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Abstract 

Background:  Angiostrongylus cantonensis is an important food-borne zoonotic parasite. Humans are non-permissive 
hosts, and this parasite develops into fifth-stage larvae (L5) in the brain and subarachnoid cavity and then induces 
eosinophilic meningitis and eosinophilic meningoencephalitis. Excretory/secretory products (ESPs) are valuable tar‑
gets for the investigation of host-parasite interactions. These products contain a wide range of molecules for penetrat‑
ing defensive barriers and avoiding the immune response of the host. Endoplasmic reticulum (ER) stress has been 
found to be associated with a wide range of parasitic infections and inflammation. ER stress can increase cell survival 
via the activation of downstream signalling. However, the mechanisms of ER stress in A. cantonensis infection have not 
yet been clarified. This study was designed to investigate the molecular mechanisms of ER stress in astrocytes after 
treatment with the ESPs of A. cantonensis L5.

Results:  The results demonstrated that A. cantonensis infection activated astrocytes in the mouse hippocampus and 
induced the expression of ER stress-related molecules. Next, the data showed that the expression of ER stress-related 
molecules and the Ca2+ concentration were significantly increased in activated astrocytes after treatment with the 
ESPs of L5 of A. cantonensis. Ultimately, we found that ESPs induced GRP78 expression via the Sonic hedgehog (Shh) 
signalling pathway.

Conclusions:  These findings suggest that in astrocytes, the ESPs of A. cantonensis L5 induce ER stress and that the 
Shh signalling pathway plays an important role in this process.

Keywords:  Angiostrongylus cantonensis, Fifth-stage larvae, Excretory/secretory products, Astrocytes, Endoplasmic 
reticulum stress, Sonic hedgehog pathway
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Background
Angiostrongylus cantonensis is an important causa-
tive agent of human cerebral angiostrongyliasis, such as 
eosinophilic meningitis and eosinophilic meningoen-
cephalitis. During infection, fifth-stage larvae (L5) can 
induce a wide range of inflammatory responses, includ-
ing eosinophil recruitment and cytokine secretion in 
the brains of humans [1, 2]. The clinical manifestations 
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include headache, fever, nausea, vomiting, neck stiff-
ness and paraesthesia. This disease is considered to be 
an endemic disease in Southeast Asia and Pacific islands 
[3, 4]. Recently, human cerebral angiostrongyliasis has 
become an emerging disease in many parts of the world, 
including China, Taiwan, Thailand, the USA, includ-
ing Hawaii, Brazil and the Caribbean islands, including 
Jamaica [5–13]. Moreover, infections have been recently 
reported in more than 30 countries [4]. Infection in 
humans is acquired by ingesting infective third-stage lar-
vae (L3) of A. cantonensis in intermediate hosts or par-
atenic hosts, such as snails, slugs, frogs, fish, freshwater 
crustaceans and vegetables [14].

The endoplasmic reticulum (ER) is an organelle that 
has multiple complex functions, including protein syn-
thesis, cellular calcium (Ca2+) storage, lipid biosynthe-
sis, and membrane biogenesis [15, 16]. The generation 
of ER stress due to the accumulation of unfolded and 
misfolded proteins in the ER may activate the unfolded 
protein response (UPR) and then induce the activation of 
related signalling pathways. When this stress can be alle-
viated, the UPR can lead to cell apoptosis [17]. First, ER 
stress activates an important molecule, glucose-regulated 
protein 78 (GRP78). GRP78, also called binding immuno-
globulin protein (BiP), is an ER stress marker and chap-
erone in the heat shock protein family [18, 19]. Under 
ER stress, the activation of GRP78 may increase cell sur-
vival through the UPR [20]. In addition, the induction 
of GRP78 may also protect cells from ER stress-induced 
apoptosis by activating Bcl-2 and inhibiting Bak, Bax and 
caspase [21, 22].

In mammalian cells, GRP78 activates three signalling 
pathways in parallel through transmembrane ER stress 
sensors (IRE1, PERK and ATF6) [23, 24]. IRE1 can induce 
the splicing of the cytoplasmic transcription factor XBP1 
to spliced XBP1 (XBP1s) and activate the gene expres-
sion of chaperones, autophagy, and inflammation. Acti-
vated PERK phosphorylates eIF2α to reduce the load of 
unfolded proteins by attenuating translation. In addition, 
the transcription factor ATF4 can stimulate autophagy 
by inducing CHOP expression. On the other hand, ATF6 
translocates to the Golgi and reduces protein accumula-
tion by upregulating XBP1 expression.

Hh has three homologs, namely, Sonic hedgehog (Shh), 
Desert hedgehog (Dhh) and Indian hedgehog (Ihh), but 
only Shh is broadly expressed in different tissues [25]. 
Sonic hedgehog (Shh) signalling plays an important role 
in animal development. Shh signalling can trigger other 
common signalling pathways. When Shh is activated and 
secreted, this protein can interact with the transmem-
brane protein Patched (Ptch). Under these conditions, 
Smoothened (Smo) and the transcription factor Glioma-
associated oncogene-1 (Gli) can be activated [26–28].

In our previous studies, we found that A. cantonensis 
infection in mice may enhance the expression of GRP78 
and that the activation of the Shh signalling pathway can 
reduce cell death via the GRP78-dependent pathway 
[29]. On the other hand, oxidative stress and cell apop-
tosis can be induced in astrocytes after treatment with 
the excretory/secretory products (ESPs) of A. cantonen-
sis fifth-stage larvae (L5). However, ROS (superoxide and 
hydrogen superoxide) and the apoptosis of astrocytes are 
decreased after Shh signalling pathway activation, and 
the activity of antioxidants is elevated after ESP treat-
ment [30]. Therefore, we demonstrated that the ESPs 
of A. cantonensis L5 can induce oxidative stress and cell 
apoptosis and that the Shh signalling plays an important 
role in the protection of astrocytes. In the present study, 
we investigated the molecular mechanisms of ER stress in 
mouse brain astrocytes after treatment with the ESPs of 
A. cantonensis L5. The results suggested that the ESPs of 
A. cantonensis L5 induce ER stress in astrocytes and that 
the activation of the Shh signalling pathway can stimulate 
GRP78 expression.

Methods
Parasite and animals
Angiostrongylus cantonensis (Taipei strain) has been 
maintained in our laboratory in Sprague-Dawley (SD) 
rats and Biomphalaria glabrata snails since 1980 [30, 
31]. SD rats and BALB/c mice were purchased from the 
National Laboratory Animal Center (Taipei, Taiwan) and 
BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan). Third-
stage larvae (L3) of A. cantonensis were collected from 
infected Biomphalaria glabrata by digestion with 0.6% 
(w/v) pepsin-HCl (pH 2–3) at 37 °C for 45 min on day 21 
post-infection [32]. Each rat or BALB/c mouse was inoc-
ulated with L3 via stomach intubation. Rats and mice 
were kept in plastic cages and provided with food and 
water ad libitum. The experimental animals were sacri-
ficed by anaesthesia with isoflurane (1 ml/min) (Panion & 
BF Biotech Inc., Taipei, Taiwan).

Preparation of ESPs of A. cantonensis
Live fifth-stage larvae (L5) of A. cantonensis were iso-
lated from the brain tissues of infected rats by anaes-
thetisation with isoflurane 21 days post-infection. After 
the worms were washed with saline, phosphate-buffered 
saline (PBS), distilled water and RPMI containing a high 
concentration of antibiotic antimycotic solution (Sigma-
Aldrich, St. Louis, USA), they were incubated in RPMI 
without fetal bovine serum (FBS) for 24, 48 and 72 h. 
The excretory/secretory products (ESPs) of A. canton-
ensis L5 were collected from the culture medium and 
concentrated with Amicon Ultra-15 10K centrifugal 
filter devices (Merck Millipore, Burlington, USA). The 
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concentration of ESPs was detected by a Bio-Rad Pro-
tein Assay Kit (Bio-Rad, Hercules, USA) according to the 
manufacturer’s instructions. These concentrated ESPs 
were utilized to treat mouse astrocytes, and mRNA and 
protein expression levels were detected in astrocytes [33].

Astrocyte culture
Astrocytes from the mouse brain (CRL-2535) were 
obtained from the American Type Culture Collection 
(ATCC) and employed in this research. The cells were 
cultured in Dulbecco’s modified Eagle’s medium (Corn-
ing, Corning, USA) supplemented with 10% foetal bovine 
serum and 100 U/ml penicillin/streptomycin in poly-
L-lysine-coated culture flasks at 37 °C under 5% CO2. 
Finally, the cells were pre-treated with recombinant Shh 
(r-Shh), Shh agonist (SAG), and cyclopamine (Cyclo) for 
1 h and then incubated with 250 μg/ml excretory/secre-
tory products (ESPs) of A. cantonensis L5 for 12 h [29].

Brain specimen collection, immunohistochemistry 
and immunofluorescence staining
After mice were completely anaesthetised by inhalation 
of 3% (v/v) isoflurane, potassium phosphate-buffered 
saline (KPBS) was perfused through the heart. The mouse 
brains were collected from the cranial cavities and then 
immediately mounted and stored in optimal cutting tem-
perature (OCT) medium (Sakura Finetek, Flemingweg, 
Netherlands) for further experiments. Before staining, 
the frozen tissue sections were fixed in 2% (w/v) PFA 
(paraformaldehyde) and permeabilized in 0.5% (v/v) 
Triton X-100. The sections were immersed in 5% (v/v) 
goat serum for 1 h and placed in primary antibody (anti-
GFAP) (Abcam, Cambridge, UK) at 4 °C overnight. The 
sections were placed in secondary antibodies at room 
temperature for 1 h. avidin-biotin-peroxidase complex 
reagent (Vector Laboratories, Inc., Burlingame, USA) 
and DAB (3.3’-diaminobenzidine) reaction solution were 
added to each section. Finally, the sections were exam-
ined by light microscopy.

RNA extraction and cDNA microarray analysis
Total RNA was extracted from astrocytes (in 10 cm cul-
ture dishes) treated with the indicated doses of ESPs of 
A. cantonensis L5 by using the GENEzol TriRNA Pure 
Kit (Geneaid, New Taipei, Taiwan). The concentration of 
RNA was determined with a spectrophotometer (OD260 
nm). The cDNA targets for hybridization were synthe-
sized by reverse transcription of each RNA sample in the 
presence of Cy5-dUTP and Cy3-dUTP (Amersham Phar-
macia Biotech, Amersham, UK). A customized A. canton-
ensis cDNA microarray (version 2.0) was utilized, and the 
data were analysed by QuantArray software (GSI Lumon-
ics, Rugby, UK).

Real‑time qPCR
First-strand cDNA was synthesized using the iScript™ 
Advanced cDNA Synthesis Kit (Bio-Rad) with random 
hexamers according to the manufacturer’s instructions. 
Real-time qPCR was performed using iQ™ SYBR® Green 
Supermix (Bio-Rad) on the CFX Connect™ Real-Time 
PCR Detection System (Bio-Rad). GAPDH was used as 
the internal control. Expression levels were detected with 
specific primers (Table 1).

SDS‑PAGE electrophoresis and western blotting analysis
Total protein extracted from astrocytes was separated 
by 12% SDS-PAGE. The separated proteins were trans-
ferred to a nitrocellulose (NC) membrane and incubated 
with antibodies against GFAP (Proteintech, Rosemont, 
USA), Shh (Abcam), Ptch (Sigma-Aldrich), Smo (Sigma-
Aldrich), Gli-1 (Sigma-Aldrich), GRP78 (Proteintech), 
PERK, eIF2 (Proteintech), phospho-eIF2 (EnoGene Bio-
tech Co., New York, USA), IRE1 (Signalway Antibody, 
Baltimore, USA), phospho-IRE1 (Boster, Pleasanton, 
USA), CHOP (Proteintech), and β-actin (Proteintech). 
The NC membrane was washed with TBS/T three times 
and then incubated with a 1:10,000 dilution of anti-rab-
bit or mouse horseradish peroxidase antibody (Sigma-
Aldrich). The bands were detected by ECL reagents 
(EMD Millipore, Burlington, USA) and captured by a 
ChemiDoc Imaging System (Bio-Rad). ImageJ software 

Table 1  Primer sequences for real-time qPCR

Gene Sequence (5’-3’)

Gfap Forward CAG​ATC​CGA​GAA​ACC​AGC​CT

Reverse GAG​CCT​GGC​AAA​CAG​GAC​TA

Grp78 Forward GTG​TGT​GAG​ACC​AGA​ACC​GT

Reverse AAC​ACA​CCG​ACG​CAG​GAA​TA

Perk Forward TTT​CCA​TCC​TCA​GCC​CCA​CA

Reverse GGC​ACT​CAC​GGA​GTC​GTA​TT

eif2α Forward TTA​CTG​TAC​GCC​TGC​GCT​TT

Reverse CTT​CTC​ACA​GCA​CCG​CAC​TA

Atf4 Forward CGG​CTG​GTC​GTC​AAC​CTA​TAA​

Reverse GGG​GTA​ACT​GTG​GCG​TTA​GA

Chop Forward GAG​CCA​GAA​TAA​CAG​CCG​GA

Reverse TCT​GCT​TTC​AGG​TGT​GGT​GG

Ire1 Forward CCC​GGG​AAA​TAC​ATG​AGC​CA

Reverse CCA​GCG​GAG​GAC​AAG​GAA​AT

Traf2 Forward AAG​TAC​CTC​TGT​TCA​GCC​TGC​

Reverse AGA​GAA​TGG​ATG​CAC​ACC​TGA​

Atf6 Forward GGG​AAT​GGA​AGC​CTA​AAG​AGGA​

Reverse ACA​GAG​AAA​CAA​GCT​CGG​TGT​

Gapdh Forward GGT​CCC​AGC​TTA​GGT​TCA​TCA​

Reverse TTT​GCC​GTG​AGT​GGA​GTC​AT
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analysis was employed to detect the optical density of the 
target proteins.

Ca2+ analysis
The concentration of Ca2+ was measured using the Cal-
cium Detection Assay Kit (Abcam). The samples were 
pre-treated with the ESPs of A. cantonensis L5 and then 
treated with Chromogenic Reagent and Calcium Assay 
Buffer at room temperature for 10 min protected from 
light. After incubation, the samples and standards were 
analysed with a spectrophotometer (OD575 nm).

Statistical analysis
Student’s t-test was employed to compare the mRNA and 
protein expression levels using GraphPad Prism 5 soft-
ware (GraphPad Software, San Diego, CA, USA). The 
data are expressed as the mean ± standard deviation. P 
< 0.05 and < 0.01 were considered statistically significant.

Results
The activation of astrocytes in mouse brains after A. 
cantonensis infection
Astrocytes are the most abundant glial cells in the cen-
tral nervous system (CNS). These cells can regulate the 
migration and differentiation of neural stem cells or other 
glial cells by secreting factors [34, 35]. Astrocytes can 
also reduce neuronal death during oxidative stress [36]. 
Glial fibrillary acidic protein (GFAP), an intermediate fil-
ament protein, is highly expressed in activated astrocytes 
[37–39]. GFAP is the most commonly used cell-specific 

marker for astrocytes in neurological studies. This 
marker can be employed to distinguish activated astro-
cytes from other brain cells. In this study, we used immu-
nohistochemical (IHC) and cDNA microarray analysis to 
detect the expression of GFAP in mouse brains after A. 
cantonensis infection. IHC staining with an anti-GFAP 
antibody revealed that the expression of GFAP in astro-
cytes was significantly higher around the hippocam-
pus after day 21 post-infection (t(4) = 7.244, P < 0.01) 
(Fig. 1a–e). On the other hand, the mRNA expression of 
GFAP in mouse brains was elevated after A. cantonensis 
infection (Fig.  1f ). These data indicated that astrocytes 
were activated in the brain after A. cantonensis infection.

The expression of ER stress‑related genes in the mouse 
brain after A. cantonensis infection
To evaluate the induction of ER stress in the mouse brain 
after A. cantonensis infection, we collected 25 third-stage 
larvae of A. cantonensis to infect BALB/c mice. cDNA 
microarray analysis was utilized to detect the mRNA 
expression of ER stress-related genes in four mouse 
brains (day 0, 7, 14 and 21 post-infection), including 
GRP78, IRE1, TRAF2, PERK, eIF2, ATF4 and CHOP. The 
data indicated a trend of elevated mRNA expression lev-
els (Fig. 2). These results suggest that ER stress is induced 
in the mouse brain after A. cantonensis infection.

ESPs induce astrocyte activation and GRP78 expression
To investigate the activation of astrocytes and GRP78 
expression, cells were treated with ESPs for 12 h. 

Fig. 1  Astrocyte activation was induced in the brains of Angiostrongylus cantonensis-infected mice. The expression of GFAP was detected in the 
hippocampus in the absence of infection (a) and on days 7 (b), 14 (c) and 21 (d) post-infection after infection with 25 third-stage larvae. e The 
expression level of GFAP in the brain was quantified by ImageJ software (**P < 0.01). f The mRNA expression level of GFAP in the brain was detected 
by microarray analysis
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Real-time qPCR and western blotting were used to moni-
tor the mRNA and protein expression levels of GFAP 
(mRNA level: t(4) = 41.44, P < 0.0001; protein level: t(4) 
= 7.892, P < 0.01) and GRP78 (mRNA level: t(4) = 4.814, 
P < 0.01; protein level: t(4) = 8.993, P < 0.001). The results 
showed that the ESPs of A. cantonensis stimulated the 
expression of GFAP and GRP78 in a dose-dependent 
manner (Fig. 3a, b).

ESPs induce the expression of ER stress‑related molecules 
in astrocytes
As shown in Fig.  3, the results demonstrated that the 
ESPs of A. cantonensis induced astrocyte activation and 
GRP78 expression. Thus, we further examined whether 
the ESPs of A. cantonensis activated the ER stress down-
stream pathway. We detected the expression of ER stress-
related genes and proteins (PERK, eIF2, ATF4, CHOP, 
IRE1, TRAF2 and ATF6) in astrocytes after treatment 
with ESPs for 12 h. The results of real-time qPCR and 
western blot analysis showed that the expression levels of 
ER stress-related molecules in astrocytes were increased 
in a dose-dependent manner (PERK: mRNA level: t(4) = 
20.48, P < 0.0001; protein level: t(4) = 9.671, P < 0.001; 
eIF2: mRNA level: t(4) = 11.51, P < 0.001; protein level: t(4) 

= 11.92, P < 0.001; ATF4: t(4) = 13.41, P < 0.001; CHOP: 
mRNA level: t(4) = 10.70, P < 0.001; protein level: t(4) 
= 8.752, P < 0.001; IRE1: mRNA level: t(4) = 32.51, P < 
0.0001; protein level: t(4) = 8.797, P < 0.001; TRAF2: t(4) 
= 38.43, P < 0.0001; ATF6: t(4) = 4.841, P < 0.01) (Fig. 4a, 
b). These data indicated that the ESPs of A. cantonensis 
induce the elevation of ER stress.

ESPs induce Ca2+ release in astrocytes
Some previous studies demonstrated that a loss of Ca2+ 
cellular homeostasis can induce ER stress and ER stress-
related apoptosis [40–42]. To examine whether the ESPs 
of A. cantonensis induce the elevation of the Ca2+ con-
centration in astrocytes, we used the calcium detection 
assay kit to detect the concentration of Ca2+ in differ-
ent dose of ESPs treatment (0, 31.3, 62.5, 125 or 250 μg/
ml). The results showed that the concentration of Ca2+ 
was increased in astrocytes in a dose-dependent manner 
(2.92 to 3.58 mM) (t(4) = 11.39, P < 0.001) (Fig. 5).

ESPs induce the expression of GRP78 via the Shh signalling 
pathway
To determine whether Shh signalling can induce ER 
stress generation in astrocytes after treatment with the 

Fig. 2  Angiostrongylus cantonensis infection stimulates the expression of ER stress-related molecules in the mouse brain. Mouse brains were 
collected from A. cantonensis-infected mice on days 0, 7, 14 and 21 post-infection. Then, the mRNA expression levels of ER stress-related molecules 
were detected by cDNA microarray analysis
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ESPs of A. cantonensis, cells were pre-treated with a 
Smo agonist (SAG), recombinant Shh (r-Shh), and an 
Shh pathway inhibitor (cyclopamine) and then treated 
with ESPs. First, we wanted to evaluate the effectiveness 
of an activator and inhibitor on the Shh signalling path-
way. Western blotting analysis was used to confirm the 
protein expression of Shh pathway-related molecules, 
including Shh-N, Ptch, Smo, and Gli-1. The data showed 
that the expression of Shh pathway-related proteins was 
elevated in astrocytes after SAG (Shh-N: t(4) = 5.908, P 
< 0.01; Ptch: t(4) = 7.054, P < 0.01; Smo: t(4) = 23.42, P < 
0.0001; Gli-1: t(4) =16.95, P < 0.0001) and r-Shh treatment 
(Gli-1: t(4) = 26.93, P < 0.0001). Conversely, the expres-
sion of Shh pathway-related proteins was decreased by 
cyclopamine treatment (Shh-N: t(4) = 9.347, P < 0.001; 
Ptch: t(4) = 18.12, P < 0.0001; Smo: t(4) = 6.351, P < 0.01) 
(Fig. 6). Next, real-time qPCR and western blotting anal-
ysis were employed to detect the expression of GRP78 in 

astrocytes after treatment with the ESPs of A. cantonen-
sis. The results showed that the expression level of GRP78 
was significantly changed following Shh pathway activa-
tion (SAG: t(4) = 5.989, P < 0.01; r-Shh: t(4) = 6.600, P < 
0.01) or inactivation (mRNA level: t(4) = 8.710, P < 0.001; 
protein level: t(4) = 4.743, P < 0.01) after ESPs treatment 
(Fig. 7). These data indicate that the ESPs of A. canton-
ensis L5 induced ER stress in astrocytes through the Shh 
signalling pathway.

Discussion
In the life-cycle of A. cantonensis, the first-stage larvae 
(L1) are released into the faeces of the definitive host 
(rat). L1 in the faeces can infect the intermediate host 
and become third-stage larvae (L3). When humans are 
infected with A. cantonensis by eating L3 in intermediate 
hosts or paratenic hosts, infective L3 can penetrate and 
migrate into the central nervous system (CNS) through 

Fig. 3  Excretory/secretory products of Angiostrongylus cantonensis L5 stimulate astrocyte activation and GRP78 expression. Cells were treated with 
0, 31.3, 62.5, 125 or 250 μg/ml excretory/secretory products (ESPs) of A. cantonensis L5 for 12 h. The mRNA (a) and protein (b) expression levels 
of GFAP and GRP78 were detected by real-time qPCR and western blotting. The data are expressed as the mean ± SD from three independent 
experiments (n = 3). *P < 0.05 and **P < 0.01 compared with cells treated with 0 μg/ml ESPs of A. cantonensis L5 for 12 h
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the circulatory system. Afterwards, L3 develop into 
fifth-stage larvae (L5) and remain in the CNS of the host 
indefinitely. In this condition, eosinophilic meningitis 

and eosinophilic meningoencephalitis can be induced in 
the brain of the host [33]. In our histopathological study, 
we found that L5 were surrounded by eosinophils in the 
anterior cerebral fissure, hippocampus, posterior cerebral 
fissure, and cerebellar fissure on day 14 post-infection 
[43]. On the other hand, A. cantonensis infection can 
induce a wide range of pathological changes in the CNS, 
including infiltration of eosinophils and congestion in the 
meninges, infiltration of lymphocytes and eosinophils 
in the meninges and choroid plexus, and necrosis and 
perivascular cuffing of lymphocytes in the brain paren-
chyma [44]. In this study, we also demonstrated that 
astrocytes were significantly activated in the hippocam-
pus after A. cantonensis infection.

In the present study, the experiments were performed 
to determine the influence of the ESPs of A. cantonensis 
L5 in mouse astrocytes. The excretory/secretory products 
(ESPs) of nematodes, trematodes and cestodes contain a 
wide range of molecules, including proteins, lipids, gly-
cans, and nucleic acids, and they can aid in the penetra-
tion of host defensive barriers, the avoidance of the host 
immune response and establishment and survival in host 

Fig. 4  Excretory/secretory products of Angiostrongylus cantonensis L5 stimulate the activation of ER stress-related pathways in astrocytes. Cells 
were treated with 0, 31.3, 62.5, 125 or 250 μg/ml excretory/secretory products (ESPs) of A. cantonensis L5 for 12 h. The mRNA (a) and protein (b) 
expression levels of ER stress-related molecules were detected by real-time qPCR and western blotting. The data are expressed as the mean ± SD 
from three independent experiments (n = 3). *P < 0.05 and **P < 0.01 compared cells treated with 0 μg/ml ESPs of A. cantonensis L5 for 12 h

Fig. 5  Excretory/secretory products of Angiostrongylus cantonensis 
L5 stimulate calcium secretion in astrocytes. Cells were treated with 0, 
31.3, 62.5, 125 or 250 μg/ml excretory/secretory products (ESPs) of A. 
cantonensis L5 for 12 h. The concentration of calcium was measured 
by the Calcium Assay Kit. The data are expressed as the mean ± SD 
from three independent experiments (n = 3). **P < 0.01 compared 
with cells treated with 0 μg/ml ESPs of A. cantonensis L5 for 12 h
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tissues [45–49]. ESPs are also useful targets for investi-
gating the interaction between parasitic helminths and 
hosts [50–52]. In studies on the ESPs of A. cantonensis, 
proteomic analysis has been employed to determine the 
composition of ESPs in adults. Aspartyl protease inhibi-
tor, cathepsin B-like cysteine proteinase, haemoglobi-
nase- type cysteine proteinase, and heat shock protein 

70 have been detected in ESPs [53]. On the other hand, 
our study identified approximately 51 protein spots and 
found immunoreactivity for protein disulfide-isomerase, 
a putative aspartic protease, and annexin in A. cantonen-
sis L5 [33]. Here, we found that the ESPs of A. canton-
ensis L5 can stimulate the ER stress generation and the 
Ca2+ concentration in activated astrocytes.

Fig. 6  Evaluation of the effectiveness of an activator or inhibitor on the Shh signalling pathway. Cells were pre-treated with recombinant Shh 
(r-Shh), Shh agonist (SAG) and cyclopamine (Cyclo) for 1 h, then incubated with 250 μg/ml excretory/secretory products (ESPs) of A. cantonensis 
L5 for 12 h. The protein expression levels were detected by western blotting. The data are expressed as the mean ± SD from three independent 
experiments (n = 3). #P < 0.01 compared with the control; **P < 0.01 compared with cells exposed to ESPs
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ER stress has been found to be associated with a wide 
range of parasitic infections, including Trichinella spi-
ralis, Toxoplasma gondii, Trypanosoma brucei and Plas-
modium falciparum, and inflammation [54–58]. Some 
studies on parasitic infections have demonstrated that 
parasites can induce ER stress and subsequent cell apop-
tosis through the upregulation of GRP78 and caspase 3 
expression in infected hosts [59–61]. However, some 
studies have shown that under damaging pathological 
conditions, GRP78 has protective effects on tissues or 
organs via Bcl-2 activation [62, 63]. In the central nerv-
ous system (CNS), the blood-brain barrier (BBB), which 
is composed of endothelial cells and astrocytes, is present 
at blood vessels. This barrier separates the circulating 
blood from brain tissue and regulates CNS homeostasis. 
The BBB allows the diffusion of only small hydrophobic 
molecules (O2, CO2 and hormones) [64]. Several studies 
on parasites have demonstrated that pathogens such as 
Toxoplasma gondii, Toxocara canis, Trypanosoma brucei 
spp. and malaria can penetrate into the CNS by causing 
BBB dysfunction [65–67]. Some studies on A. cantonensis 
have found that matrix metalloproteinase induces BBB 
breakdown and inflammation in cerebral angiostron-
gyliasis [68, 69]. In this study, we also found that the ESPs 
of A. cantonensis L5 induced the expression of GRP78 
and downstream ER stress pathways, including the IRE1, 
PERK and ATF6 pathways in mouse astrocytes.

Finally, some studies have shown that the Shh pathway 
has a protective effect on the BBB. Astrocyte-derived Shh 
proteins can upregulate BBB formation through the stim-
ulation of tight junction protein expression and inhibit 
proinflammatory cell entry [70–72]. Moreover, Shh sig-
nalling protects neurons by inhibiting cell apoptosis in 

oxidative stress and brain injury. Shh signalling can ele-
vate the expression of antioxidants and anti-apoptotic 
proteins, including superoxide dismutase, glutathione 
peroxidase and Bcl-2 [73–77]. In our study, these data 
indicated that the Shh pathway influenced ER stress by 
regulating GRP78 expression after treatment with the 
ESPs of A. cantonensis L5 in astrocytes.

Conclusions
In conclusion, this study found that the ESPs of A. can-
tonensis L5 induce ER stress, upregulate the expression 
of GRP78 and then activate three ER stress-related path-
ways, including the IRE1, PERK, and ATF6 pathways. 
On the other hand, the sonic hedgehog signalling path-
way plays an important role in protecting astrocytes by 
increasing GRP78 expression.
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