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Despite being of fundamental importance and potential interest for topological quan-
tum computing, spin-triplet superconductors remain rare in solid state materials after
decades of research. In this work, we present a three-particle mechanism for spin-triplet
superconductivity in multiband systems, where an effective attraction between doped
electrons is produced from the Coulomb repulsion via a virtual interband transition
involving a third electron [V. Crépel, L. Fu, Sci. Adv. 7, eabh2233 (2021)]. Our theory
is analytically controlled by an interband hybridization parameter and explicitly demon-
strated in doped band insulators with the example of an extended Hubbard model. Our
theory of exciton-mediated pairing reveals how, as a matter of principle, a two-particle
bound state can arise from the strong electron repulsion upon doping, opening a viable
path to Bose–Einstein condensate (BEC)–Bardeen–Cooper–Schrieffer (BCS) physics in
solid state systems. In light of this theory, we propose that recently discovered dilute
superconductors such as ZrNCl, WTe2, and moiré materials can be spin-triplet and
compare the expected consequences of our theory with experimental data.
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Spin-triplet superconductors display a plethora of unconventional phenomena, including
multicomponent order parameter, fractional vortices (1, 2), Majorana fermions (3), and
topological boundary modes (4, 5). Further interest in spin-triplet superconductors is
fueled by their prospect as a material platform for topological qubits (6–9). However,
triplet superconductors are rare to find. Inspired by superfluid helium-3 (10), the search
for triplet pairing has traditionally been focused on nearly ferromagnetic metals, such as
Sr2RuO4 (11), UPt3 (12), and UTe2 (13, 14). In recent years, anisotropic spin-triplet
pairing has also been discovered in superconducting doped topological insulators such as
CuxBi2Se3 (15–18), where strong spin-orbit coupling plays an important role (19–22).
While significant progress has been made, the pairing symmetry and pairing mechanism
of these superconducting materials are not yet completely understood.

In this work, we introduce an electronic mechanism for spin-triplet superconductivity
in doped insulators, where the pairing of doped electrons arises from interband electronic
effects. By developing a controlled hybridization expansion, we show that an attractive
interaction between two conduction electrons arises from virtual interband transition, as
illustrated in Fig. 1A. Since this mechanism involves two electrons forming the pair and a
third one undergoing a virtual interband transition, we dub it “three-particle mechanism”
for superconductivity (23). Equivalently, we may view that the pairing of doped electrons
is assisted by virtual excitons.

The idea of excitons as a replacement of phonon to mediate superconductivity has a long
history (24–27). However, experimental evidence of exciton-mediated superconductivity
remains elusive. A major challenge is that most proposals rely on metal layers on a separate
excitonic medium, which often result in weak coupling between conduction electrons and
virtual excitons. Moreover, theoretical works on this subject have only considered s-wave
pairing, which is usually disfavored in electron systems with strong repulsive interaction.
Last but not the least, the large energy scale of intermediate states involving interband
excitations means that the induced interaction is nonretarded, in contrast to phonon-
mediated pairing. Thus, new theoretical methods are needed to tackle the problem of
superconductivity from repulsive interaction in multiband systems.

Our work solves the above problems and challenges. We study multiband systems that
naturally host both excitons and conduction electrons, interacting strongly with each other
by electrostatic forces. Using a two-band Hubbard model as an example, we show with
exact solutions that virtual interband effects lead to spin-triplet pairing of two doped
electrons in a band insulator. The spin-triplet electron pair naturally avoids the large
Coulomb repulsion at short distance.

Since our hybridization expansion method is nonperturbative in the interaction
strength, we obtain an asymptotically exact theory of strong-coupling superconductivity at
low doping, without distractions from other competing states and without requiring any
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bosonic glue. Our theory provides a mechanism whereby super-
conductivity arises upon infinitesimal doping of a band insulator.
It predicts a direct transition from a band insulator to a super-
conductor without single-particle gap closing and a Bose–Einstein
condensate (BEC)–Bardeen–Cooper–Schrieffer (BCS) crossover
as a function of doping concentration.

Our theory sheds light on unconventional superconductiv-
ity behaviors in doped band insulators. We shall focus on two
materials: electron-doped ZrNCl and WTe2, which both super-
conduct at very low doping. Remarkably, a BEC–BCS crossover
has recently been observed in two-dimensional ZrNCl (28). In
monolayer WTe2, a direct insulator–superconductor transition
was found under electrostatic gating (29, 30). We will compare
our theoretical predictions of spin-triplet superconductivity with
the experimental data on these dilute superconductors. In partic-
ular, we highlight the observed increase of Tc in WTe2 under a
small in-plane magnetic field as a strong evidence for spin-triplet
superconductivity.

Illustrative Model

To illustrate the interband electronic mechanism for superconduc-
tivity, we consider a two-band Hubbard model on the honeycomb
lattice with staggered potential on A/B sites and extended interac-
tions. The Hamiltonian takes the form

H=− t0
∑

〈r ,r ′〉,σ
(c†r ,σcr ′,σ + hc) +

Δ0

2

[∑
r∈B

nr −
∑
r∈A

nr

]

+ UA

∑
r∈A

nr↑nr↓ + UB

∑
r∈B

nr↑nr↓ + V0

∑
〈r ,r ′〉

nrnr ′ ,

[1]

where Δ0 is the staggered sublattice potential, UA and UB are
on-site interactions, and V0 is the nearest-neighbor repulsion. We
consider this two-band model at or slightly above the filling of
n = 2 electrons per unit cell.

To controllably describe the effects of interband processes
on doped charges, we will consider situations where the two
sublattices or bands are weakly coupled. This is realized in the
following two regimes, developed in Kinetic Energy Expansion and
Interaction Expansion, respectively:

• When t0 = 0, the lower and upper bands of our model are
formed by A and B sublattice states, respectively. A small
tunneling amplitude t0 �Δ0 induces weak hybridization be-
tween these sublattices/bands, which we treat as a perturbation
to derive an effective model for doped electrons.

• When interactions are small compared to the single particle
band gap Δ0, the two bands also weakly hybridize. This
regime, often studied with standard many-body perturbation
theory, extends our results to a wider and potentially more
experimentally relevant range of parameters.

In both regimes, the same essential physics—attractive interac-
tion induced by virtual interband processes, sketched in Fig. 1A—
is at play, as highlighted by the consistency between the kinetic
and interaction-based perturbative methods in their overlapping
domain of validity (t0,V0)�Δ0.

Kinetic Energy Expansion

Effective Dynamics of Charge Carriers. For Δ≡Δ0 − UA +
3V0 > 0 and t0 = 0, the ground state of Eq. 1 at n = 2 is

A

B

C

Fig. 1. (A) Virtual interband transitions involving three electrons in the upper
band mediate an effective pairing interaction between conduction electrons.
(B) Second-order process of Hf corresponding to correlated hopping. Doubly
occupied orbitals forming the band insulator are shown as black dots, and
doped electrons are shown in red. (C) The hopping and interaction amplitudes
of Hf as a function of the original lattice parameters V0/Δ for UB = 4V0.

an insulator with all A sites doubly occupied and all B sites
empty. This state remains insulating upon increasing t0 while
keeping t0 �Δ. In particular, it is adiabatically connected to the
noninteracting band insulator obtained for UA = UB = V0 = 0
if t0 �Δ0. In this section, our goal is to extend the method
pioneered in ref. 23 to our spinful model and to obtain an effective
Hamiltonian Hf describing the dynamics of doped charges above
the n = 2 insulating state, assuming t0 �Δ.

When t0 = 0, the Pauli exclusion principle forces the
x ≡ n − 2 doped electrons to live on the B triangular lattice.
It also prohibits direct tunneling onto doubly occupied A sites,
such that Hf is composed of second-order tunneling processes,
whose first step necessarily creates a hole on an A site (Fig. 1B).
To account for all such processes, we perform a Schrieffer–Wolff
transformation that integrates out high-energy degrees of freedom
(31). This procedure, detailed in SI Appendix, section 1, gives

Hf = t
∑

〈i,j 〉,σ
(f †j ,σfi,σ + hc) + U

∑
i

ni,↑ni,↓ + V
∑
〈i,j 〉

ninj

+
t̃

2

∑
〈i,j 〉,σ

(f †j ,σfi,σ + hc)(ni + nj )

+ λ
∑

ijk∈�,σ

[
f †j ,σnk fi,σ + Pijk

]
, [2]

where the fermion operators fi describe doped electrons on the
triangular B lattice. Besides single-particle hopping (t), on-site,
and nearest-neighbor interaction (U ,V ), this effective Hamil-
tonian contains two types of correlated hopping terms: In the
first type, an electron hops between i and j when one of the
two sites is already occupied by another electron of the opposite
spin (t̃) or when their common neighbor k is occupied (λ).
The second type—hereafter referred to as λ-hopping—acts on
upper triangles (ijk ∈�) of the B lattice. Finally, Pijk denotes
all possible permutations of the vertices ijk. Our derivation also
yields three-body interactions (SI Appendix, section 1), which we
momentarily discard since their effect is negligible in the low-
density limit.

The density–density interaction and correlated hopping terms
between doped electrons arise because the bare interactions
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(UA,UB ,V0) affect the energy of intermediate excitonic states.
For example, in the process leading to λ-hopping, shown in
Fig. 1B, the presence of a charge at site k in the upper triangle
ijk decreases the energy of the intermediate state in the electron
tunneling event f †j ,σfi,σ from Δ+V0 to Δ (32). The hopping
amplitude accordingly increases from t to t + λ, with

t =
t20

Δ+ V0
, λ=

t20
Δ

− t20
Δ+ V0

. [3]

Similar considerations yield the other coefficients of Hf

(SI Appendix, section 1) and give (t̃ ,V )∝ t20/Δ and U � UB

when UB � t20/Δ. These parameters are plotted in Fig. 1C.
The bandwidth W = 9t largely dominates the interactions scales
t̃ ,λ,V when V0 ≤Δ, while the interaction dominate in the
opposite regime V0 ≥Δ.

Hf is exact up to second order in the hybridization parameter
t0/Δ that governs the perturbative Schrieffer–Wolff transforma-
tion, holds at all dopings, and features interactions between doped
electrons that are instantaneous on the time scale set by their
kinetic energy t. Our derivation can be straightforwardly extended
to account for longer-range hopping between B orbitals, allowing
us to describe materials with a bandwidth larger than W, in which
case doped electrons may be weakly interacting even for V0 ≥Δ.
The effects of longer-range interactions can also be included in
Schrieffer–Wolf transformation, as described in ref. 23.

It is important to note that our hybridization expansion only
requires the dimensionless ratio t0/Δ to be small, which allows
both the band gap Δ0 and the hopping amplitude t0 to be large.
In such case, the bandwidth and interaction energies, which are
on the order of t20/Δ (assuming V0 ∼Δ), can still be large in
absolute unit.

Two-Particle Bound State. Remarkably, Hf features an attractive
interaction between conduction electrons forming a spin-triplet
state. This effective attraction surprisingly emerges in the purely
repulsive Hubbard model in Eq. 1 due to λ-hopping as it lowers
the energy of two electrons on adjacent sites compared to the case
when they are far apart.

To demonstrate pairing, we consider the analog of Cooper’s
problem in a doped band insulator and solve Eq. 2 for two doped
electrons (SI Appendix, section 2). Bound state are signaled by a
positive energy εb = 6t − E2, with E2 being the two-electron
ground state energy, that we show in Fig. 2A as a function of the
original model parameters UB , Δ and V0. Bound pairs are found
in the spin-triplet channel in a very large parameter range and
in the spin-singlet channel for sufficiently large values of V0/Δ.
Their binding energy reach a maximum when V0 �Δ and are
equal to V − 2λ (triplet) and V − λ (singlet), as can be checked
by a straightforward diagonalization of the interacting part of Hf

on a single triangle.
In Fig. 2 B–D, we represent these bound states as a function of

the relative position between the two particles. The spin-triplet
wave function exhibits f-wave symmetry; i.e., it is symmetric
under threefold rotation and changes sign under any reflection
flipping one of the primitive vectors aj . In contrast, the spin-
singlet bound state is twofold degenerate and shows d-wave
symmetry.

Let us emphasize that pairing occurs at infinitesimal carrier
doping in a band insulator with purely repulsive interactions.
Notably, electron pairing from repulsion can be established in a
simple system, without any connection to resonating valence bond
or quantum spin liquid.

A

B C D

Fig. 2. (A) Binding energy of spin singlet (diamonds) and triplet (circle) pairs,
obtained by solving the lattice two-electron problem for t0/Δ = 0.1 and
UB = 3V0. The lowest two-particle bound state has spin-1, and its energy
is perfectly captured by the effective continuum model in Eq. 8 (gray line).
We also show the (B) triplet and (C and D) degenerate singlet bound state
wave functions as a function of the relative distance between the two doped
charges, with V0 = 2Δ. The radius and color of the circles indicate the
amplitude and phase, respectively, of the wave function on each site.

Our pairing mechanism relies on short-range repulsion (such as
V0 between adjacent A and B sites) that couples itinerant electrons
in the conduction band with core electrons in the filled band.
Such interband effects produce attractive pairing interaction, as
we have rigorously demonstrated above. We further show in
SI Appendix, section 2, that the formation of two-particle bound
state is stable against the longer-range part of the Coulomb
repulsion (which directly couples conduction electrons). Note that
in our theory, the attractive pairing interaction from interband
effects is nonperturbative in V0 and can reach sizable values, es-
pecially for large t (23, 33). This property protects electron pairing
against direct longer-range repulsion. Moreover, at finite doping
concentration, the Coulomb potential is dynamically screened by
free carriers and effectively becomes short-ranged. Thanks to the
beneficial effect of dynamical screening, our interband electronic
mechanism for superconductivity can also work at finite doping,
even when a two-particle bound state does not exist.

Binding in the Dilute Limit. The existence of spin-triplet bound
states is suggestive of superconductivity at finite doping. To
understand its emergence beyond the microscopic details of Hf

on the lattice scale, we now derive an effective continuum theory
that captures the long-wavelength behavior of this liquid. Natu-
rally, the latter can only be derived at sufficiently small doping
concentrations x � 1, where electrons primarily occupy states
near the two degenerate minima of the single-particle dispersion
εk = 2t

∑3
j=1 cos(k · aj ), located at the corners K and K ′ of

the Brillouin zone. This continuum description remains valid so
long as the size of two-particle bound states is large compared
to the lattice constant or, equivalently, their binding energy is
small compared to the single particle bandwidth. This condition is
satisfied in the parameter rangeV0 <Δ, which we consider below
(Fig. 2).

We now derive an effective continuum theory that captures
the long-wavelength behavior of this two-valley electron liquid.
Retaining fermionic modes fσ(τK + k)≡ ψστ (k), σ ∈ {↑, ↓},
close to either of the valleys τ ∈ {K ,K ′}, we derive the effective
continuum description of the lattice model Hf
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H̃= H̃0 + H̃i , H̃0 =

∫
dx

∑
στ

ψ†
στ

[
−∇2

2m

]
ψστ , [4]

with m = 2/(3ta2) the effective mass at K and K ′. H̃i consists
of three symmetry-allowed contact interactions:

H̃i =

∫
dx g0(ρK↑ρK↓ + ρK ′↑ρK ′↓) + g1ρKρK ′ + g2sK · sK ′ ,

[5]
where ρτ = ψ†

α,τψα,τ and sτ = ψ†
α,τσαβψβ,τ denote the density

and spin, respectively, at valley τ .
The coupling constants g0 and g1 correspond to intravalley and

intervalley repulsion, respectively, while g2 describes intervalley
exchange interactions. They are related to the original microscopic
lattice model Eq. 2 by (SI Appendix, section 3)

g0 = (U + 6V − 6λ− 6t̃)/A > 0, [6a]

g1 = (U + 15V − 24λ− 6t̃)/(2A) > 0, [6b]

g2 =−2(U − 3V + 12λ− 6t̃)/A < 0, [6c]

with A=
√
3/a2 the Brillouin zone area. The most remarkable

feature of these interactions is the emergence of ferromagnetic
intervalley exchange interaction (g2 < 0), which can be intuitively
understood as Hund’s rules applied to the valley degree of free-
dom.

This ferromagnetic intervalley coupling predicts the existence
of spin-triplet valley-singlet bound states in the s-wave channel
when

g = g1 + g2/4 = 9(V − 2λ)/A< 0. [7]

These valley-singlet bound states correspond to the f-wave elec-
tron pairs obtained on the lattice (Fig. 2) as they are invariant
under threefold rotation ψK → ei2π/3ψK ,ψK ′ → e−i2π/3ψK ′

but change sign under reflections exchanging the two valleys
ψK ↔ ψK ′ . Their binding energy is given by (34)

εb = Λ

/[
exp

(
4π

m|g |

)
− 1

]
, [8]

with Λ a UV energy cutoff. As shown in Fig. 2B, this formula
almost perfectly reproduces our solution of the two-body problem
on the lattice with no fitting parameter since Λ = 2πt/

√
3 is fixed

by the requirement εb(V0 �Δ) = 2λ− V |V0	Δ. This proves
the validity of our derivation and the predictive power of the
continuum theory Eq. 5 for the microscopic lattice model.

From a broader perspective, the spin-triplet/valley-singlet pairs
obtained within the continuum model arise when the intervalley
ferromagnetic exchange interaction g0 (valley Hund’s rule) be-
comes sufficiently large to overcome the bare repulsion g1. Both g0
and g1 are effective interactions for doped electrons that arise from
the short-range repulsion via interband polarization. The condi-
tion g < 0 provides an analytical criterion for when this happens
as a function of the original lattice parameters Δ0,UA,UB and
V0. Using Eq. 3, we observe that this criterion is satisfied in a wide
parameter window, which is shown in Fig. 3A. Note that in the
presence of on-site repulsion UB �= 0, pairing occurs only when
the nearest-neighbor repulsion V0 exceeds a critical value that
depends on UB and Δ. To capture such effect, it is thus essential
that our theory of exciton-mediated pairing is nonperturbative in
interaction strength.

Within our continuum approach, d-wave bound pairs only
arise if we include higher-order terms in the small |ka| expansion
of the interaction near the K and K ′ valleys. This subleading
behavior explains why these bound states have lower binding

A B

Fig. 3. (A) The coupling strength in the spin-triplet f-wave channel ∝ (2λ −
V)/t is positive for most lattice parameters, heralding attractive interactions
and superconductivity. (B) Idem for the subleading d-wave channel with
coupling strength ∝ (λ − V)/t. Hatched regions locate effective repulsive
interaction in each channels.

energy than the spin-triplet pairs (Fig. 2). We can nevertheless
extend our analytical criterion to identify the regime in which
d-wave bound states exist. This happens when the coupling con-
stant V − λ is negative and is depicted in Fig. 3B.

Tc versus Doping. At finite density, the spin-triplet valley-singlet
pairing leads to a superconducting state with a vector order
parameter (10)

d= 〈ψK ,α[σ(iσy)]α,βψK ′,β〉. [9]

This state is fully gapped and isotropic; i.e., the order parameter d
is constant around each of the two valleys (Fig. 4A). This property
is unusual for triplet superconductors, where the antisymmetry of
the Cooper pair wave function implies d(k) =−d(−k). For a
singly connected Fermi surface centered at k = 0, the condition
necessarily requires strong variations of the d vector over the
Fermi surface, as exemplified in the A and B phases of 3He. In
stark contrast, in our case the presence of two disconnected Fermi
surfaces centered around K and K ′ enables intervalley spin-triplet
pairing with a constant and opposite d vector over the Fermi
surface of each valley.

Another important feature of our theory is the nonretarded
pairing interaction, which spreads over the entire bandwidth
of doped charges. This sharply contrasts with electron–phonon
superconductors, where the attractive interaction is cut off by

A B

Fig. 4. (A) Critical temperature Tc as a function of x in the f-wave (solid
line) and d-wave (dashed line) channels. We fix UB = 3V0 and use V0 = Δ/3
(orange) and V0 = 4Δ/9 (red), for which the d-wave effective interaction is
repulsive and attractive, respectively. (Inset) |d(k)|2, which is fully gapped on
the Fermi surface for x = 0.1 (white line) and nodal for x > 0.5 (black line). (B)
Tc as a function of the bare interaction parameter V0/Δ.
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the Debye energy and thus limited to the vicinity of the Fermi
surface. The absence of energy cutoff changes the expression of
the superconducting critical temperatureTc and zero temperature
triplet superconducting gap Δt = |d|. We find that they both
strongly depend on the carrier density x, despite the constant
density of states (35, 36)

Δt =
√
2εF εb , [10a]

kBTc =
eγΔt

π
∝
√
xW exp

(
− 4π

m|g |

)
, [10b]

with εF ∝ x the noninteracting Fermi energy of doped charges.
In two dimensions, the above mean-field estimate of the critical

temperature, determined as the point where the superconducting
order parameter vanishes, overestimates the true BKT transition
temperature TBKT of the superconductor, where phase fluctua-
tions make the superfluid phase quasi–long-range ordered (assum-
ing that triplet d vector is pinned by weak spin-orbit coupling).
Nevertheless, Tc provides a good estimate of the TBKT as long
as the binding energy remains smaller than the Fermi energy
εb < εF , referred to as BCS limit (37). In the opposite limit
εF < εb , BEC limit, more accurate estimates of TBKT are nec-
essary (37). One important consequence of the presence of pair-
ing at infinitesimal doping in our model is the emergence of a
BEC–BCS crossover as a function of density.

Let us now restrict our attention to the BCS limit, i.e., for high
doping concentrations, where lattice effects become important.
This can be done efficiently by restricting our attention toV0 <Δ
where the binding energy is small and the BCS limit is already
reached for densities x ∼ 1%. In that region, we need to perform
mean-field calculations directly on the lattice model in Eq. 2
(as detailed in SI Appendix, section 4). In agreement with earlier
results, these calculations show that the spin-triplet f-wave pairing
channel is the leading instability in our model. The mean-field
order parameter takes the form

dk = d
∑
j

sin(k · aj )≡ skd. [11]

Its dependence on the crystal momentum, shown in Fig. 3A, is
determined by the form of interactions. The overall amplitude of
d is obtained from the spin-triplet f-wave gap equation

3

2λ− V
=

∫
d2k
A

s2k
Ek

tanh
(

Ek

2kBT

)
, [12]

which always has a solution in the pairing region identified
by Eq. 7 (Fig. 3A). Here the quasi-particle energy spectrum
Ek =

√
(εk − μ)2 + |dk|2, with μ the chemical potential, re-

mains gapped at the Fermi level throughout the transition from
the band insulator to the spin-triplet superconductor (recall that
|dK|= |dK’| �= 0).

In Fig. 4, we show the critical temperature Tc extracted from
Eq. 12 as a function of x and V0/Δ. At small doping, the f-
wave pairing vector |dk| is nearly constant around K, and K ′.
Tc sharply rises with

√
x dependence, in agreement with the

continuum prediction in Eq. 8. As doping increases, the Fermi
surface approaches the Γ−M lines, where the order parameter
dk ∝ sk vanishes. Its small amplitude close to these lines leads to
a reduction of Tc for x > 0.15, as can be seen in Fig. 4.

In summary, we observe a nonmonotonous behavior of Tc as
a function of doping (Fig. 4), with an initial increase following
a
√
x dependence expected from the effective continuum theory

and a subsequent decrease related to the reduction of the order

parameter near the Γ−M line. At low doping, the Fermi surface
is made of two pockets encircling the K and K ′ points. Around
these two points, the order parameter 	d has a constant direction
and results in a full superconducting gap. Importantly, this f -
wave spin-triplet state is robust against intra-valley scattering
by a smooth disorder potential, while intervalley scattering by
atomic impurities is detrimental. Unlike superfluid He-3, this
spin-triplet superconducting state is adiabatically connected to the
BEC regime and therefore is nontopological (38).

Subleading d-Wave Pairing. We saw that an effective attraction in
the d-wave channel also appears for sufficiently large interactions
V0. The effective strength of that attraction is, however, weaker
than g (Fig. 3) and yields bound states with smaller binding
energies (Fig. 2). As a result, we have up to now considered the
case of f-wave superconducting order parameter.

In the dilute limit, the f-wave order parameter leads to a full
superconducting gap on two disconnected Fermi surfaces around
±K . In contrast, the two d-wave order parameters produce nodal
lines crossing the K and K ′ points, leading to point nodes on
the Fermi surface for any real combination of dx2−y2 and dxy
order parameters as shown in SI Appendix, section 4. To highlight
the subleading nature of d-wave pairing, we have also computed
the critical temperature obtained by solving the linearized gap
equation assuming f- or d-wave symmetry. Our results, depicted
in Fig. 4A for UB = 3V0 and V0 = 4Δ/9, show the clear domi-
nance of f-wave paired state in our model.

When x ≥ 0.5, the Fermi surface becomes a singly connected
pocket around Γ. Then, the f-wave order parameter produces
nodes and the Tc obtained from Eq. 12 become negligibly small
(Fig. 4B). While the d-wave order parameter is still subleading
in this regime, other studies based on weak interaction expan-
sions show that it can become dominant if additional terms are
added to the Hamiltonian (39, 40). For instance, a next-nearest
neighbor V2 > 0 automatically penalizes the f-wave B − B next-
nearest neighbor pairing but can be accommodated by a d-wave
superconducting state which features A− B nearest neighbor
pairing. Similarly, when the sublattice potential Δ0 decreases,
doped charges start to populate A sites, which may again favor a
nearest neighbor d-wave order. Both effects are further enhanced
near Van Hove doping, where d-wave states are provably more
stable than f-wave order in the limit Δ0 = 0 (41).

Interaction Expansion

In this section, we show that the three-particle mechanism for
superconductivity described in Kinetic Energy Expansion is not
restricted to the ionic limit t0 �Δ but extends at any value of the
tunneling parameter. To preserve analytical control of interband
effects, we work in the small interaction limit, such that interband
hybridization remains small. In this regime, we find evidence
of attractive interaction between conduction electrons using a
similar method to that in Kinetic Energy Expansion. We follow
the methodology of Kinetic Energy Expansion; i.e., we first derive
an effective model for doped electrons with a unitary transfor-
mation and then study the obtained model for small doping
concentrations.

Unitary Transformation. We start from the Hamiltonian Eq. 1
written in momentum space as H=H0 + V with

H0 =
∑
1

ε1c
†
1c1, V =

1

Ns

∑
1234

V 21
43 δ

21
43c

†
4c

†
3c2c1, [13]
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where we have used a generalized index i = (ki , bi ,σi) gathering
the momentumki , band bi =±, and spinσi labels. Our goal is to
derive an effective Hamiltonian for the upper band assuming the
lower one fully filled. We do so by eliminating the direct interband
mixing interaction terms in the Hamiltonian with the help of a
unitary transformation.

This transformation is carried out explicitly in SI Appendix,
section 5, where we find the leading corrections to the dispersion
relation ε and the scattering vertex V. The former is akin to
the Hartree–Fock correction of standard many-body perturbation
theory:

δεk,+ =
1

Ns

∑
q,σ

[
V

(k,+,↑)(q,−,σ)
(q,−,σ)(k,+,↑) + V

(q,−,σ)(k,+,↑)
(k,+,↑)(q,−,σ)

]

− 1

Ns

∑
q

[
V

(k,+,↑)(q,−,↑)
(k,+,↑)(q,−,↑) + V

(q,−,↑)(k,+,↑)
(q,−,↑)(k,+,↑)

]
,

[14]

where we have used the spin-independence of V and choose ↑
as a preferred spin index. This small correction does not change
the position of the band minima, which remain degenerate at the
K and K ′ points. Expanding around these minima in the limit
t0 �Δ0 gives (ε+ δε)τK+k,+ � |k|2/(2m∗) with

1

m∗ =
3t20a

2

2Δ2
0

[Δ0 + UA − 4V0] , [15]

which agrees with the result of Eq. 4 obtained with the kinetic
expansion provided interactions are small compared to Δ0. This
offers an important consistency test between the two methods in
their overlapping regimes of validity.

Attraction in Dilute Limit. The expressions for the cor-
rections to the scattering vertex δV being quite involved
(SI Appendix, section 5), we simply support here the emergence
of attractive interactions in the f -wave scattering channel by
computing the effective interaction strength in the spin-triplet
valley-singlet channel, i.e., between equal-spin electrons living in
opposite valleys. Writing Ṽ = V + δV , this coefficient can be
expressed as

U0 =Ṽ
(K ′+)(K+)
(K+)(K ′+) + Ṽ

(K+)(K ′+)
(K ′+)(K+)

− Ṽ
(K+)(K ′+)
(K+)(K ′+) − Ṽ

(K ′+)(K+)
(K ′+)(K+),

[16]

where all spin component are equal. This coefficient greatly sim-
plifies as the Bloch states at the K and K ′ point in the upper band
are localized on B sites, ΨA

K/K ′,+ = 0. Using this simplification,
we end up with

U0 =
12t20V0(UB − 3V0)

Ns

∑
q

|f (q)|2
(2εq,+)3

, [17]

which also agrees with the our results of Kinetic Energy Expan-
sion in the limit where both methods are analytically controlled
(SI Appendix, section 5). The presence of an effective attraction
U0 < 0 in the f-wave channel when UB < 3V0 proves that the
results of Fig. 3 hold for nonperturbative tunneling amplitudes
t0.

Complementary to the strong-coupling expansion for ionic
insulators (Kinetic Energy Expansion), the interaction expansion
described here is based on the band picture and can also apply
to band insulators where the conduction band’s width is larger
than the band gap. This generalization extends the list of potential
material realization of the excitonic-driven superconductivity via
our three-particle mechanism.

Application to Dilute Superconductors

Let us recapitulate our results so far. Using the specific model
in Eq. 1 as an example, we have demonstrated a general mech-
anism of spin-triplet superconductivity in doped band insulators
with strong repulsive interaction. Focusing on the low-density
regime, we have derived a universal continuum model for the
two-valley Fermi liquid. When either tunneling or interactions
are small compared to the n = 2 insulator gap, we have shown
that virtual interband transitions can produce a sufficiently strong
intervalley ferromagnetic interaction that leads to spin-triplet
pairing. A remarkable consequence of our theory is that spin-
triplet superconductivity occurs at infinitesimal doping, with a
sharp increase Tc ∼

√
x . Based on this theory, we hereby propose

that the recently discovered dilute superconductors ZrNCl and
WTe2 are spin-triplet. We also highlight the plausible realization
of our model in some moiré materials.

ZrNCl. ZrNCl shares many common features with our toy model
in Eq. 1. At the single-particle level, it is a band insulator with a
large gap Δ∼ 2.5 eV (42, 43), where a single band with quadratic
minima at the K and K ′ points is relevant to describe the physics
at low carrier density (44, 45). Upon electron doping through
Li-intercalation LiαZrNCl, two-dimensional superconductivity
arises in the ZrN planes (46, 47), even for extremely small dopant
concentrations α= 0.0038 (28). Note that the stoichiometric
concentration of lithium α differs from the number of doped
charges per unit cells x by a factor of 2, x = 2α since each unit
cell features two Zr atoms.

The observed critical temperatures, ranging from 11.5 to 19K,
are hard to explain within the standard electron–phonon mecha-
nism, which makes ZrNCl an unconventional superconductor. A
compelling argument against the phonon mechanism of pairing
is the simultaneous enhancement of Tc (48) and reduction of
electron–phonon interactions, probed by Raman scattering (49),
when α decreases from 0.2 to 0.05.

We now highlight that our theory consistently captures the
available experimental results on the superconducting state in
ZrNCl (50) and propose that this material be regarded as a
legitimate candidate for spin-triplet pairing.

First, we find pairing at infinitesimal doping above the band
insulator and predict a smooth crossover from a BEC of pairs
to a BCS regime as the Fermi energy increases (23), which has
recently been observed in extremely high quality ZrNCl samples
(28). On the BCS side of this crossover, we expect a gap to
critical temperature ratio 2Δ/kBTc > 3.5 (37, 51, 52). This is
because the induced pairing interaction in Eq. 2 is instantaneous
on the time scale of the inverse bandwidth, so that all carriers
in the narrow band contribute to the superconducting gap. This
contrasts with phonon-mediated retarded attractions, which only
spread over a Debye width near the Fermi level and lead the
universal ratio of 3.5. The gap to Tc ratio measured ZrNCl is two
to five times larger than the BCS value (28, 53), a sign of strong
coupling superconductivity and nonretarded pairing interactions
which are well captured by our model.

Second, our theory accounts for the typical critical tempera-
tures observed in ZrNCl. Using the DFT results for the lattice
constant a = 3.663A and the effective mass at the K point
m = 0.580me (54, 55), we estimate t ∼ 0.65 eV. With the pa-
rametersUB = 3V0 =Δ of Fig. 4 for the sake of concreteness, we
obtain a critical temperatureTc ∼ 0.002t � 17.5K forα= 16%
doping, which lies close to the experimentally measured value.

Finally, our theory also successfully captures the nonmonotonic
dependence of Tc on doping observed in ref. 28. The original
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increase of Tc follows from the BEC/BCS physics described
earlier. Specific heat measurements point toward a change from
an almost isotropic to a highly anisotropic order parameter upon
increasing the doping level (56, 57) from α= 5%→ 20% (48).
This is consistent with an f-wave superconducting order, where
the reduction of Tc is caused by the reduction of the gap near
Γ−M lines due to the form factor sq (shown in Fig. 4A). The
unconventional pairing symmetry is further substantiated by the
lack of coherence peak in the NMR signal of ref. 58.

The spin-triplet property of ZrNCl could be experimentally
probed using tunneling spectroscopy under an in-plane magnetic
field. In such conditions, spin-singlet superconductors are known
to exhibit a linear splitting of their Bogoliubov modes Eσ(k) =√
ε2k + |Δs |2 + σμBB with μB the Bohr magneton and Δs the

singlet order parameter at T = 0 and B = 0 (59). In the triplet
case, the d vector can align perpendicular to the magnetic field
to produce equal-spin electron pairs even at B �= 0 (60). In this
case, the Zeeman term simply shifts the chemical potential of spin-
up and spin-down electrons. Provided that the Zeeman energy is
much smaller than the Fermi energy, the triplet superconducting
gap at zero temperature is little affected, even at high fields
exceeding the Pauli limit. This behavior can be used to test the
triplet nature of ZrNCl in future experiments.

WTe2. Monolayer WTe2 is a topological insulator with spin-
helical edge states (61–65). Recently, two independent groups
discovered a transition from insulating to superconducting state
in monolayer WTe2 under electron doping via electrostatic gating
(29, 30). Another separate work observed superconductivity in
epitaxial thin film of WTe2 (66). The origin of superconductivity
and the nature of the superconducting state are unknown and have
attracted considerable interest (67, 68).

Our picture is that superconductivity in electron doped WTe2
is driven by excitonic effects and exhibits spin-triplet pairing.
Indeed, a recent experiment on insulating WTe2 reported evi-
dence of strong excitonic effects which significantly enhance the
single-particle gap (69). While the electronic structure of WTe2
is far more complicated than our model used to illustrate the
exciton pairing mechanism, they both feature two valleys in the
conduction band. Therefore, electron doped WTe2 at low density
is a two-valley Fermi liquid described by our continuum theory
in Eq. 5. If excitons in WTe2 mediate strong enough intervalley
ferromagnetic exchange, our theory predicts the emergence of a
spin-triplet superconducting state.

This motivates a thorough comparison between the expected
consequences of spin-triplet superconductivity to experimental
findings on WTe2. First, differential resistance measurements (29)
show that upon doping, an insulating resistance peak transforms
directly into to a superconducting resistance dip, consistent with
our picture of an insulator–superconductor transition. The exper-
imentally observed sharp increase of Tc with doping (29) agrees
remarkably well with the prediction Tc ∼

√
x in the low-density

regime, as shown in Fig. 5. Another prediction of our theory is that
the single-particle gap does not close across the doping-induced
insulator–superconductor transition, which can be tested in future
tunneling measurements.

The scenario of spin-triplet superconductivity in WTe2 is sup-
ported by the observation of an in-plane critical field much larger
than the Pauli limit in both monolayers and thin films (29, 30,
66). The most significant experimental evidence of spin-triplet
superconductivity is the initial increase of Tc upon application
of an in-plane magnetic field (29, 66). This behavior is incom-
patible with s-wave superconductivity [even after considering the
effect of spin-orbit interaction (68, 70)]. On the contrary, the

A B

Fig. 5. The doping dependence of Tc , measured in ref. 29, is well captured by
our low-density prediction in Eq. 10. (B) Perfect agreement is found between
the critical temperature measured in ref. 66 under an in-plane magnetic field
B and the prediction in Eq. 19.

enhancement of Tc by magnetic field follows naturally from our
equal-spin triplet superconducting state in two-valley systems.
This can be seen with the Landau free energy:

F = α(d · d∗) + μB · (id× d∗) + η|B · d|2 + χB2(d · d∗),
[18]

with α= κ(T − Tc(B = 0)) and κ,μ, η,χ > 0 near Tc .
Importantly, the magnetic field B results in a linear Zeeman
shift for pairs of total spin S= i(d× d∗). The η term describes
the preferred equal-spin pairing with d⊥ B; i.e., the spins are
aligned or antialigned with the field. The last term accounts
for orbital effect of the in-plane B field, which causes pair
breaking.

From the Landau free energy, we obtain

ΔTB
c = μB − χB2, [19]

with ΔTB
c = Tc(B)− Tc(0). Due to the Zeeman effect on

triplet pairs, Tc increases linearly with B at small field. This
nonanalytic dependence on B is a consequence of the degeneracy
of triplet superconducting states associated with spin degrees of
freedom at zero field. At such large B, orbital effect dominates
and reduces Tc . As shown in Fig. 5, the above theoretical curve
Tc(B) fits excellently with experimental data.

The presence of spin-orbit coupling in WTe2 is expected to
lift the degeneracy between different triplet states. Due to a plane
mirror symmetry perpendicular to the a crystallographic axis, an
additional term FSOC = 2γ|dx |2 is allowed after including the
spin-orbit effect. If B ‖ b, the linear increase of Tc is rounded
off by γ according to

ΔTB
c =

√
(μB)2 + γ2 − |γ| − χB2. [20]

For small spin-orbit coupling γ < μ2/2χ, the Zeeman term
dominates, which still enables the enhancement of Tc for
d∝ (ΔTB

c + χB2, 0, iμB)T . For larger γ, Tc(B) decreases
monotonously with field. When B ‖ a , we should distinguish
two cases. First, if γ > 0, both spin-orbit and magnetic field
favor the vector d∝ (0, 1, i)T , and we recover Eq. 19. Then for
γ < 0, the original spin degeneracy is fully lifted, and we observe
a competition between two different triplet states with d ‖ a and
d⊥ a favored at low and high field, respectively. This leads to

ΔTB
c =

{
−(η + χ)B2 if: B < B∗

μB − |γ| − χB2 if: B > B∗ , [21]

which exhibits a kink at B∗ � |γ|/μ where the system undergo
a first-order phase transition. We hope more measurements of
Tc as a function of both in-plane magnetic field strength and
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direction can be performed to establish the highly unusual behav-
ior predicted by Eqs. 19 and 21, which we regard as unambiguous
evidence for triplet superconductivity.

Moiré Materials. Moiré materials based on transition metal
dichalcogenides and graphene provide a promising platform for
faithfully realizing our extended Hubbard model on the honey-
comb lattice with a tunable charge transfer gap Δ0. Indeed, in
these two-dimensional heterostructures, the long-range part of
Coulomb interaction can be screened by nearby metallic gates.
Since the distance to gates can be comparable to the moiré
lattice constant, the screened interaction mainly consists of on-
site and nearest-neighbor repulsion as captured in our model. For
example, the MX and XM stacking regions in twisted homobilayer
MoS2 correspond to the A and B sites of the honeycomb lattice,
and the sublattice potential difference Δ0 can be controlled by
the displacement field (71). Similarly, low-energy moiré bands
in twisted WSe2, WSe2/WS2, and ABC trilayer graphene–hBN
heterostructures are well described by honeycomb tight-binding
model with a sublattice potential (72, 73).

In SI Appendix, section 2, we estimate that the effective attrac-
tion exposed in our manuscript continues to hold if εa > 85A,
with ε the effective dielectric constant accounting for the presence

of the nearby gate and a the moiré lattice constant. This condition
is easily satisfied in typical moiré materials, which makes our
superconductivity mechanism applicable.

Interestingly, recent experiments on twisted bilayer graphene,
twisted trilayer graphene, and ABC trilayer graphene–hBN het-
erostructure all show that superconductivity essentially appears
immediately upon doping insulating states. It seems to us that this
behavior necessarily implies the existence of bound state for two
doped electrons. Our theory of exciton-mediated pairing reveals
how, as a matter of principle, two-particle bound state can arise
from the strong electron repulsion, opening a path to BCS–BEC
physics in a variety of solid state systems.

Data Availability. All study data are included in the article and/or SI Appendix.
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