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Introduction
Cerebrovascular diseases are ranked as the third leading 
cause of death and disability after cancer and heart disease 
(Feigin et al., 2003; Pandya et al., 2011). Both ischemia and 
hemorrhage are pathologic causes of cerebrovascular disease, 
with ischemic injury contributing to approximately 85% 
of all cases. Until recently, tissue plasminogen activator (t-
PA) is the only FDA authorized drug that can promote vessel 
rebuilding after ischemic injury and facilitate neural recovery 
(Jaffer et al., 2011). However, several disadvantageous limit its 
clinical application (Bambauer et al., 2006). The therapeutic 
window is limited to the first 4.5 hours after the indication of 
symptoms. Only 3–8.5% of patients are treated with t-PA be-
cause of its potential to cause hemorrhage and second injury 
(Bambauer et al., 2006). Moreover, the diffusion of t-PA into 
the brain parenchyma increases vascular permeability (Yepes 
et al., 2003) and can cause neurotoxicity (Goto et al., 2007). 
Therefore, a toxin-free therapeutic method is urgently needed 
for the treatment of cerebral ischemic injury. 

Recent studies have confirmed the beneficial effects of 
traditional Chinese medicine (TCM) in the treatment of ce-
rebral ischemic injury (Yang et al., 2011a; Zhao et al., 2012a). 
Among the investigated TCM prescriptions, Buyang Huanwu 
decoction (BHD) is a well-known Chinese herb prescription 
which is functionally characterized by Qi supplement, and 
blood and meridian circulation (Fan et al., 2014). This TCM 
prescription originated from the old record Yi Lin Gai Cuo 
(corrections on the errors of medical works), which was 
compiled by Qingren Wang, a famous doctor in the Qing 

dynasty. BHD is composed of seven kinds of Chinese herbs, 
including Huangqi (Radix Astragali seu Hedysari), Danggui 
(Radix Angelica sinensis), Chishao (Radix Paeoniae Rubra), 
Chuanxiong (Rhizoma Ligustici Chuanxiong), Honghua 
(Flos Carthami), Taoren (Semen Persicae), and Dilong 
(Pheretima). Because of drug-like properties of each herb, 
BHD is the primary prescription for the treatment of symp-
toms for hemiplegia and paraplegia (Wang and Jiang, 2009). 
In particular, BHD has been extensively used for the treat-
ment of cerebral ischemic injury (Sun et al., 2007a), with 
accumulating experimental evidence indicating that BHD 
can improve recovery of behavioral scores, reduce the rate 
and area of infarction, and decrease ischemia-reperfusion 
injury (Yang et al., 2011a; Zhao et al., 2012a). Additionally, 
BHD has the ability to promote neurogenesis, increase vas-
cular endothelial growth factor (VEGF) expression (Cai et 
al., 2007) and neural growth and differentiation, and inhibit 
apoptosis (Chen et al., 2008; Wang and Jiang, 2009). Al-
though the neuroprotective properties of BHD are known, 
a systematic review of the mechanisms underlying this neu-
roprotective effect is still lacking. Here, the active compo-
nents, the therapeutic targets, the clinical application, and 
the mechanisms underlying the neuroprotective properties 
of BHD in stroke are reviewed.

Active components in BHD and their 
therapeutic targets
BHD is a combination of several Chinese herbs and each 
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herb has their own bioactive components. Although the ef-
fect of the active components of BHD in other diseases has 
been widely reported (Chun-sheng et al., 1978; Grdisa et al., 
2001; Fang et al., 2002; Cheng et al., 2006, 2007; Ren et al., 
2006; Chen et al., 2008; Chi et al., 2009; Wei et al., 2009; 
Chang et al., 2011; Li et al., 2012; Liu et al., 2012; Tang et al., 
2012; Zhang et al., 2012, 2014a, b; Zhao et al., 2012b; Jin et 
al., 2013; Li et al., 2013; Gong et al., 2014; Kim et al., 2014; 
Koushki et al., 2014; Qi et al., 2014; Yan et al., 2014; Yang et 
al., 2014; Zeng et al., 2014), systematic research regarding the 
effective components of BHD in the treatment of cerebral 
ischemic injury is still lacking. The major active components 
are listed in Figure 1. More than one hundred compounds 
exist in Huangqi (Zhao et al., 2012b), and these compounds 
can be separated into saponins, flavonoids, polysaccharides 
and amino acids according to their structural properties. 
Astragalus polysaccharide has anti-oxidative (Li et al., 2012), 
anti-inflammatory and neuroprotective properties (Zhang et 
al., 2012). 

Attenuating glutamate-induced excitotoxicity is one strat-
egy to fight against cerebral ischemic injury (Jin et al., 2013). 
Interestingly, astragalus polysaccharide can reduce the accu-
mulation of excitatory amino acids (Zhang et al., 2012). The 
permeability changes to the brain-blood barrier possibly lead 
to vasogenic brain edema and causes detrimental chronic 
injury (Chi et al., 2009). Accordingly, astragaloside A was re-
ported to ameliorate edema in cerebral ischemia-reperfusion 
injury through regulating matrix metalloproteinase-9 and 
aquaporin 4 expression (Li et al., 2013). 

Chuanxiong has been used for the treatment of cardiac-ce-
rebral vascular disease, and Chuanxiongzine is one of the 
active components of BHD (Chun-sheng et al., 1978). The 
experimental evidence suggests that Chuanxiongzine exerts 
neuroprotective effects possibly through inhibiting calcium 
overload and inhibiting the anti-inflammatory response 
(Gong et al., 2014; Kim et al., 2014; Koushki et al., 2014; 

Yang et al., 2014; Zhang et al., 2014a; Zhang et al., 2014b). 
There is also evidence indicating that the neuroprotection 
afforded by Chuanxiongzine is because of inhibition of Bcl-2 
and caspase-dependent apoptosis, as observed in PC12 cells 
subjected to oxidative stress (Cheng et al., 2007) and in ani-
mal models of cerebral ischemic injury (Cheng et al., 2006). 

Pheretima aspergillum (PA) is one type of Dilong and stroke 
treatment with PA has been confirmed previously (Fang et 
al., 2002; Ren et al., 2006). Wei et al. (2009) reported that PA 
possesses pharmacological activity to promote regeneration 
of the peripheral nervous system after injury. Several studies 
have demonstrated that PA has anticoagulant and antioxidative 
properties (Grdisa et al., 2001) and promotes the growth of 
Schwann cells (Chang et al., 2011). Liu et al. (2012) reported 
that oral application of PA could ameliorate cerebral ischemic 
injury through decreasing the expression of glial fibrillary 
acidic protein (GFAP) and S-100B. Additionally, ferulic acid 
in Danggui (Zeng et al., 2014), hydroxysafflor yellow A in 
Honghua (Qi et al., 2014), benzoic acid in Chishao (Tang et 
al., 2012), and amygdalin in Taoren (Yan et al., 2014) also have 
beneficial effects on cerebral ischemic injury. Although the 
active compounds in BHD are not completely known, the ac-
tive components already identified contribute to the multiple 
therapeutic targets of BHD against cerebral ischemic injury. 
This multi-targeted therapy most likely enhances the efficacy of 
BHD in fighting against cerebral ischemic injury.

Clinical application of BHD in cerebral 
ischemic stroke
BHD has been used for the treatment of several diseases, es-
pecially paralysis (Wang and Jiang, 2009) and stroke (Sun et 
al., 2007a) for many years because the formula was formed 
in the Qing dynasty (approximately 400 years ago). Based 
on the theory of TCM, BHD has advantages in invigorat-
ing the body, blood circulation, Qi supplement, and blood 

Figure 1 The seven active compounds 
in Buyang Huangwu Decoction and the 
possible mechanisms involved in its 
neuroprotective effect against cerebral 
ischemic injury.
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and meridian activation (Liu and Zhou, 1993; Zhang et al., 
2010a; Ren et al., 2011). The hundreds of years of clinical ex-
perience, as well as modern experimental research, indicates 
the neuroprotective activity of BHD (Zhao et al., 2012a). In a 
clinical study, Cai and Lui (2010) found that BHD could pro-
mote functional recovery, enhance serum VEGF content, and 
ameliorate patient’s quality of life during the recovery period 
after stroke. BHD was also effective in treating coronary disease 
and syndrome of Qi deficiency and blood stasis by decreasing 
blood viscosity and plasma fibrinogen. For example, Wang et 
al. (2011b) reported that BHD ameliorated coronary disease 
through increasing blood circulation and energy metabolism. 
Zhang et al. (2010a) verified that BHD could inhibit C-reac-
tive protein and cluster of differentiation 40 (CD40L) in white 
blood cells to treat coronary disease. In addition, BHD also has 
the ability to maintain blood glucose levels (Wang et al., 2011b). 

BHD inhibits excitotoxicity following cerebral 
ischemic injury
Excitatory amino acids are up-regulated in blood serum and 
cerebrospinal fluid after ischemic injury, which suggests that 
inhibiting excitotoxicity may be an effective strategy to in-
hibit neurological deficits after stroke (Castillo et al., 1996; 
Oja and Saransaari, 2013). Glutamate is the most important 
excitatory amino acid, performing critical roles in sustaining 
neuronal function. However, excitotoxicity due to over-release 
of glutamate is one of the pathological mechanisms of stroke 
(Eweka et al., 2010). Under normal physiological conditions, 
intracellular glutamate is at a resting state (Danbolt, 2001). 
However, following over-release, a large amount of glutamate 
is released outside the cell and binds to its receptors to cause 
depolarization and cell death during ischemic injury (Bonde 
et al., 2005). In a rat model of middle cerebral artery occlu-
sion (MCAO), Wang et al. (2013) measured the content of 
excitatory amino acids in cerebrospinal fluid using microdi-
alysis-high performance liquid chromatography-fluorescence 
detection. They showed that glutamate and aspartic acid were 
released 40 minutes post ischemia and peaked at 120 and 
80 minutes after ischemia, respectively. Glycine, taurine and 
γ-aminobutyric acid also increased after ischemia and peaked 
at 120 minutes. By contrast, BHD application could decrease 
the levels of these excitatory amino acids and increase inhib-
itory amino acids to neutralize excitotoxicity. Consistently, 
Zhao et al. (2012a) also found that BHD inhibited ischemic 
injury-induced elevations of excitatory amino acids. Addi-
tionally, BHD also neutralized the increase of metabotropic 
glutamic acid receptor-1 (m-GluR1) expression in a rat 
MCAO model (Zhao et al., 2012a). Importantly, the inhibition 
was related to neurological recovery and a decrease in infarct 
area. This evidence suggests that inhibition of excitotoxicity is 
one of the mechanisms involved in the neuroprotective effect 
of BHD against cerebral ischemic injury.

BHD promotes angiogenesis after cerebral 
ischemic injury
Induction of angiogenesis, especially in the ischemic bound-
ary area, enhances oxygen and nutrient supply to the infarct-

ed tissue (Wei et al., 2001). Generation of new blood vessels 
facilitates highly coupled neurorestorative processes includ-
ing neurogenesis and synaptogenesis, which in turn leads to 
improved functional recovery (Chen and Chopp, 2006; Beck 
and Plate, 2009). Therefore, promoting angiogenesis rep-
resents an effective way to facilitate neurological functional 
recovery. Although angiogenesis is not sufficient to satisfy 
the requirement of new blood vessels in an MCAO model, 
BHD administration before modeling not only elevates Ang-
1 expression, but also extends the expression period (Shen 
et al., 2014). The changes in Ang-1 levels following BHD ad-
ministration increase blood vessel density, which contribute 
to the decrease in infarct area and recovery of the nervous 
system. Hence, angiogenesis is a mechanism underlying the 
effect of BHD on neurological recovery after ischemic injury. 
Consistently, BHD administration also increases the expres-
sion of angiogenesis-related proteins (ARP), such as VEGF 
and its receptor and F1K1 at later recovery phases after isch-
emic injury (Cai et al., 2007). Although there was a report 
indicating that in the early phase after injury, BHD restricts 
the expression of angiogenesis-related proteins (Wang et al., 
2011a), further studies on how BHD regulates these proteins 
is required. The up-regulation of ARPs provides a basis for 
new blood vessel generation at later recovery phases. The 
increase in expression of VEGF at the early phase after isch-
emic injury increases the permeability of the blood-brain 
barrier and elicits secondary damage (Vandenbroucke et al., 
2008). Based on these results, we infer that like VGA1155 
(Chiba et al., 2008), an antagonist of VEGF, BHD may also 
restrict ARP expression to avoid secondary damage follow-
ing cerebral ischemic injury.

BHD promotes migration of neural precursor 
cells (NPCs) to the infract zone
NPCs, located in the subventricular zone (SVZ) and subgran-
ular zone (SGZ), have the potential to renew and differentiate 
into various types of neuronal cells in adult animals (Gage, 
2000; Ma et al., 2009). After ischemic injury, endogenous NPCs 
proliferate, migrate to the ischemic zone and differentiate into 
neurons (Nakatomi et al., 2002). This process appears to be a 
means of neurological functional recovery after ischemic injury 
because newborn neurons replace the damaged cells. However, 
the newborn neurons are insufficient to facilitate recovery of 
the injured tissue. Interestingly, advanced studies indicate that 
proliferation, migration and differentiation of neural precursors 
can be up-regulated by exogenous interference, which promotes 
neurological recovery following ischemic injury (Bonde et al., 
2005; Nakano-Doi et al., 2010; Osman et al., 2011; Sejersted et 
al., 2011; Zhuang et al., 2012; Ara and De Montpellier, 2013). In 
an MCAO model, Kong et al. (2014) verified that BHD could 
promote proliferation of neural precursors in the SVZ, SGZ and 
corpus striatum of the infarcted brain. Additionally, expression 
of migration-related proteins such as stromal cell-derived factor 
1 and chemokine receptor type 4 were also up-regulated after 
BHD administration. These data provide evidence that BHD 
may exert its neuroprotective effect partially by promoting NPC 
migration to ischemic brain areas. 
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BHD facilitates the proliferation and 
differentiation of NPCs
BHD may facilitate NPC proliferation in a mouse ischemic 
model (Cai et al., 2007). Cellular calcium concentration is 
critical for neuronal proliferation and differentiation (Cat-
terall, 2000). Although calcium overload could lead to cell 
death following cerebral ischemic injury, a low calcium con-
centration by contrast is beneficial for axon growth (Sun et 
al., 2007a). With the assistance of serum pharmacological 
method, the effects of BHD on the growth of hippocampal 
NPCs was investigated (Sun et al., 2007a, b). Compared with 
controls, BHD could clearly increase the length of axons, 
and the expression of neurofilament and GFAP. Consistent-
ly, calcium concentrations decreased after application of 
BHD-containing serum. Extracellular signal regulated kinase 
2 (ERK2) is an important component of the MAPK signaling 
pathway. The ERK2-mediated signaling pathway is known to 
regulate neural regeneration, neural growth, and differenti-
ation and restoration after neurological injury (Nishimoto 
and Nishida, 2006; Berwick et al., 2009; Huang et al., 2011; 
Duan et al., 2013; Ishii et al., 2013). For example, Jinglong 
et al. (2013) verified that chronic BHD treatment for 30 
days could activate ERK2 expression and promote neuronal 
growth and differentiation in the ischemic area. Based on 
these results, inhibition of calcium concentrations, as well 
as activation of ERK2 expression may underlie the effects of 
BHD on growth and differentiation of NPCs. Additionally, 
Wang et al. (2011a) employed gene set enrichment analysis 
and confirmed that BHD enhanced the expression of neural 
regeneration-related genes (Dcx, Fgfr3, Cttnbp2, Rorb, Abi2 
and Miat) and neural development-related genes (Ptprf, 
Ift172 and Nfib). Hence, promoting NPC regeneration is a 
potential mechanism underlying the neuroprotective effects 
of BHD against cerebral ischemic injury.   

BHD inhibits inflammation in cerebral 
ischemic injury
Diapedesis and proinflammatory cytokine release in the 
ischemic region elicits an inflammatory reaction, which 
leads to early functional defects to the blood-brain barrier 
(Jin et al., 2010). Transcription factors, such as nuclear fac-
tor-kappaB play critical roles in regulating the post-ischemic 
inflammatory reaction (Nurmi et al., 2004; Zhang et al., 
2005). The up-regulation of related inflammatory cytokines 
determines neuronal fate. BHD application effectively inhib-
its cerebral ischemic injury-activated TLR4 expression (Wang 
et al., 2011a). Additionally, gene expression-mediated dia-
pedesis is significantly attenuated after BHD administration. 
This evidence suggests that BHD not only antagonizes the 
inflammation-related signaling pathway, but also inhibits the 
diapedesis-regulated inflammatory reaction in the cerebral 
ischemic region, thus preventing cell death.  

BHD inhibits apoptosis in ischemia injury
Apoptosis has been reported to contribute to cell death fol-
lowing cerebral ischemic injury (Chen et al., 1998; Lee et al., 

2000; Zeng and Xu, 2000; Sugawara et al., 2002). Caspases 
are a family of cysteine proteases that play an important role 
in apoptosis, particularly the “initiator” (caspase-9) and “ef-
fector” (caspase-3) caspases (Hengartner, 2000). Caspase 3 is 
the “effector” protease in apoptosis (Deshmukh et al., 1996; 
Schulz et al., 1996) and is activated during nutrient deficien-
cy, potassium loss and glutamate elicited excitotoxicity (Chen 
et al., 1998; Sugawara et al., 2002). Accordingly, regulation 
of caspase 3 though gene deletion or antagonists decreases 
ischemic injury-induced cell death.  

In a rat model of transient ischemic injury produced by 
the four-vessel occlusion method, neurological function 
deficits were coupled with damage to neurons and cell loss (Li 
et al., 2003). Additionally, transferase-mediated biotin-dUTP 
nick-end labeling identified apoptotic cells in the model 
group (Gavrieli et al., 1992; Chen et al., 1997). Interestingly, 
BHD administration post-ischemia markedly reversed the 
extent of apoptosis and rescued neural function deficits. 
Concomitantly, ischemic injury-induced caspase-3 activa-
tion was attenuated by BHD administration. Therefore, the 
blockade effect of BHD on ischemic injury-induced apop-
tosis is an effective way to rescue neuronal deficits. Using 
genome-wide transcriptome analysis, Wang et al. (2011a) 
screened 15 genes that may be involved in the protective ef-
fect of BHD on ischemic injury-induced apoptosis.

Conclusion
The protective effects of BHD on ischemic injury were con-
firmed by various experimental models (Zhang et al., 2001, 
2007, 2010b, 2011; Deng et al., 2002; Lai et al., 2002; Shao et 
al., 2003; Liao et al., 2004; Qu et al., 2004, 2014; Fan et al., 
2006; Tan et al., 2006; Tang et al., 2006; Tong et al., 2007; Wu 
et al., 2008, 2011, 2012; Zhou et al., 2008, 2011, 2012; Wang 
and Jiang, 2009; Yi et al., 2010; Zhao et al., 2010; Ren et al., 
2011; Yang et al., 2011a; Gu et al., 2013; Wang et al., 2013; 
Kong et al., 2014). Most investigators preferred the SD rat 
model of MCAO. The effect of time after BHD administra-
tion and the dose of BHD administered were also studied 
(Zhao et al., 2012a). A dose of 40 mg/kg BHD had a greater 
effect than 20 mg/kg BHD. Additionally, the therapeutic 
window was also important, as application of BHD 2 hours 
after injury had a more prominent effect than application 
at 4 or 6 hours. Therefore, the therapeutic window of BHD 
administration is critical for effective treatment. Due to the 
limited number of studies on BHD, further research related 
to the time and dose of BHD required for the treatment of 
ischemic injury is required. 

Based on literature, BHD has a therapeutic effect on isch-
emic injury, primarily through ameliorating blood circulation, 
reducing calcium overload, promoting neural precursor mi-
gration, increasing growth of NPCs, reducing the inflammato-
ry response and inhibiting neuronal apoptosis. In addition to 
the above mechanisms, BHD has also been reported to ame-
liorate ischemic injury in cardiac tissue, the spinal cord and 
the peripheral nervous system via its antioxidant properties 
(Fan et al., 2006; Yang et al., 2011b). To the best of our knowl-
edge, there have been no studies regarding the anti-oxidation 
of BHD in cerebral ischemia injury. Additionally, an in-depth 
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investigation on blood circulation after BHD application is 
required to further clarify its vessel rebuilding properties.  
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