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Abstract
Information processing in the brain crucially depends on the topology of the neuronal con-

nections. We investigate how the topology influences the response of a population of leaky

integrate-and-fire neurons to a stimulus. We devise a method to calculate firing rates from a

self-consistent system of equations taking into account the degree distribution and degree

correlations in the network. We show that assortative degree correlations strongly improve

the sensitivity for weak stimuli and propose that such networks possess an advantage in

signal processing. We moreover find that there exists an optimum in assortativity at an inter-

mediate level leading to a maximum in input/output mutual information.

Introduction
Revealing the neural code is one of the most ambitious goals in neuroscience. The theory of
complex networks is a promising approach to this aim: high cognitive processes are treated as
emergent properties of a complex connectivity of many ‘simple’ neurons. An important ques-
tion is then how the network structure relates to the collective activity of the connected neurons
and how this activity can be interpreted in terms of neuronal coding and processing strategies.
Advanced techniques for visualization of the activity of single neurons and groups of neurons
allow for identification of synaptic links between neurons, leading to the possibility of inferring
statistical network characteristics. Neuronal network topology is far from being completely
random [1, 2]. Among the most intriguing topological properties are small-world features [3],
modularity [4] and large variations in connectivity, e.g. scale-free functional structure [5] and
the presence of strongly connected and highly active hubs [6–8]. How are these network prop-
erties related to neuronal dynamics? Although the influence of network parameters on the
dynamics of neuronal populations has been subject to a large number of studies [1, 9–15], the
relevance of heterogeneous connectivity and higher order network statistics have been investi-
gated only recently [12–16]. Simulations show that heterogeneous connectivity structures
induce heterogeneous activity patterns [12–16]. Indeed, activity in the neocortex is highly vari-
able: A large proportion of neurons fires at very low rates, whereas a small subset of neurons is
highly active and better connected [17–20]. Variability in neuronal network structure and
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dynamics may be important for information processing such as the detection of weak input sig-
nals [12, 15, 20, 21]. Remarkably, some brain regions, such as the barrel cortex, can sense very
weak stimuli down to a few spikes to a single neuron [22]. It has been hypothesized, that a sub-
set of highly active and highly interconnected neurons may play a significant role in the encod-
ing of sensory information in this region [20].

Here, we study the relevance of two basic network topological features, the degree distribu-
tion and degree correlations, for the ability of a network to sense and amplify small input sig-
nals. A first approach requires a simple mathematical model describing the activity of neurons.
As a basic yet very relevant representation of neuronal dynamics, we here consider rate coding
in a network of leaky integrate-and-fire (LIF) neurons and use a mean-field model to account
for their synaptic coupling. The powerful mean-field theory rests on the assumption that neu-
rons interact through their synaptic activity but generally fire asynchronously. The information
contained in the neuronal network is encoded in their mean firing rate [23, 24]. At this level,
the ability of the network to process information is shaped by the relationship of the input sig-
nal in form of an input spike frequency and the resulting firing rate of the network. The former
is an independent Poissonian spike train injected synaptically into all neurons and the latter
can be characterized as an output signal by averaging over the entire population or a part of the
population.

This mapping of inputs to the average activity of many neurons has been described as one
of the fundamental processing strategies of the brain [25]. One of the major advantages of this
population coding is its robustness to failure as information is encoded across many cells. Popu-
lation coding is important in many brain functions such as orientation discrimination in the
primary visual cortex [26], control of eye [27] and arm movements [28]. How the brain can
access and process information encoded in the collective activity and how it manipulates this
activity to perform these computations efficiently is one of the main questions in computa-
tional neuroscience. We aim at this problem by calculating the input/output relationship of
large LIF networks using a generalized mean-field method, which takes into account the com-
plex network topology. Furthermore, we are interested in the ability of the network to convey
information about stimuli of small amplitude. For weak stimuli, where afferent injected cur-
rents are too small to trigger significant single neuron firing, collective activity of the network
strongly depends on recurrent input [16, 29], and it may be expected that the effect of recurrent
network structure on signal processing is most pronounced in this regime.

To describe collective neuronal activity one often uses the population-density approach,
which was successfully applied to cortical circuits of identical neurons [9, 30–32] and to net-
works of heterogeneous neurons [21]. In the population density approach, the spiking and
interplay of many neurons, for instance in the network of a single cortical column, is captured
by a probability density function for the states of statistically similar neurons [24, 31]. Here we
extend this theory to include the heterogeneity of the network in terms of the degree of a given
neuron, i.e., the number of synaptic connections the neuron possesses. We find that the net-
work’s heterogeneity leads to substantial deviations from simple mean-field calculations, where
one ignores the network properties. Our method is to divide the whole neuronal population in
subpopulations according to the number of incoming synaptic links, or the in-degree k, of neu-
rons. This allows us to consider networks with different levels of assortativity with respect to k
(Fig 1), which is a measure of the correlations in the degree of nodes [33]. Degree correlations
in neural networks may result from a number of processes including plasticity and they are
interesting for a number of reasons. First, degree correlations can be considered the most basic
statistical property of a complex network except for the degree distribution itself. Second, there
have been large efforts devoted to understand correlations in neuronal spiking [34], but the
effects of correlations in structural connectivity have been much less studied so far. Finally,
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statistical network properties have been considered in the context of synchronization [35], but
the characterization of spiking in the unsynchronized regime has not received similar attention
in the context of complex networks.

Using the subpopulation density approach, we calculate the firing rates for the coupled k-
populations and show that the obtained values exhibit excellent agreement with results of direct
numerical simulation of a network of LIF-neurons. In-degree distribution and degree correla-
tions of the network enter the equations in form of a joint degree distribution Nkk0, which is the
average number of connections from a k0- to a k-neuron. To be specific in this analysis, we
derive simple expressions for Nkk0 for exemplary networks of various degree correlation types
in the limit of large network size. We apply our method to a correlated network with broad
degree distribution and show that the shape of the input/output relationship is strongly
affected by different levels of assortativity. Assortative networks sustain activity at sub-thresh-
old levels of input, where uncorrelated networks would not fire, and thus, are more sensitive to
weak stimuli. Hence, assortativity may tune the input/output relationship to the distribution of
inputs and noise of the system to optimize information transfer. Finally, we calculate the
mutual information between sub-threshold stimuli and network response, assuming that each
stimulus is equally likely. Recently, mutual information has been used in a similar way to inves-
tigate information transmission in cortical networks with balanced excitation and inhibition
[36]. For our model network, an excess of assortativity leads to an increase in noise in the firing
rate and an optimum of input/output mutual information is found in a range of assortativity
consistent with recent estimates from neuronal cultures [37, 38]. Preliminary results of our
investigations were published in abstract form in [39].

Fig 1. Schematic of the heterogeneous neuronal networks. (A) In the uncorrelated network, highly
connected neurons and poorly connected neurons are joined randomly. Here, red nodes represent an
exemplary well connected subpopulation, while blue nodes represent all remaining populations with smaller
in-degree k. (B) In the assortative network, neurons with similar connectivity are joined preferably. The
network is stimulated by Poissonian external input spike trains with mean rate s, which are injected to each
neuron. The network response r to the stimulus is quantified by the average firing rate of a randomly chosen
fraction of the network (n neurons).

doi:10.1371/journal.pone.0121794.g001
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Results

Meanfield Method for Heterogeneous Correlated Networks
Deriving the Self-Consistent Equations. We begin with a mean-field method for calculat-

ing the stationary firing rate of a heterogeneous LIF network with degree correlations. Assume
a network of LIF-neurons with heterogeneously distributed in-degrees (Fig 1). Each neuron is
stimulated with an independent external Poisson spike train with rate s quantifying the input
signal or stimulus strength. If the input strength is small, an unconnected neuron will not
reach the threshold for excitation, while for sufficiently large s the neuron will fire. Following
Brunel [9], we normalize s by the rate νthr (see below) that is needed for a neuron to reach
threshold in the absence of feedback. For s� 1 the network is mostly driven by the external
input, whereas for s< 1 the response is dominated by sustained recurrent activity. The network
response r is quantified by the average firing rate of a subset n of its neurons and can be consid-
ered a feed-forward activity of the neural population or output.

We are interested in the dependence of the input/output relationship on degree correlations
in the network. Since the network of neuronal connections is directed, we have to distinguish
between the number of incoming and outgoing connections of a neuron, its in-degree k and
out-degree j. In the following we mainly focus on networks with k = j, suggested by findings for
C. elegans [40], where in- and out-degree per neuron strongly correlated. The distribution of
in- and out-degrees of the neurons is denoted by Pin(k) and Pout(j), respectively. Furthermore,
we take into account in-degree correlations. Main attention is paid to the assortative case when
neurons with high in-degree preferably connect to other neurons with high in-degree. Such
correlations have been found in cortical networks and in neuronal cultures [5, 37, 41].

The LIF dynamics of a neuron in the population is governed by a single state quantity. The
depolarization Vi(t) of neuron i follows the ordinary differential equation

t
dViðtÞ
dt

¼ �ViðtÞ þ RðIreci þ Iexti Þ; ð1Þ

where τ is the membrane time constant, R is the membrane resistance and Ireci and Iexti are the
recurrent and external input, respectively. If the depolarization Vi(t) reaches a threshold value
Θ, the neuron fires an action potential and Vi(t) is reset to a refractory voltage Vr for a constant
refractory period τref. Since the neuron cannot fire in this time interval, its maximum firing
rate is 1/τref. Action potentials arriving at the i-th neuron are modeled as delta spikes contribut-
ing to the recurrent synaptic current

RIreci ðtÞ ¼ tJ
XN
j¼1

aij
X

l

dðt � tlj � DijÞ ð2Þ

where J is the postsynaptic amplitude, and aij is the adjacency matrix of the network. The sec-
ond sum runs over all pulses l fired by neuron j at times tlj . These arrive at neuron i after a short

synaptic delay Dij.
Let us consider the dynamics of neurons in a k-population assuming that they receive

uncorrelated inputs. In the limit of a large network the Poisson pulse flow can be replaced by a
Gaussian process by means of the central limit theorem. Then, the input current of the i-th
neuron is given by

RIðkÞi ðtÞ ¼ mkðtÞ þ sk

ffiffiffi
t

p
xðkÞi ðtÞ; ð3Þ

with a mean μk(t) and a fluctuating part (noise) with intensity σk. Here ξ(t) is Gaussian white

noise with zero mean and unit variance. Each k-population receives inputs from other k0-

Degree Correlations Optimize Neuronal Network Sensitivity

PLOS ONE | DOI:10.1371/journal.pone.0121794 June 26, 2015 4 / 26



populations: μk(t) and σk depend on the firing rates rk0 of other populations. Using Eq (3) we

rewrite Eq (1) as a Langevin equation for V ðkÞ
i ðtÞ:

t
dV ðkÞ

i ðtÞ
dt

¼ �V ðkÞ
i ðtÞ þ mkðtÞ þ sk

ffiffiffi
t

p
xðkÞi ðtÞ: ð4Þ

The voltage distribution P(V(k)) is given by the corresponding Fokker-Planck equation, and
the average stationary firing rate r̂ k (given by the self-consistency conditions, see materials and
methods) is given by

r̂ k ¼ tref þ t
ffiffiffi
p

p ZðY�mkÞ=sk

ðVreset�mkÞ=sk

ex
2ð1þ erfðxÞÞdx

2
64

3
75

�1

¼ �kðr̂ kmin
; � � � ; r̂ kmax

; sÞ; kmin � k � kmax;

ð5Þ

where erfðxÞ ¼ 2ffiffi
p

p
R x

0
e�y2dx is the error function, kmin, kmax are the minimum and maximum

degree in the network, and �kðr̂ kmin
; . . . ; r̂ kmax

; sÞ is the coupled transfer function. Thus, the
steady-state firing rate of each k-population is coupled to the firing rates of all other k0-popula-
tions via the input mean and variance

mkðtÞ ¼ Jt nthrsþ
X
k0

Nkk0 r̂ k0 ðtÞ
 !

; ð6Þ

s2
kðtÞ ¼ J � mkðtÞ; ð7Þ

where Nkk0 is the average number of k0-neurons that synapse into a k-neuron (a joint degree
distribution) and nthr ¼ Y

Jt [9]. Given Nkk0, all r̂ k result by numerically solving Eq (5). Nkk0 fol-

lows from the adjacency matrix of the network by averaging the number of links from k0-neu-
rons to a k-neuron. In general, it is of the form

Nkk0 ¼ kf ðk; k0Þ; ð8Þ

where f(k, k0) is the probability that an incoming link of a k-neuron originates from a k0-neu-
ron. Normalization requiresX

k0
f ðk; k0Þ ¼ 1;

X
k0

Nkk0 ¼ k: ð9Þ

Solving the Self-Consistent Equations. The approximate dynamics of the neuronal net-
work can be described by the differential equation

tx
d
dt

r̂ ¼ �r̂ þ Fðr̂; sÞ; ð10Þ

where r̂ and F are the vectors of population firing rates r̂ k and coupled transfer functions
�kðr̂; sÞ, and τx is a time-constant of appropriate choice [24, 31]. Solutions of the self-consistent
Eq (5) are fixed points of the above equation and can be found by numerical integration. In
order to integrate Eq (10), one needs to evaluate the input mean and variance of Eqs (6 and 7),
where the joint degree distribution Nkk0 enters. Thus, it is necessary to first assess the network
topology by means of inferring this joint degree distribution. In the following, we will derive
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particularly simple expressions of Nkk0 = kf(k, k0) in the thermodynamic limit for networks with
arbitrary degree distributions and different in-degree correlations.

First assume a maximally random network of N neurons, where in- and out-degree of each
neuron are drawn independently from the in- and out-degree distributions Pin(k) and Pout(j),
respectively. In this case, in-degree correlations are minimal and f(k, k0) is simply the fraction
Ek0
E
of links that originate from neurons with in-degree k0, where E = Nhki = Nhji is the total

number of links in the network. The size of a k0-population corresponds to the total number of
k0-neurons in the network, which is NPin(k0). A fraction Pout(j0) of this population has j0 outgo-
ing links. Hence, the number of outgoing links of this fraction is

j0Poutðj0ÞNPinðk0Þ: ð11Þ

We now sum up the outgoing links of all fractions of the k0-population to obtain the total
number of outgoing links from all k0-neurons

Ek0 ¼ NPinðk0Þ
X
j0

j0Poutðj0Þ ¼ N � Pinðk0Þhj0i: ð12Þ

Thus, the fraction of links Ek0
E
that originate from neurons with in-degree k0 is

f ðk; k0Þ ¼ Pinðk0Þ: ð13Þ

The input mean and variance of Eqs (6 and 7) become

mkðtÞ ¼ Jtðnthrsþ kr̂Þ; ð14Þ

s2
kðtÞ ¼ J � mkðtÞ; ð15Þ

where r̂ is the mean firing rate of the network

r̂ ¼
X
k

PinðkÞr̂ k: ð16Þ

Thus, the self-consistent Eq (5) for the mean-firing rate of the network decouple and reduce
to

r̂ k ¼ �kðr̂Þ; ð17Þ

and we can write a one-dimensional self-consistent equation for the mean firing rate r̂ of the
network

r̂ ¼
X
k

PinðkÞ�kðr̂Þ: ð18Þ

Interestingly, Eq (18) does not depend on the out-degree distribution of the network,
because effects of its heterogeneity are averaged out in the limit of large network size.

In the following we assume random networks with in-degree distribution Pin(k) and equal
in- and out-degree per neuron, j = k. Synaptic connections show no in-degree correlations if
they are drawn at random, but now in-degree and out-degree of each neuron are positively cor-
related, as shown for the neuronal network of C. elegans [40]. In this case the number of outgo-
ing links from all k0-neurons in the network is simply k0 times the number of k0-neurons

Ek0 ¼ k0NPinðk0Þ: ð19Þ
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The fraction of links Ek0
E
that originate from neurons with in-degree k0 is then

f ðk; k0Þ ¼ k0

hki P
inðk0Þ: ð20Þ

This gives for the input mean and variance of Eqs (6 and 7), respectively

mkðtÞ ¼ Jt nthrsþ
k
hki
X
k0

k0Pinðk0Þr̂ k0 ðtÞ
 !

; ð21Þ

s2
kðtÞ ¼ J � mkðtÞ: ð22Þ

Thus, in a random network with equal in- and out-degree per neuron and without in-degree
correlations of the synaptic connections, the input mean and variance of each k-population are
dependent on the steady-state firing rate of all the other k0-populations. Note, that in networks
without in-degree correlations, the probability f(k, k0) is always independent of k.

For networks with in-degree correlations, the average number of connections between a k0-
population and a k-population differs from the uncorrelated case. In networks with assortative
in-degree correlations, neurons preferably connect to neurons with similar in-degree. In the
extreme case, the network segregates into disconnected subnetworks of neurons with the same
in-degree:

f ðk; k0Þ ¼ dðk; k0Þ; ð23Þ

where δ(k, k0) is the Kronecker delta. Note, that in networks with equal in- and out-degree per
neuron the number of outgoing links and incoming links is equal for each k-population. Thus,
in strongly assortative networks, all k-population subnetworks can be disconnected from each
other. In networks with nonequal in- and out-degree per neuron, complete segregation into
decoupled k-populations is only possible if the average number of outputs of k-neurons is k. A
mismatch between the average number of inputs and outputs in a k-population results in con-

nections between different populations and in this case, the distribution f(k, k0) may depend on
the in- and out-degree distribution and, potentially, on correlations between in- and out-degree
per neuron.

In networks with disassortative in-degree correlations, high-degree populations are con-
nected to populations with low degree and vice versa. The dependence of the joint degree dis-
tribution on the probability distribution of the input and out-degrees can be calculated
analytically for undirected networks [42]. In contrast to the assortative network, f(k, k0) here
depends on the in-degree distribution of the network. Therefore, we sample Nkk0 from the adja-
cency matrix of the disassortative network and show that our mean-field model accurately pre-
dicts its mean firing rate.

Stimulus Response of Heterogeneous Correlated Networks
In what follows we use the k-population model to analyze the response of three representative
heterogeneous networks with different degree correlations to a stimulus s. Theoretical predic-
tions are then compared to full simulations of 105 LIF neurons. For details on the model and
theory, see materials and methods. We chose a power-law in-degree distribution of P(k) = Zk−2

with normalization constant Z between a minimum degree kmin = 10 and a maximum degree
kmax = 500, because we are interested in networks of strong heterogeneity. Power-law degree
distributions have been found in recent in vitro experiments [37, 43, 44]. In-degree correlations
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are quantified by the Pearson correlation coefficient p, as defined in [45]

p ¼ 1

s2
in

X
kk0

kk0ekk0 � Qin
k Q

in
k0

" #
; ð24Þ

where ekk0 is the probability, that a randomly chosen directed link leads into a neuron of in-

degree k and out of a neuron of in-degree k0. Qin
k is the excess in-degree distribution of the neu-

ron at the origin of a random link

Qin
k ¼ ðkþ 1ÞPinðkþ 1ÞP

kkP
inðkÞ : ð25Þ

The Pearson degree correlation coefficient is normalized by the variance of the excess in-
degree distribution

ðsinÞ2 ¼
X
k

k2Qin
k �

X
k

kQin
k

 !2

; ð26Þ

and ranges from -1 for a fully disassortative network up to 1 for a fully assortative network.
Note, that Eq (24) suffices to quantify in-degree correlations if in- and out-degrees are equal
per neuron. Otherwise, alternative measures may be required [41]. For full simulations, we first
construct large random networks with the desired in-degree distribution using a configuration
model [46] and then impose degree correlations by shuffling links according to a Metropolis
algorithm [47]. For details of the network model, see materials and methods. The three repre-
sentative networks have p = 0.997 (assortative), p = −0.004 (uncorrelated) and p = −0.662 (dis-

assortative). The connection probabilities f(k, k0) sampled from the adjacency matrices of the
three networks are shown in Fig 2.

For the mean-field analysis, it is feasible to use simplified approximations for f(k, k0), so that
sampling from full IF networks is not necessary. Additionally, the dimension of the self-consis-
tent Eq (5) may be reduced for efficient computation. For the uncorrelated network, we use Eq

Fig 2. Probability f(k, k0) for a random input of a k-neuron to originate from a k0-neuron, sampled from the adjacencymatrices of simulations with
N = 105. Normalization demands ∑k0 f(k, k0) = 1. (A) Uncorrelated network, (B) assortative network, (C) disassortative network. The corresponding Pearson
coefficients are p = −0.004 (uncorrelated); p = 0.997 (assortative); p = −0.662 (disassortative).

doi:10.1371/journal.pone.0121794.g002

Degree Correlations Optimize Neuronal Network Sensitivity

PLOS ONE | DOI:10.1371/journal.pone.0121794 June 26, 2015 8 / 26



(20), which gives

f ðk; k0Þ ¼ Z
hki k

0�1
: ð27Þ

In the maximally assortative network, neurons with the same in-degree are connected
almost exclusively, and f(k, k0) = δ(k, k0) is a sufficient approximation of the peaks in Fig 2B.
The maximally disassortative network segregates into subnetworks where a population of neu-
rons with large in-degree is recurrently connected to a population of neurons with small in-
degree. Similar to the assortative network, the probability f(k, k0) of the disassortative network
can be approximated by employing a Kronecker delta, using a fit of the peak positions in Fig

2C, which yields k ¼ kmin �kmax

k0 . The probability f(k, k0) is then

f ðk; k0Þ ¼ dðk; kmin � kmax

k0
Þ: ð28Þ

Results for the population firing rates r̂ k corresponding to a stimulus s = 1.2 are shown in
Fig 3A together with the mean-field predictions. Theory and simulations agree very well. In the
assortative network, firing rates of high-degree populations are raised and the ones of low-
degree populations are lowered compared to the uncorrelated network. Disassortative net-
works show the opposite effect. The distribution of single-neuron firing rates P(ν) can be esti-
mated directly from the population means, if one assumes that the firing rates of all neurons in
a given k-population are equal. Then, each firing rate r̂ k occurs NP

in(k) times and this distribu-
tion of firing rates can simply be binned and normalized. This estimation is close to the actual
firing rate distribution in the network (Fig 3B). Assortativity broadens the distribution, whereas
disassortativity narrows it. Note, that the firing rate distributions appear to be power-law tailed

Fig 3. Stationary activity of correlated networks. (A) Population firing rates and (B) distribution of single neuron firing rates for a network with P(k)* k−2, k
= [10, . . ., 500] for s = 1.2 from simulations (thin full and dotted lines) and theory (thick lines).

doi:10.1371/journal.pone.0121794.g003
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in disassortative and uncorrelated networks only. Let us now consider the mean firing rate
r̂ðsÞ ¼PkP

inðkÞr̂ k as a response to a sub-threshold stimulus s< 1 for different levels of assor-
tativity. This is plotted in Fig 4 (open symbols) together with theoretical predictions (red lines).
In an uncorrelated network r̂ðsÞ ¼ 0 for small s and shows a sharp transition to sustained activ-
ity at s� 0.8, whereas assortative networks are active even for small s. The qualitative explana-
tion is as follows. The neurons with low input degree eventually stop firing when their total
input current becomes low. In uncorrelated networks this leads to a cascading failure of spiking
of stronger connected neurons. In assortative networks the failure of neurons with low in-
degree only leads to failure of the low-degree subnetwork, whereas high-degree subnetworks
sustain their recurrent activity (Fig 5). This behavior is reminiscent of findings for percolation
in complex networks: At low densities of links, assortative networks remain robust under ran-
dom failure [48]. It is important to mention that the network may exhibit bistability for very
low firing rates, where the mean-field solutions exhibit an additional unstable branch below the
stable one that is shown in our results. In practice, bistability leads to hysteresis, where network
dynamics depends on previous activity. This effect is discussed extensively in [16, 49]. How-
ever, we assume the network to operate in the stable upper branch exclusively by adjusting its
sustained activity to changes in the stimulus instead of switching on and off. Networks with
strong recurrent activity and the assortative networks considered below will sustain their activ-
ity even when the stimulus drops to zero.

Assortativity Optimizes Information Transfer of Heterogeneous
Networks
Our results show that assortativity has a strong impact on the input/output relationship of the
model network for small inputs. Here, we are particularly interested in the ability of the

Fig 4. Mean firing rate of the uncorrelated and correlated networks in the sub-threshold regime from
simulations (open symbols) andmean-field theory (straight red lines). The joint degree distributionsNkk0

for the mean-field calculations were sampled from the adjacency matrices of the constructed networks
(N = 105).

doi:10.1371/journal.pone.0121794.g004
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network to obtain information about stimuli in this regime and how this ability is affected by
assortativity. We quantify the efficacy of this information transfer by the input-output mutual
information [50]:

I ¼
Z

ds
Z

drPðsÞPðrjsÞ log 2

PðrjsÞ
PðrÞ

� �
: ð29Þ

Here P(s) is the probability distribution of inputs, which we here assume as an ensemble of
stationary stimuli presented to the network, P(rjs) is the probability distribution of network
responses conditioned on the stimulus strength, and P(r) is the corresponding unconditional
probability. The distribution P(r) could be obtained by collecting a large number of network
responses r, when the network is subjected to the distribution P(s) of stimuli over time.

The network response r is the average firing rate of n randomly chosen neurons, since only
a finite fraction of neurons feeds-forward information to a different area of the nervous system
for further processing. This response is noisy, because it is sampled from a heterogeneous dis-
tribution of single-neuron firing rates. For sufficiently large n the variability can be approxi-
mated by a Gaussian with mean r̂ and variance σ2/n, where σ2 is the variance of mean firing
rates in all k-populations

PðrjsÞ ¼ PnðrjsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2=n
p exp

½r � r̂ðsÞ�2
2s2ðsÞ=n

� �
: ð30Þ

Exemplary plots of P(rjs) from simulations are shown in Fig 6 together with the approxima-
tion of Eq (30). Since the distribution of single-neuron firing rates is broadened by assortativity
(Fig 3B), the corresponding response r is more noisy in the assortative network, arguing that
the assortative network is less reliable in encoding the signal. However, assortative networks
respond to very weak stimuli (s< 0.8), where the uncorrelated network cannot fire, which

Fig 5. Mean firing rate of the k-populations for decreasing sub-threshold stimulus s. (A) Uncorrelated network, p = 0.000 and (B) strongly assortative
network, p = 0.996.

doi:10.1371/journal.pone.0121794.g005
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results in increased sensitivity. Therefore, a quantitative approach is needed to draw conclusion
about the signal transmission capabilities of the networks. We calculate I using a small noise
approximation [51] by expanding Eq (29) as a power series in s=

ffiffiffi
n

p

I ¼ �
Z

dr̂Pðr̂Þ log 2½Pðr̂Þ� �
1

2

Z
dr̂Pðr̂Þ log 2½2pes2ðr̂Þ=n� þ � � � ; ð31Þ

where the first term (which we denote as H) approximates the response variability, or entropy,
and the second term corresponds to the noise entropy Hnoise so that I =H −Hnoise. Higher
order terms vanish as noise decreases. Pðr̂Þ is the probability distribution of mean rates r̂ in the
absence of sampling noise when the network is exposed to a distribution P(s) of stimuli

Pðr̂Þ ¼
Z

dsPðsÞd½r̂ � r̂ðsÞ� ¼ dr̂ðsÞ
ds

� ��1

P½s ¼ sðr̂Þ�: ð32Þ

We make the simplifying assumption, that all sub-threshold stimuli are equally likely, P(s) =
const, 0< s< 1. Then, Pðr̂Þ follows from the average response function r̂ðsÞ, Fig 4, and the
associated sampling noise. We found that I is optimized for networks with intermediate degree
of assortativity, p* 0.6 (Fig 7, top row). First, some amount of assortativity increases

Fig 6. Distribution P(rjs) of network responses to a stimulus s. Normalized histogram of 105 averages of n random individual neuron firing rates
(symbols), and Eq (30) (lines). For evaluation of Eq (30) we calculated the mean stationary network activity r̂ ðsÞ using the self-consistent Eq (5). The
corresponding variance of the sampling noise σ(s)2/n was obtained from the approximate stationary firing rate distribution as previously discussed for Fig 3B.
The distributions are broadened by assortativity, corresponding to larger noise of the response of assortative networks.

doi:10.1371/journal.pone.0121794.g006
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sensitivity to weak stimuli, which is related to the fact that the response curves in Fig 5 assume
a more linear functional dependence. Second, in extremely assortative networks, the network
response approaches an almost constant value for different stimuli and thus does not contain
much information about the inputs. Additionally, the increase in noise entropy with increasing
assortativity reduces I even further (Fig 7, bottom row), indicating that the network response is
too noisy to reliably transmit information about the stimulus.

In conclusion, the ability of the neuronal network to transmit information is characterized
by the shape of the response curve r̂ðsÞ and the variance σ(s) of the firing rate distribution of
the neurons. These features are largely controlled by the degree distribution and degree correla-
tions: Increasing the mean degree of the network results in stronger recurrent activity and a
decreased stimulus threshold at which the network begins to fire. In addition, the variance of

Fig 7. Information transfer of assortative networks. (Top row) Mutual information I = H − Hnoise of the input/output relation is optimized for intermediate
assortativity. (Bottom row) Response variabilityH (stars) and noise entropyHnoise (open symbols). Network output is quantified by the average firing rate of n
randomly chosen neurons. (A) Numerical simulations of networks with N = 105 neurons and (B) calculations with the population-density approach, where Nkk0

is sampled from the adjacency matrices of the correlated networks.

doi:10.1371/journal.pone.0121794.g007
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the degree distribution and degree correlations have a large impact on the shape of the response
curve and the firing rate distribution. A larger variance of the degree distribution results in a
broader firing rate distribution and increased noise in the signal transmission. Assortative
degree correlations further increase the output noise, but also smooth the response curve and
increase the sensitivity of the network to low stimuli due to a decreased stimulus threshold. In
the following, we investigate the signal transmission capabilities of the networks with respect to
changes in their degree distributions and discuss the robustness of our findings.

In Fig 8 we show the response curves and the associated standard deviation of the output
s=

ffiffiffi
n

p
for n = 5000 of three model networks with power-law distribution between kmin = 10

and kmax = 500 and increasing exponents α = (−2.3, −2, −1.7). The response curves and vari-
ances of the firing rate distributions were calculated with the mean-field approach. The joint
degree distributions Nkk0 were sampled from the adjacency matrices of the networks. The
means hki and variances s2

P of the degree distributions are shown in Table 1. The first network
with large negative exponent α = −2.3 and small mean degree fires at very low rates (Fig 8A),

Fig 8. Response curves of three model networks with power-law in-degree distribution Pin(k)* kα, k = [10, . . . 500] and slightly different exponents
α. For each network we show the response curves for four different levels of assortativity (thin black lines). The thick light red lines indicate ±1SD of the noise
of the output from n = 5000 neurons. (A) Model network with large negative exponent of α = −2.3 and small mean degree. The network responses to sub-
threshold stimuli are very weak due to small recurrent activity. The uncorrelated network (p = 0) begins to fire above the stimulus threshold of s > 0.8. This
threshold is reduced for increasing assortativity, and the response becomes very noisy. (B) Model network with intermediate exponent α = −2 and
intermediate mean-degree. The network responses are stronger than for α = −2.3, but the stimulus threshold for the uncorrelated network is similar at s’ 0.8.
(C) Model network with small negative exponent and large mean degree. The network fires at high rates and has a low stimulus threshold s’ 0.55 due to
strong recurrent activity.

doi:10.1371/journal.pone.0121794.g008

Table 1. Mean and variance of the in-degree distribution Pin(k)* kα, and kmin = 10 and kmax = 500.

α hki s2
P

-2.3 29 1707

-2 38 3283

-1.7 54 6001

doi:10.1371/journal.pone.0121794.t001
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which corresponds to a low response variability. Assortativity changes the shape of the
response curve and decreases the stimulus threshold, but strongly increases the output noise.
The network with small negative exponent α = −1.7 and large mean degree fires at high rates,
and the stimulus threshold for the uncorrelated network is shifted to a lower value, s’ 0.55
(Fig 8C). Hence, this network has a large response variability even when no in-degree correla-
tions are present. For this network, weaker levels of assortativity are sufficient to reshape the
response curve and lower the stimulus threshold even further. For all three networks, the noise
level is strongly increased by assortativity.

In the following we compare the three networks with respect to their input-output mutual
information (Fig 9). First, the maximum value of mutual information increases slightly for
increasing α (top row in Fig 9), primarily because increasing α increases the mean degree,

Fig 9. Information transfer of the correlated networks. (Top row) Mutual information I = H − Hnoise of the input/output relation of the networks. (Bottom row)
EntropyH (stars) and noise entropyHnoise (open symbols). (A) The network with large negative exponent α = −2.3 has an optimum in information transfer for
slightly higher value of p compared to the other networks. Additionally, its signal transmission capabilities are poorer which is characterized by lower values
of I that result from small entropyH due to low firing rates. (B) The network with intermediate exponent α = −2.3 has its signal transmission optimized at an
intermediate value of assortativity, p’ 0.6. (C) The network with small negative exponent α = −1.7 exhibits the most efficient signal transmission. The mutual
information peaks for a relatively low value of assortativity p’ 0.4, which means that the uncorrelated network is already quite efficient in signal transmission.

doi:10.1371/journal.pone.0121794.g009
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leading to larger recurrent activity and higher firing rates of the neurons. Increased firing rates
correspond to a larger response variability of the networks, e.g. the range of mean responses for
α = −2.3 (0–35 Hz) is smaller than for α = −2 (0–50 Hz), Fig 8A and 8B. However, increasing α
also increases the variance of the degree distribution, and hence, increases the noise of the net-
work response to a signal. The larger response variability and noise are represented by a larger
entropy H and noise entropy Hnoise, respectively (bottom row in Fig 9). Second, increasing α
shifts the peak position of the mutual information to lower p. This indicates that less assortativ-
ity is needed for networks with larger mean-degree and variance of the degree distribution to
optimize the information transfer. We conclude that there is a range of network configurations
that have their signal transmission optimized by assortative degree correlations, but the opti-
mal level of assortativity depends on the degree distribution of the network. Finally, the opti-
mum vanishes for degree distributions with extremely small or extremely large mean and
variance (data not shown). In the former case the mutual information of assortative networks
is greatly reduced by exceeding noise levels, because only very few strongly connected neurons
sustain firing for small inputs and the vast majority of neurons do not fire. In the latter case,
most of the neurons already sustain firing for low inputs in the uncorrelated network, so that
assortative degree correlations do not increase the response variability.

Discussion
Recurrent connectivity is an important property of neuronal circuits, which shapes the dynam-
ics of a complex neuronal network in combination with the external input [29]. Although
inter-area connectivity plays a dominant role for cognitive functions, in many parts of the ner-
vous system, particularly the neocortex, excitatory recurrent activity is expected to play a signif-
icant role in neuronal computations [29]. One of the most interesting functions of feedback
through synaptic links within a circuit is the amplification of small input signals. The general
questions we pursue are: (i) How does the sensitivity to low-amplitude signals depend on the
network properties and (ii) Can optimization in the topology be achieved for a fixed number of
connections in the network? As a first step in this analysis we here presented a generalized
mean-field approach to calculate the firing rates of excitatory networks with different topolo-
gies of the recurrent connections. Our method is based on dividing the network into popula-
tions of neurons with equal in-degrees and solving a system of coupled self-consistent
equations for all those populations. In general, the method can be applied to all types of com-
plex neuronal networks that have a limited in- and out-degree and are large and random
enough so that the central limit theorem can be applied for each population of neurons.

The structural properties we consider are captured by a single matrix, the joint degree distri-
bution Nkk0, which is the average number of connections from a k0-neuron to a k-neuron.
Hence, the impact on network topology on its steady-state dynamics can be easily assessed by
examining this distribution. For low external input, the network sustains firing through recur-
rent activity and the effect of network topology on dynamics becomes very pronounced. In this
regime, assortativity increases the sensitivity of a network to very low external inputs, where
uncorrelated networks or disconnected neurons would not fire. This effect is similar, but not
equivalent, to the smoothing of the single neuron response curve due to increased noise, e.g.
from balanced excitatory and inhibitory background activity [52]. Increased noise improves
the network sensitivity to small inputs so that less assortativity would be needed to optimize
information transfer. In contrast to balanced background activity, purely excitatory back-
ground activity would shift the reponse curve to lower values of s with a similar effect: less
assortativity would be needed to optimize signal transmission. However, the strategy of
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neuronal networks to amplify low inputs could be based on a combination of sustained recur-
rent activity and background noise.

We quantified the information transfer between sub-threshold stimuli and network
response by their mutual information, assuming that each sub-threshold stimulus is equally
likely. In this case, assortativity increases the ability of our model network to transfer sub-
threshold signals due to the improved stimulus-response relationship. In a more general sense,
degree correlations could be used to tune the stimulus-response relationship to the specific dis-
tribution of stimuli. To the aim of enhancing sub-threshold sensitivity of the network through
sustained firing, a much simpler strategy of the brain would be to raise recurrent activity by
increasing the mean connectivity of the network. However, tuning the network dynamics by
degree correlations has two major advantages: First, it does not requires additional axons and
synapses, which optimizes wiring economy and second, the mean firing rate of the network is
lower, which decreases energy consumption [53].

Our finding that assortativity increases signal transmission is consistent with recent studies,
where assortativity has been found to enhance neural network memory in noisy conditions
[54] and increases the information content of heterogeneous directed networks [41]. In con-
trast, assortativity is known to decrease synchronizability and robustness of complex networks
[35, 55, 56]. This contradiction can be explained by the different conditions applied to the net-
works [54]: Assortativity tends to enhance network performance in bad conditions (low den-
sity of links and high noise), whereas disassortative networks perform best in good conditions
(high density of links and low noise). In our model ‘bad conditions’ are imposed by low level of
external inputs. For strongly heterogeneous networks, an excess of assortativity leads to a
decrease of mutual information, partly because of an increase in noise in the firing rate. In this
case, there exists an optimum in assortativity with respect to information transfer, which is
consistent with recent estimates from neuronal cultures [37, 38].

In another related study, Vasquez, Heouweling and Tiesinga [12] investigated the sensitivity
and stability of networks with correlations between in- and out-degrees per neuron. They find
that disassortative in-out-degree correlations improve stability of the networks and have no
impact on the network sensitivity. While the sensitivity of their network model also relies on
amplification of the signal by recurrent activity, they use background noise that drives neuronal
activity and is independent of the stimulus. Hence, in their model the network does not operate
in the sub-threshold regime, where neurons would not spike without recurrent activity. Con-
trary to them, the stimulus in our model is the only source of external driving force to the net-
work, so that sustained recurrent activity is important to activate the neurons. Moreover, they
investigated correlations between in- and out-degrees of the neurons and assume no correla-
tions between in-degrees of connected neurons, whereas in our study in- and out-degrees are
positively correlated and correlations between in-degrees of connected neurons are considered.
Their finding that various in-out-degree correlations have no impact on the sensitivity of the
networks are thus no contradiction to our results and may even generalize them.

We examined highly simplified model networks so that we could focus on their connectivity
structure. Possibly the most relevant feature we neglected in our study is inhibitory connectiv-
ity. Our model could easily be extended to include inhibitory neurons by treating them as sepa-
rate populations. However, one would have to decide weather to focus on the structural
properties of the excitatory sub-network [13], or to include the inhibitory neurons as a random
subset of neurons in the network, without changing the statistics of the connections [15].
Examining the population dynamics of inhibitory and excitatory neurons goes beyond the
scope of this paper, but the dynamics of mixed networks with degree correlations could be
approached in further studies. So far, we can only speculate how our results would be affected
by including inhibitory neurons in the model: The most important effect leading to an
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increased signal transmission of correlated networks is their improved ability to sustain firing
for low inputs. In a mixed excitatory-inhibitory network (EI), assortativity in the excitatory
sub-network (E) would possibly create a similar effect, because recurrent excitatory activity is
increased for highly connected neurons, while inhibitory activity remains very low. In a recent
study of Roxin [13], the analysis of a rate model revealed that a broad in-degree distribution of
E-to-E connections in an EI network promotes oscillations because of higher firing rates of
strongly connected neurons: These neurons inject large excitatory currents into the network
and raise the mean recurrent activity of the whole excitatory population. Hence, we could
expect that assortativity further increases the mean firing rate of the excitatory population in
these networks. Another study by Pernice, Deger, Cardanobile and Rotter [15] showed that
assortativity increases the firing rate of a network, where a random fraction of the neurons are
inhibitory.

On a final note, while our results show that intermediate assortative connectivity correla-
tions optimize signal transmission, it is important to stress that the neuronal activity itself is
assumed to be uncorrelated. Research focusing on correlations of activity in uncorrelated net-
works also shows that moderate levels of correlation can be linked to advantages in information
processing [36, 57, 58]. On the one hand, highly correlated activity occurs in networks with
strong recurrent excitation and is associated with decreased information transfer [59]. On the
other hand, uncorrelated activity in networks with weak recurrent excitation is insufficiently
small to carry significant information. Consequently, optimal information transfer has been
found in networks of intermediate excitability which operate at criticality [36, 60, 61]. Our
results are consistent with these findings: Activity of uncorrelated networks is too low to con-
tain information about low inputs, whereas activity in highly assortative networks is not sensi-
tive enough to changes in the stimulus for optimal information transmission.

Materials and Methods

Fokker-Planck Description of Complex Networks of Leaky IF Neurons
We would like to describe a population of leaky integrate-and-fire (LIF) neurons that form a
network with assortative (or disassortative) property. First, we need to characterize the network
statistically with the aim to extract appropriate means and variances of connectivity. Generally
we will classify the neurons according to their in-degree, which will be denoted by k. Thus, the
network consists of neural subpopulations distinguished by k. Now, we count the number of
directed links Ekk0 that originate from neurons with in-degree k0 (k0-neurons) and go into neu-
rons with in-degree k (k-neurons). We are interested in the mean number of k0-neurons that
synapse into a random k-neuron

Nkk0 ¼
kEkk0P
k00
Ekk00

: ð33Þ

We will refer to Nkk0 as the joint degree distribution.
k-Population Density Approach. In the following we want to express the dynamics of a

network of integrate and fire neurons subject to the usual evolution equation of their mem-

brane potential V ðkÞ
i ðtÞ. Here the superscript k denotes the in-degree of the neuron and i loops

over the neurons of the k-population. Then, the equation for the potential is

t
dV ðkÞ

i ðtÞ
dt

¼ �V ðkÞ
i ðtÞ þ RIðkÞi ðtÞ ð34Þ

where τ = RC is a time constant related to an RC-circuit. When the voltage reaches a threshold
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θ we assume that a δ-function spike is emitted by the neuron and the voltage is reset to a value
Vreset for a constant refractory time τref.

The synaptic input current IðkÞi ðtÞ is given by

RIðkÞi ðtÞ ¼ tJ
X
k0

X
j

X
l

dðt � tðk
0Þ

j;l Þ: ð35Þ

Here J is the efficacy of synaptic connections, j loops over the k0-neurons that synapse onto

the k-neuron i (here we assume all synapses to be of equal strength) and tðk
0Þ

j;l is the arrival time

of the l-th spike of the j-th k0-neuron. Below threshold, the Eq (34) can be integrated analyti-
cally:

V ðkÞ
i ðtÞ ¼ J

X
k0

X
j

X
l

e�ðt�tðk
0 Þ

j;l
Þ=tHðt � tðk

0Þ
j;l Þ; ð36Þ

whereH(�) is the Heaviside function. We will now follow the population density approach as
described by Deco, Jirsa, Robinson, Breakspear and Friston [31], but, different from them, we
treat neurons as distinguishable by their in-degree. Thus, we define the k-th probability density
by

pkðvk; tÞdvk ¼ Prob V ðkÞ
i 2 ½vk; vk þ dvk�

n o
; ð37Þ

which is the probability of a k-neuron to have a membrane potential in the interval [vk, vk
+ dvk]. We employ a Kramers-Moyal expansion to find the relevant Fokker-Planck equation.
For this purpose we need the infinitesimal evolution of the voltage

dVkðtÞ ¼ J
X
k0

Nkk0 r̂ k0 ðtÞdt �
VkðtÞ
t

dt: ð38Þ

Here, r̂ k0 ðtÞ is the firing rate of an individual neuron averaged for the k0-population. From
this equation we can determine the first two moments of depolarization

1

dt
< dVk >¼ J

X
k0

Nkk0 r̂ k0 ðtÞ �
Vk

t
: ð39Þ

and

1

dt
< dV2

k >¼ J2
X
k0

Nkk0 r̂ k0 ðtÞ ð40Þ

From this we find the Fokker-Planck equations

@pkðvk; tÞ
@t

¼ 1

2t
s2
kðtÞ

@2pkðvk; tÞ
@v2k

þ @

@vk

vk � mkðtÞ
t

� �
pkðvk; tÞ

� �
;

ð41Þ

where drift and diffusion coefficients are � vk�mkðtÞ
t

� �
and

s2
k
ðtÞ
t

	 

with the input mean and vari-

ance

mkðtÞ ¼ J
X
k0

Nkk0 r̂ k0 ðtÞt ð42Þ
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and

s2
kðtÞ ¼ J2

X
k0

Nkk0 r̂ k0 ðtÞt; ð43Þ

respectively. We should note that the derivation of the system of Fokker-Planck Eq (41) is
based on the assumption that each population can be described by a separate probability distri-
bution. In general, the system of coupled Langevin Eq (4) is equivalent to a multivariate Fok-
ker-Planck equation (see [62]). The coupled system of one-dimensional Fokker-Planck Eq (41)
can be derived from the multivariate Fokker-Planck equation by separation of variables.

Self-Consistent Equations for the Stationary Problem. The Fokker-Planck equations
can be written in a conservation-of-probability form:

@pkðvk; tÞ
@t

¼ � @Jkðvk; tÞ
@vk

; ð44Þ

with

Jkðvk; tÞ ¼ � vk � mk

t
pkðvk; tÞ �

s2
k

2t
@pkðvk; tÞ

@vk
: ð45Þ

At the voltage threshold, the stationary solution should vanish,

pkðY; tÞ ¼ 0 ð46Þ

and the probability current Jk should represent the mean firing rate, r̂ k, of the population:

@pkðY; tÞ
@Vk

¼ � 2r̂ kt
s2
k

: ð47Þ

At vk ! −1 we need for the integrability of pk

lim
vk!�1

pkðvk; tÞ ¼ lim
vk!�1

vkpkðvk; tÞ ¼ 0: ð48Þ

Finally, we need to account for the neurons leaving the threshold at time t to be reinjected at
the reset potential Vr after a refractory time τref:

@pkðvk; tÞ
@t

¼ � @

@vk
Jkðvk; tÞ þ r̂ kðt � trefÞHðvk � VrÞ½ �: ð49Þ

The stationary solution of Eqs (46–49) is

pðsÞk ðvkÞ ¼
2r̂ kt
s

exp �ðvk � mkÞ2
s2
k

� �

�
ZY�mk
sk

vk�mk
sk

H x � Vreset � mk

sk

� �
ex

2

dx:

ð50Þ
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The normalization of probability mass requires

ZY
�1

pðsÞk ðvkÞdvk þ r̂ ktref ¼ 1: ð51Þ

We solve Eqs (50 and 51) for r̂ k and find

r̂ k ¼ tref þ t
ffiffiffi
p

p ZðY�mkÞ=sk

ðVreset�mkÞ=sk

ex
2ð1þ erfðxÞÞdx

2
64

3
75

�1

¼ �kðr̂ kmin
; � � � ; r̂ kmax

; sÞ;

ð52Þ

where erfðxÞ ¼ 2ffiffi
p

p
R x

0
e�y2dx is the error function and kmin � k� kmax, with kmin and kmax

being the minimum and maximum in-degree in the network, respectively.
Note that the functions �kðr̂ kmin

; . . . ; r̂ kmax
; sÞ depend on the firing rates r̂ k of all populations

and thus couple all firing rates. A self-consistent solution of Eq (52) can be obtained by dynam-
ically solving the coupled system of equations [31]

tx
dr̂ k
dt

¼ �r̂ k þ �kðr̂ kmin
; � � � ; r̂ kmax

; sÞ; ð53Þ

where τx is a time-constant of appropriate choice (we used τx = 3 ms for our simulations)
[24, 31].

Network Model
We apply our k-population model to a network with power-law in-degree distribution P(k)*
k−γ. In real neuronal networks, the power-law dependency is always confined to a region
between a minimum and maximum degree kmin < k< kmax, where kmax cannot exceed the
number of neurons of the network. Hence, we use the following degree distribution

PðkÞ ¼ Z � k�g; kmin � k � kmax

0; else
; ð54Þ

(

with the normalization constant

Z ¼
Xkmax

k¼kmin

k�g

 !�1

: ð55Þ

We show exemplary results for the following set of parameters: γ = −2, kmin = 10, kmax =
500. Simulation parameters resemble typical values found in the cortex: τ = 20 ms, τref = 2 ms,
Vr = 10 mV, J = 0.1 mV, N = 105. The time-step of the integration is 0.01 ms and synaptic
delays Dij are drawn uniformly at random between 0 ms and 6 ms [9]. Random delays are
included to prevent synchronized cascading firing of the whole network, which is discussed
extensively in [63]. Importantly, they do not alter the steady-state Eq (52). Firing rates of the
neurons are obtained by counting their spikes in 1 s simulation.

For construction of the model network we employ the configuration model of Newman,
Strogatz, and Watts [46], which creates random networks with the desired in- and out-degree
distribution. In short, the algorithm works as follows: Each neuron of the network is assigned a
target in- and out-degree, drawn from the desired degree distribution. The target-degrees of a
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neuron can be regarded as a number ingoing and outgoing stubs. The algorithm successively
connects randomly selected in- and out-stubs until all neurons in the network match their tar-
get-degrees with no free stubs left. Self-connections and multiple connections between the
same neurons are removed. Then, degree correlations are imposed on the network by a
Metropolis algorithm [47], which swaps links according to the in-degrees of the connected
neurons. The algorithm randomly selects two links i, j, originating at neurons with in-degrees
ki, kj and going into neurons with in-degreesmi,mj (Fig 10). The targets are swapped with
probability g if the swap increases the desired in-degree correlations of the network. Respec-
tively, the targets are swapped at random with probability 1 − g, which reduces existing degree
correlations in the network. Thus, the strength of degree correlations can be adjusted by setting
a value of g between 0 (uncorrelated) and 1 (maximally correlated).

A swap increases assortativity, if

kimi þ kjmj < kimj þ kjmi: ð56Þ

A simple schematic for an link swap that increases assortative in-degree correlations is
shown in Fig 10. A swap increases disassortativity, if

kimi þ kjmj > kimj þ kjmi: ð57Þ

The swapping procedure is repeated until the network reaches a steady state. We found the
steady-state to set in at about 109 iterations for a network of size N = 105 (Fig 11).

Fig 10. Schematic of a link swap that increases assortative in-degree correlations in the network without changing the in- and out-degrees of the
nodes.

doi:10.1371/journal.pone.0121794.g010
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