code:

INTRODUCTION

Tissue Microarrays (TMAs) have become an essential tool 
in translational research for examining multiple cancers 
for molecular and protein markers. However, skilled 
pathology review is required. Methods for automated 

analysis of TMAs are under development with the aim of 
speeding up pathology‑based research of clinical material 
and facilitating implementation of translational research 
into clinical practice. Available commercial annotation 
software often require a pathologist to partially annotate 
some tissue components in order for the software to 
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accurately analyze a whole mount slide. When such 
software is used to analyze TMA spots, typically 0.6 mm 
in diameter, regions are often mislabeled due to lack of 
context.

This paper reports on the development of methods for 
immunohistochemical  (IHC) scoring of breast TMAs. 
These involve probabilistic labeling of invasive or 
in‑situ carcinoma  (to which we refer jointly as ‘tumor’ 
in this paper) and subsequent scoring using ordinal 
scales such as Quickscore or Allred. Tumor localization 
is performed using spin‑context, a modification to the 
auto‑context method that employs rotation‑invariant, 
distribution‑based context descriptors. An improvement 
to a previous scoring method[1,2] is described that 
incorporates tumor localization. Empirical evaluations are 
reported on two different nuclear IHC stains, estrogen 
receptor (ER) and progesterone receptor (PR).

Related Work
Recent work on tumor segmentation in bright field 
microscopy images of histological sections includes that 
of Sertel et  al.[3] who segmented follicular lymphoma 
tissue slides based on mean shift and hierarchical 
grouping. Sieren et al.[4] used clustering for segmentation 
of tissue types in sections of resected human lung cancer 
nodules. Wang et al.[5] proposed a Markov random field 
tumor cell segmentation model applicable to TMA data.

Auto‑context has been used for medical image 
segmentation. Morra et  al.[6] used AdaBoost with 
auto‑context to segment hippocampus in 3D structural 
MRI. Tu et  al.[7] used auto‑context to segment multiple 
structures in brain MRI. Tao et  al.[8] used Gaussian 
mixtures with simplified auto‑context to segment ground 
glass nodules in 3D lung CT data. Montillo et  al.[9] 
segmented structures such as aorta, pelvis, and lungs 
in 3D CT data, proposing an extension of decision 
forest classifiers that incorporates semantic context in 
a manner similar to auto‑context. However, context 
descriptors in the above were not distribution‑based 
descriptors and appropriately for those applications, were 
not invariant under image rotation. To the best of our 
knowledge, auto‑context has not been applied by other 
researchers to segmentation of 2D medical images such 
as those of histological sections. In this work we use a 
distribution‑based, rotation‑invariant context descriptor.

Tools are available to assist in scoring tissue sections 
subjected to nuclear IHC  (e.g.,  Digital IHC Solution, 
Genie from Aperio Technologies, Ariol from Genetix/
Applied Imaging, IHC score from Bacus Labs). 
Typically, they help determine the proportion of stained 
cells and staining strength, directly mapping those 
measures to different scoring systems  (e.g.,  Allred[10] and 
Quickscore[11]), instead of performing a learned mapping 
based on training data. Turbin et  al.[12] trained Ariol 
software to analyze ER expression in breast carcinoma 

TMAs; in their study automated and human scores were 
dichotomized between ER positive and ER negative, 
rather than directly compared. Sanders et al.[13] developed 
a system to score TMA spots of various types and 
immunostained for each of several antibodies, where the 
mapping of a set of global features to discrete strength 
scores was learned from annotated data.

METHODS

Tumor Localization Method
We first address locating tumor in TMA spots. This is 
formulated as classifying each location on a grid as being 
tumor or non‑tumor. The image patch around each 
location is characterized using local features extracted 
at full resolution, specifically differential invariants up 
to 2nd  order[14] and intensity spin image features.[15] We 
experimented with multi‑layer perceptron  (MLP) and 
random forest classifiers based on these features.

We call our method for incorporating context in a 
rotationally‑invariant fashion spin‑context.[16] Rotation 
invariance is potentially useful when analyzing 
histopathology images because the rotation of the tissue 
is arbitrary. Spin‑context is a variant of auto‑context[7] 
inspired by the use of intensity spin features for texture 
representation.[15] Auto‑context is an iterative pixel 
labeling technique, in which some of the labels output 
by the classifier at a given iteration are used as contextual 
data that are concatenated with local image features to 
form the input vector for the classifier at the following 
iteration. Tu and Bai[7] used a star‑shaped ‘stencil’ for 
selection of locations at which to incorporate context. The 
resulting context feature vectors were not invariant under 
image rotation. Instead, spin‑context computes context 
features for a grid location from label probability values 
within a circular support region centered at that location. 
This is done analogously to intensity spin features, 
computing a two‑dimensional soft histogram reflecting 
the distribution of probabilities within the support region, 
with histogram rows representing probability intervals 
and columns representing radial distance intervals. The 
values in this histogram are concatenated with the image 
features for the subsequent classifier.

At the first iteration, context is not available from 
a previous iteration, so a uniform constant ‘context’ 
descriptor is adopted, and classification is based only on 
the local image features. At every subsequent iteration, 
context descriptors constructed from the probability 
map generated at the previous iteration are concatenated 
with local image features to form input to a classifier. 
This classifier produces an updated probability map. An 
iteration of spin-context is illustrated in Figure 1.

IHC Scoring Method
A previous method for IHC scoring[1,2] estimated the 
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proportion of epithelial nuclei that were stained and the 
strength of staining based on color and texture features. 
These values, referred to as formalized scores, were then 
mapped onto standard ordinal scoring scales using a 
classifier or ordinal regression model. Here the Quickscore 
ordinal scales are used. Quickscore assigns a proportion score 
in the range 0‑6 and a strength score in the range 0‑3.[11] 
We refine the previous method[1,2] by incorporating tumor 
localization probabilities obtained as above so that scoring 
focused on tumor regions. Equations (1) give the formalized 
scores incorporating tumor labeling where  fp  reflects the 
proportion of nuclei that are stained and  fs reflects the 
staining strength; sums are over all pixels, and yP

n, yP
n, and 

yT
n  denote the posterior probabilities that the nth pixel 

belongs to an immunonegative nucleus, an immunopositive 
nucleus, and a tumor region, respectively. tP

n is 1 if yP
n is 

greater than 0.5, 0 otherwise. In a further refinement of 
Amaral et al.,[1,2] nuclear posterior probability ‘images’ were 
Gaussian smoothed prior to computation of IHC scores.

5

Fig. 1. Spin-context constructs context descriptors for a point to be classified from a
circular region on the previous iteration’s classification map.

Immunohistochemical Scoring Method

A previous method for IHC scoring [1, 2] estimated the proportion of epithelial
nuclei that were stained and the strength of staining based on colour and texture
features. These values, referred to as formalised scores, were then mapped onto
standard ordinal scoring scales using a classifier or ordinal regression model.
Here the Quickscore ordinal scales are used. Quickscore assigns a proportion
score in the range 0 − 6 and a strength score in the range 0 − 3 [11]. We refine
the previous method [1, 2] by incorporating tumour localisation probabilities
obtained as above so that scoring focused on tumour regions. Equations (1) give
the formalised scores incorporating tumour labelling,

fp =
∑

n yn
T yn

P∑
n yn

T (yn
N+yn

P ) fs =
∑

n yn
T yn

P tnP∑
n yn

T tnP
(1)

where fp reflects the proportion of nuclei that are stained and fs reflects the
staining strength; sums are over all pixels, and ynN , ynP , and ynT denote the pos-
terior probabilities that the nth pixel belongs to an immunonegative nucleus,
an immunopositive nucleus, and a tumour region, respectively. tnP is 1 if ynP is
greater than 0.5, 0 otherwise. In a further refinement of [1, 2], nuclear poste-
rior probability ‘images’ were Gaussian smoothed prior to computation of IHC
scores.

Tumour labels were obtained by taking posteriors output by the method
above. Nuclear labelling was carried out using the pixel classification technique
described in [17] that computes posteriors for each pixel that it is immunonega-
tive epithelial nuclei, immunopositive epithelial nuclei, or non-nuclei. Multi-layer
perceptrons were trained to predict IHC scores from formalised scores. A decision
to use MLPs was based on ten-fold cross-validation experiments on 200 estrogen
receptor spots (both normal and tumour) in which multi-layer perceptron clas-
sifiers gave better classification rates than Gaussian process ordinal regression
models.

� (1)

Tumor labels were obtained by taking posteriors output 
by the method above. Nuclear labeling was carried out 
using the pixel classification technique described in[17] 
that computes posteriors for each pixel that it is immuno-
negative epithelial nuclei, immunopositive epithelial 
nuclei, or non‑nuclei. MLPs were trained to predict IHC 
scores from formalized scores. A  decision to use MLPs 
was based on ten‑fold cross‑validation experiments on 
200 ER spots  (both normal and tumor) in which MLP 
classifiers gave better classification rates than Gaussian 
process ordinal regression models.

The scoring method outputs a posterior probability 
distribution over scores for each spot. Predictions for each 
spot are obtained by choosing the median score values. 

The entropy of the posterior scoring distribution can be 
used as a measure of confidence, providing a mechanism 
by which to decide to refer spots with high uncertainty 
for pathologist review.

Data
TMA spots were subjected to nuclear staining for ER or 
PR. Spot images were 4000  ×  4000 pixels. Data used in 
tumor labeling experiments consisted of 64 spots stained 
for ER, 32 of which contained tumor regions annotated 
by a highly experienced pathologist and 32 confirmed 
to contain only healthy tissue. Example pathologist 
annotations are shown in Figure  2. In addition, 20 
circular regions stained for PR were annotated to 
identify immunonegative and immunopositive epithelial 
nuclei  (approximately 700 nuclei). IHC scoring 
experiments focused on two sets of spots all known to 
contain tumor. The first set contained 188 spots stained 
for ER with Quickscores assigned by a pathologist. The 
second set consisted of 262 spots stained for PR with 
Quickscore assigned by a pathologist twice for each 
spot  (during two sessions with 251 spots considered 
scorable in both sessions).

RESULTS

Tumor Labeling Experiments
Tumor labeling was evaluated using ten‑fold 
cross‑validation on the 64 ER spots. Each 
cross‑validation experiment was repeated ten times 
to measure variability. MLP classifiers had five 
hidden units, a regularization constant of 0.1 and 
used scaled conjugate gradient optimization. Local 
and context features were computed at points on 
a 76  ×  76 grid  (a grid step of 50 pixels). Differential 
invariant features were computed at three scales using 
a Gaussian pyramid. Specifically, at each scale, images 
were convolved with a set of first‑  and second‑order 

Figure 1: Spin-context constructs context descriptors for a point to be classified from a circular region on the previous iteration’s 
classification map
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two‑dimensional Gaussian derivative kernels and the 
results combined to obtain four differential invariants 
at each location.[18] The kernels had standard deviations 
of eight pixels, and thus, effectively 16 and 32 pixels 
at the second and third scales respectively. This 
compares with an average epithelial nuclear radius 
of approximately 16 pixels. These features exhibit 
rotation invariance as well as some invariance to 
absolute image intensity. Intensity spin local features 
were computed at two scales  (again using a Gaussian 
pyramid) with a circular support region with a radius 
of 50 pixels. Spin‑context used a circular support 
region with a radius of six grid points. We also tried 
auto‑context (non‑rotationally invariant context) using a 
stencil in which neighboring grid points within a radius 
of six grid spacings in each of the eight cardinal and 
inter‑cardinal compass directions were used as context. 
Labeling obtained was compared to ground‑truth 
segmentations provided by the pathologist to compute 
precision‑recall curves. Figure  3 shows precision‑recall 
curves. Figure  3a shows that spin‑context improved 
precision and recall. Auto‑context using a stencil 
also helped except at low recall. Figure  3b plots the 

spin‑context curves again, but this time with dotted 
curves at one standard deviation to indicate variability 
over runs of the experiment. For the important middle 
values of precision and recall, a second iteration of 
spin‑context resulted in improvement. Figure  3c 
compares spin‑context using MLP with spin‑context 
using random forest classification. Except at low values 
of recall, MLP spin‑context was superior.

Figure  2 shows three spots, two containing tumor and 
one not containing tumor, along with their expert 
annotations and the outputs of the spin‑context 
method. In Figure  2a, posterior probabilities within 
tumor regions became higher at each iteration, so 
that after the final iteration they were above 0.5 for 
most tumor pixels. In Figure  2b, non‑zero probabilities 
occur within regions of normal tissue at the first 
iteration; however, their values become lower after 
further iterations, so that a binarization of the labeling 
would result in an almost entirely empty  (i.e.,  correct) 
output. Figure 2c shows a case of unsuccessful labeling. 
The region of inflammatory cells at the top‑left is 
initially lightly detected and then correctly discarded; 

Figure 2: Tumor location probabilities obtained by spin-context. Shown for each TMA spot are the pathologist’s annotation, the labeling 
obtained using local image features (iteration 1) and labeling obtained after incorporating label context (iteration 2 and iteration 3); (a) Shows 
invasive cancer labeled largely in agreement with the pathologist; (b) shows healthy tissue;(c) shows one of the worst results obtained

cba
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but, most importantly, the tumor region at the lower 
left was missed. This may have been due to the fact 
that, in the region in question, tumor cells had large 
spatial separation giving a lower apparent density when 

compared to most tumor regions in the other spots. 
This suggests the need for more training examples of 
this type.

IHC Scoring Experiments
A tumor model was trained using all 64 annotated ER 
spots and a nuclear model was trained using the 20 PR 
regions with nuclear annotations. These models were used 
in ten‑fold scoring experiments using MLP to predict 
proportion and strength scores  (as in Quickscores) based 
on the formalized scores in Equation 1. Mean absolute 
errors are reported, i.e.,  the average absolute differences 
between predicted scores and true scores. Table  1 details 
the proportion and strength score prediction errors with 
and without the use of tumor localization. Proportion 
error denotes the average difference between predicted 
scores and pathologist scores for percentage of positively 
stained cells. Similarly, strength error denotes the average 
difference between predicted scores and pathologist 
scores for the strength of IHC staining. Furthermore, 
shown are results obtained with the PR dataset when 
nuclear label smoothing was not used. Pathologist 
intra‑observer disagreement  (IOD) is shown for PR data. 
Figure 4 shows how the proportion of scored PR spots 
and the mean absolute error vary when only those spots 
predicted above a certain confidence threshold (based on 
posterior entropy) are considered. Spin‑context provides 
a consistent trade‑off between the proportion of TMA 
spots scored and error variation. This trade‑off provides 
the means for selecting a suitable compromise between 
automation and accuracy when scoring TMA spots.

DISCUSSION

A method for tumor localization and IHC scoring was 
presented incorporating rotationally‑invariant context 
features. The method was validated against manual 
pathologist scoring on two nuclear markers. Tumor 
localization and nuclear smoothing reduced scoring 
errors  [Table  1]. Errors for PR data were consistently 
lower than those achieved with ER data. This may 
be partially due to the fact that the nuclear model 
was trained with PR data. We have also evaluated the 

Table 1: Immunohistochemical scoring results. Error denotes the average absolute difference between 
predicted scores and the scores assigned by the pathologist. Errors are reported with and without the 
tumor localization step. (Proportion scores range from 0 to 6. Strength scores range from 0 to 3)

Dataset Proportion Strength

IOD Error IOD Error

No localization Localization No localization Localization

PR (no smoothing) 0.28 0.93 0.83 0.12 0.48 0.40
PR (smoothing) 0.28 0.88 0.74 0.12 0.39 0.35
ER (smoothing)   1.27 1.19   0.54 0.47

PR: Progesterone receptor, ER: Estrogen receptor, IOD: Intra‑observer disagreement

Figure 3: Precision-recall curves for tumor localization; (a) Effect 
of stencil and spin-context iterations on multi-layer perceptron 
(MLP) classification; (b) MLP spin-context with variation (dotted 
lines at one standard deviation); (c) Comparison of spin-context 
using random forest and MLP classifiers
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method with ER TMA data from a second, independent 
laboratory; in that experiment  (not reported here) errors 
were at the same level even though no data from the 
second lab were used for training. Tumor maps such 
as those exemplified in Figure  1 could be useful in 
themselves to pathologists, helping to identify spots 
containing regions of tumor and to localize those 
regions. However, the tumor localization results should 
be regarded as preliminary. Some improvements in 
scoring obtained on the tumor data were modest. This 
is partly explained by the fact that most epithelial 
tissue present in the tumor spots  (detected by nuclear 
labeling) constituted tumor tissue, limiting the benefits 
of the tumor labeling step. TMA images are diverse and 
localization errors on less frequently occurring structures 
suggest that even more annotated data would be helpful.
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