
Automated detection of heart ailments from 12-lead ECG using complex wavelet
sub-band bi-spectrum features

Rajesh Kumar Tripathy ✉, Samarendra Dandapat

Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
✉ E-mail: rajeshiitg13@gmail.com

Published in Healthcare Technology Letters; Received on 1st November 2016; Revised on 16th January 2017; Accepted on 18th January 2017

The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart
muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW
coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of
CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead
ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of
CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for
classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39
and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing
12-lead ECG-based cardiac disease detection techniques.
1. Introduction: Life-threatening cardiac ailments occur due to
improper conduction [bundle branch block (BBB)], obstruction in
one of the coronary arteries [myocardial infarction (MI)] and
abnormal heart muscle [hypertrophic cardiomyopathy (CM)] [1].
Multilead or 12-lead ECG is commonly used for detection of MI,
BBB and hypertrophic CM [1–3]. Automated detection of heart
ailments is an active area of research in cardiovascular signal
processing [4]. The automated diagnostic system (ADS) consists
of ECG data, preprocessing, feature extraction and classification
[5, 6]. The key component of an ADS is the evaluation of
features from the ECG signal [7]. In ADS, both direct and
indirect methods are used for computing the diagnostic features
of ECG. The direct method is based on the evaluation of
morphological features such as the amplitude, the duration and
the shape of the clinical components (P-wave, QRS-complex and
T-wave) of ECG. The indirect method uses different signal
processing techniques for evaluation of diagnostic features.
In the literature, several feature extraction methods have been

reported for the detection of cardiac disorders such as MI, BBB
and heart muscle disease (HMD) from 12-lead ECG signals. The
methods are based on continuous wavelet transform [8], polynomial
curve fitting [9], hermite polynomials [10], multivariate multiscale
sample entropy [11], random projection [12] and tensor discrimin-
ant analysis [13]. Some of the methods have used various morpho-
logical features of 12-lead ECG for detection of cardiac disorders
[14, 15]. For evaluation of these morphological features, it is
required to detect the P, Q, R, S, T points of each ECG lead. The
12-lead ECG-based reported methods are also based on the detec-
tion of single pathology [either heart ailments (MI or CM) or
normal sinus rhythm (NSR)]. In intensive care unit, the cardiolo-
gists examine the defect in the conduction process of the heart,
the occlusion in the coronary arteries of the heart and the heart
muscle defects from the 12-lead ECG recordings [5]. Therefore, a
method based on the automated detection and classification of
BBB, HMD and MI pathology will be helpful to assist the cardiolo-
gist for providing better diagnostic decision.
In [16], the multiscale energy and eigenspace (MEES) features of

multilead ECG have been proposed for the detection and localisa-
tion of MI. The MEES features are evaluated using discrete wavelet
transform (DWT) of 12-lead ECG. The dual tree complex wavelet
transform (DTCWT) overcomes the drawbacks of DWT and it
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has been used for various ECG processing applications [17–19].
In addition to magnitude information, the DTCWT of ECG also
provides the phase information at different scales. In our previous
study, the multiscale phase alternation (PA) features have been
proposed for analysis of 12-lead ECG during HMD, BBB and MI
pathologies [20]. Although, the multiscale PA features of 12-lead
ECG are effective for detection of MI, they fail to capture the patho-
logical changes during BBB and HMD. Hence, further investigation
into the features from the CW coefficients of 12-lead ECG is
required for accurate detection of life-threatening cardiac ailments.

The higher-order spectra (HOS) have been widely used in the
analysis of bio-medical signals [21–23]. The HOS measures the
deviation from the Gaussianity, the phase correlation, the magni-
tude correlation and the nonlinearity of a time-series data. The
wavelet-based HO spectral (WHOS) features have been used for
tonic pain characterisation from electroencephalogram (EEG)
signal [24]. The WHOS features of EEG are evaluated using the
HOS and discrete time continuous wavelet transform. The CW
coefficients at different sub-bands are calculated using the
DTCWT-based processing of ECG [19, 20]. These CW coefficients
capture the grossly divided morphological components of ECG
signal. The CW sub-band bi-spectrum (CWSB) of 12-lead ECG
can be evaluated using the higher-order CW analysis (HOCWA).
The higher-order magnitude and phase correlations of the CW coef-
ficients of 12-lead ECG are captured using the CWSB. The struc-
ture of the CWSB matrices of 12-lead ECG will be different for
NSR and for various cardiac ailments. It is expected that the fea-
tures evaluated from the CWSB of 12-lead ECG will be helpful
for detection of cardiac ailments. In this work, the CWSB features
of 12-lead ECG are proposed. These features are used for detection
of MI, HMD and BBB. The rest of this Letter is arranged as
follows. In Section 2, the proposed CWSB features of 12-lead
ECG using HOCWA is presented. The detection of cardiac ailments
using the CWSB features is described in Section 3. The results and
the discussion are presented in Section 4 and the conclusions of this
Letter are written in Section 5.

2. Proposed CWSB features: The proposed CWSB features are
evaluated using three steps: namely, the DTCWT of 12-lead
ECG, the HOCWA and the calculation of magnitude and phase
features of CW bi-spectrum of significant sub-bands.
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2.1. DTCWT of 12-lead ECG: The DTCWT uses a pair of filter
banks to evaluate CW coefficients of an ECG signal at different
sub-bands [17]. For a 12-lead ECG signal xm(n), the CW
coefficients of each ECG lead at different sub-bands are
evaluated. The approximation sub-band and the lth detail
sub-band (l = 1, 2, . . . , L)CW coefficients for the mth ECG
lead are given as [20]

cAm
L (k) = c̃Am

L (k)+ jcA
m
L (k) (1)

cDm
l (k) = c̃Dm

l (k)+ jcD
m
l (k) (2)

In this work, the significant sub-bands of 12-lead ECG are selected
based on the CW energy each sub-band. Figs. 1a and b depict the
variation of average CWE of all ECG leads with number of
sub-bands at decomposition levels of L = 6 and 7 for NSR, MI,
BBB and HMD cases. It is observed that for six-levels
DTCWT-based decomposition of 12-lead ECG, the cA6, cD6,
cD5 and cD4 sub-bands have higher-energy values than other
sub-bands. These four significant sub-bands are considered for
HOCWA.

2.2. Higher-order complex wavelet analysis: The HOCWA is based
on the evaluation of CW bi-spectrum of 12-lead ECG at different
sub-bands. In this Letter, the CW bi-spectrum is evaluated
for diagnostically significant sub-bands. The CW coefficients of
multilead ECG are given by, sm(k) = s̃m(k)+ jsm(k), where s is
the significant sub-bands of each ECG lead. For L = 6 and 7, the
significant sub-bands are s [ (cA6, cD6, cD5, cD4) and
s [ (cA7, cD7, cD6, cD5, cD4), respectively. The bi-spectrum of
the sth sub-band of the mth ECG lead is defined as

Bm
s (k1, k2) = E[sm(k1)sm(k2)swm(k1+ k2)] (3)

where ‘E’ is the expectation operator and 1 ≤ k1 ≤ Ns,
1 ≤ k2 ≤ Ns. Ns is the length of the sth sub-band. The analytic
form of the CWSB is given by

Bm
s (k1, k2) = B̃

m
s (k1, k2)+ jB

m
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The magnitude of the CW bi-spectrum of the sth sub-band of the mth
ECG lead is defined as

Mm
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Similarly, the phase of the CW bi-spectrum in the sth sub-band of the
mth ECG lead is defined by

fm
s (k1, k2) = tan−1 B

m
s (k1, k2)

B̃
m
s (k1, k2)

[ ]
(6)

The lead V5 ECG signals for NSR and three pathological cases such
as MI, BBB and CM are shown in Figs. 2a, f, k and p, respectively. It
is noted that the shape and the beat to beat variations of the P-wave,
the QRS-complex and the T-wave of ECG signals are different for
BBB, CM and MI cases. The cA6, cD6, cD5 and cD4 sub-band
signals (Signal reconstructed using the CW coefficients of each
significant sub-band.) for NSR, MI, BBB and HMD cases are
depicted in Figs. 2b–e, g–j, l–o and q–t, respectively. The
bandwidth of an ECG signal spans the frequency range between
0.5 and 50 Hz [5]. The frequency contents of T-wave, P-wave and
QRS-complex in ECG are [0.5–10 Hz], [5–30 Hz] and [8–50 Hz],
respectively [25]. The frequency ranges of cA6, cD6, cD5 and cD4
sub-band signals are [0–7.81 Hz], [7.82–15.62 Hz], [15.63–
31.24 Hz] and [31.25–62.5 Hz], respectively. The QRS-complex
information is grossly captured in cD6, cD5 and cD4 sub-bands.
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The information of ST-segment and the T-wave are observed in
cA6 sub-band signal. Similarly, the P-wave information is captured
using cA6 and cD6 sub-bands. From Fig. 2, it is observed that for
BBB and HMD cases the QRS-complex information is appeared in
cA6 sub-band signals. For MI case, the T-wave inversion is clearly
observed in cA6 sub-band signal (as shown in Fig. 2g). The
amplitude values of cD4 sub-band signals for BBB and HMD
cases are less than those of healthy control (HC) and MI cases.
The above observations infer that the CW coefficients of
significant sub-band capture pathological variations due to different
cardiac disorders. The CWSB magnitude and phase features
evaluated from the CW coefficients of 12-lead ECG will be helpful
for classification of MI, HMD and BBB pathology.

2.3. Magnitude and phase features of CWSB: The CW bi-spectrum
of 12-lead ECG in significant sub-bands capture the diagnostic
components. In this work, the magnitude and the phase features
of CWSB for each ECG lead are evaluated. The magnitude
feature is defined as the mean of the absolute value of the
CWSB. The magnitude feature of CW bi-spectrum in the sth
scale of the mth ECG lead is defined as

BMm
s = 1

N 2
s

∑Ns

k1=0

∑Ns

k2=0

Mm
s (k1, k2) (7)

where BM corresponds to the bi-spectrum magnitude. The phase
features of CWSB such as the number of NP (NNP) angle and
the number of positive phase (NPP) angle are evaluated. The
algorithm for evaluation of NNP and NPP features of CW
bi-spectrum in the sth sub-band is defined as follows.

Algorithm: Evaluation of CWSB phase features
Input: phase of the CW bi-spectrum of the sth sub-band of the mth
lead: fm

s (k1, k2), 1 ≤ k1 ≤ Ns and 1 ≤ k2 ≤ Ns.
Output: NNP and NPP features of the sth sub-band of the mth lead:
NPPms , NNP

m
s .

begin

†The NPP angles of the sth sub-band of the mth lead are
NPPms = count(fm

s (k1, k2) . 0).
†The NNP angles of the sth sub-band of the mth lead are
NNPms = count(fs(k1, k2) , 0).

end

Figs. 3a–d show the magnitude contours of the CW bi-spectrum
of cA6 sub-band for different cardiac ailments and NSR. Significant
differences in the morphology of magnitude contours are observed
for both NSR and pathological cases. The magnitude of CW
bi-spectrum captures the third-order correlations of wavelet coeffi-
cients. The structure of CW bi-spectrum matrix at each scale is dif-
ferent for NSR and cardiac ailments. The BM, the NNP and the
NPP features capture the changes in the CW bi-spectrum matrix
of different sub-bands during pathology. The values of BM features
for NSR, MI, BBB and HMD cases in cA6 sub-band are 0.7772,
0.2621, 2.8800 and 0.1905, respectively. Similar changes in the
values of BM features are observed for NSR, MI, HMD and
BBB cases in other sub-bands. In BBB and HMD pathologies,
some part of the QRS-complex information is appeared in cA6
sub-band signal (as shown in Figs. 2l and q). The characteristics
of cA6 sub-band signal for BBB and NSR cases are different.
Owing to this reason, the BM feature for BBB case has higher
value in cA6 sub-band than NSR, HMD and MI cases.

Figs. 3e–h depict the histogram of the phase of CW bi-spectrum
in cA6 sub-band for NSR, BBB, HMD and MI cases. It is observed
that the peaks of the histograms of the CWSB are different for
Healthcare Technology Letters, 2017, Vol. 4, Iss. 2, pp. 57–63
doi: 10.1049/htl.2016.0089



Fig. 1 Variation of average CWE of all ECG leads
a Average CW energy of all leads in different sub-bands for six-level-based DTCWT decomposition of multilead ECG signals for NSR, MI, HMD and BBB
b Average CW energy of all leads in different sub-bands for seven-level-based DTCWT decomposition of multilead ECG signals for NSR, MI, HMD and BBB
cardiac ailments and NSR. The NNP and NPP features capture the
variations in the phase of CWSB during pathology. The NNP
values of CW bi-spectrum of cA6 sub-band for NSR, MI, BBB
Fig. 2 Lead V5 ECG signals for NSR and three pathological cases such as MI, B
a Lead V5 ECG signal for HC
f Lead V5 ECG signal for MI
k Lead V5 ECG signal for BBB
p Lead V5 ECG signal for HMD (CM)
b–e cA6, cD6, cD5 and cD4 sub-band signals for HC
g–j cA6, cD6, cD5 and cD4 sub-band signals for MI
l–o cA6, cD6, cD5 and cD4 sub-band signals for BBB
q–t cA6, cD6, cD5 and cD4 sub-band signals for HMD
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and HMD cases are 2405, 1895, 2162 and 2337, respectively.
Similarly, the NPP values are 1961, 2201, 1934 and 1759 for
NSR, MI, BBB and HMD cases in cA6 sub-band. Similar
BB and CM
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Fig. 3 Magnitude contours of the CW bi-spectrum of cA6 sub-band for different cardiac ailments and NSR
a–d Magnitude contour of the cA6 SB of NSR, BBB, HMD and MI
e–h Histogram of the phase of cA6 SB of NSR, BBB, HMD and MI
changes in the NNP and NPP features of CWSB are also observed
for cD6, cD5 and cD4 sub-bands. These variations in the BM, NNP
and NPP values of CWSB can be used for detection and classifica-
tion of cardiac disorders.

3. Classification of cardiac ailments: In this section, the proposed
CWSB features of 12-lead ECG are used for classification of
cardiac ailments. The flowchart of the classification method is
shown in Fig. 4. It consists of 12-lead ECG data and
preprocessing, evaluation of magnitude and phase features of
CWSB, and classification using support vector machine (SVM)
and extreme learning machine (ELM) classifiers.

3.1. 12-Lead ECG data and preprocessing: In this Letter, the 12-lead
ECG datasets from a publicly available database (Physikalisch
Technische Bundesanstalt (PTB) diagnostic database) is used for
evaluation of the proposed method [26]. In this work, we have
used 16, 16, 16 and 20 number 12-lead ECG datasets (lead I-V6)
from NSR, MI, BBB and HMD (CM and hypertrophy (HT))
classes. The 12-lead ECG datasets from NSR and pathological
cases are subjected to preprocessing. The preprocessing step
consists of filtering of multilead ECG data and block-based
Fig. 4 Detection and classification of cardiac ailments from CWSB features
of multilead ECG
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segmentation. For elimination of baseline wandering noise, a
zero-phase Butterworth high-pass filter with cut-off frequency of
0.5 Hz is applied [16]. The high-frequency noise is filtered out
based on the elimination of the CW coefficients of diagnostically
irrelevant sub-bands [20]. The block-based segmentation of
12-lead ECG data is done using a window of size 4096× 12 [20].

3.2. Feature selection and classification: In this work, we have
evaluated 48 magnitude features and 96 phase features from the
CWSB of 12-lead ECG. A 144-dimensional (144D) CWSB
feature vector is created by appending both magnitude and phase
features. A feature selection technique is used to select important
features from the 144D CWSB feature vector. This technique is
called as symmetrical uncertainty (SU)-based feature selection
[27]. Here, the SU scores of each CWSB feature is evaluated and
the features which have higher value SU score are retained for
classification. In this Letter, the SVM and the ELM classifiers are
used to classify the CWSB features of 12-lead ECG into four
classes such as NSR, BBB, HMD and MI. Here, we have used
three kernel functions such as linear, polynomial and radial basis
function (RBF) [28]. The performance of the SVM classifier
using CWSB features are compared for these kernel functions.
The parameters such as C = 0.005, the degree of the polynomial
(Poly) kernel (c = 5), the ‘One against One’ multiclass coding
and the standard deviation of the RBF kernel (s = 0.25) are
selected in this work. The ELM classifier uses random hidden
nodes to map the input feature vector to a higher dimension space
and the least-square method is used to evaluate the weight
between the hidden layer and the output layer [29]. It requires
less computation for evaluation of the training parameters
and this model has been used for classification of different
cardiac arrhythmia from ECG [30]. Here, for ELM classifier we
have used ‘sine’, ‘radbas’ and ‘sigmoid’ activation functions.
The regularisation parameter of ELM classifier is selected as (‘g
= 0.9’). The hold-out cross-validation and the K-fold
cross-validation approaches are considered for selection of
training and test instances of ELM and SVM classifiers [11]. For
K-fold cross-validation case, K = 5, 6 and 7 are considered. The
optimal value of ‘K’ is selected based on the performance of
ELM and SVM classifiers using the CWSB features of 12-lead
ECG. The individual class accuracy (IA) and the overall accuracy
(OA) metrics are used to quantify the performance of ELM and
SVM classifiers. The IA and the OA are evaluated using the
confusion matrix [31].

4. Result and discussion: In this section, the statistical analysis of
CWSB features, and the performance of CWSB features using ELM
and SVM classifiers are shown.
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Table 1 p-Values of selected CWSB features using ANOVA test

CWSB features p-Value

cA6 sub-band BM feature of lead I ,0.001
cD6 sub-band BM feature of lead V1 ,0.001
cD5 sub-band BM feature of lead V3 ,0.001
cD4 sub-band BM feature of lead V5 ,0.001
cA6 sub-band NNP feature of lead I ,0.001
cD5 sub-band NNP feature of lead V6 ,0.001
cA6 sub-band NNP feature of lead II ,0.001
cD5 sub-band NNP feature of lead V4 ,0.001
cA6 sub-band NNP feature of lead I ,0.001
cA6 sub-band NPP feature of lead I 0.0712
cD6 sub-band NPP feature of lead V6 0.7083

Table 2 OA value of classifiers for hold-out cross-validation

Training/test data percentage Classifiers OA, %

80% training and 20% testing ELM 92.85
SVM 98.39

70% training and 30% testing ELM 95.07
SVM 97.43
4.1. Statistical analysis of CWSB features: The mean and the
standard deviation values of BM features of cA6, cD6, cD5 and
cD4 sub-bands are different for cardiac ailments and NSR in each
lead. For lead I, the mean values of BM features for (NSR, MI,
HMD and BBB) in cA6, cD6, cD5 and cD4 sub-bands are
(0.0304, 0.0206, 0.0412, 0.1134), (0.0757, 0.0425, 0.0557,
0.1142), (0.0763, 0.0880, 0.0476, 0.0702) and (0.0140, 0.0462,
0.0078, 0.0105), respectively. Similarly, for lead V6, the mean
values of BM features for (NSR, MI, HMD and BBB) are
(0.0130, 0.0092, 0.0286, 0.1073), (0.0714, 0.0871, 0.1050,
0.1305), (0.0779, 0.1094, 0.0710, 0.0648) and (0.0367, 0.1154,
0.0254, 0.0399) in cA6, cD6, cD5 and cD4 sub-bands. Similar
variations in the mean and standard deviation values of the BM
feature are observed in cA6, cD6, cD5 and cD4 sub-bands for
other ECG leads. For cA6 sub-band of lead I, the mean values of
NNP feature of CWSB for NSR, MI and BBB are 0.8370,
0.8616 and 0.8545, respectively. Similarly, the mean values of
NPP feature of CWSB for NSR, BBB and HMD class are
0.7022, 0.7046 and 0.7057 in cA6 sub-band of lead V6. Similar
changes in the mean and standard deviation values of NNP and
NNP features of CWSB are observed for other ECG leads. These
variations in the mean and the standard deviation values of BM,
NNP and NPP features are due to the difference in the structure
of CWSB matrix in pathology.
The statistical significance of CWSB magnitude and phase fea-

tures are evaluated using analysis of variance (ANOVA) test [32].
It is observed that only 43 features out of 48 magnitude features
Table 3 Average IA values of ELM and SVM classifiers for BBB, HMD, MI and

Features Classifiers IA (NSR), %

cA6 + cD6 CWSB features ELM 94.02
cA6 + cD6 CWSB features SVM 92.10
cD5 + cD4 CWSB features ELM 86.15
cD5 + cD4 CWSB features SVM 94.56
all CWSB features ELM 95.93
all CWSB features SVM 97.55
selected CWSB features ELM 95.91
selected CWSB features SVM 98.90
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of CWSB have p-value <0.001 and these features are highly signifi-
cant for detection of HMD, BBB and MI pathologies. It is also seen
that all the NNP features of cA6 and cD5 sub-bands CW bi-spectrum
have p-value lower than 0.001. The CW bi-spectrum phase features
of cA6 and cD5 sub-bands capture the diagnostic information of
multilead ECG. During pathology, the duration and the shape of
the clinical components are different than the normal heart
rhythm [1]. This maybe the reason for which the NNP features of
CW bi-spectrum are statistically significant in cA6 and cD5 sub-
bands. The p-values of the selected CWSB features are shown in
Table 1. It is seen that out of 12 selected features, all the BM and
NNP features have lower p-value. The p-value of selected NPP fea-
tures are higher than 0.001. The above observations reveal that the
CWSB features can capture the pathological changes of multilead
ECG for detection of cardiac ailments.

4.2. Performance of SVM and ELM classifiers: In this section, the
performance of SVM and ELM classifiers are shown using different
combinations of CWSB features. The OA accuracy values of
classifiers for hold-out cross-validation is shown in Table 2. Here,
two hold-out cross-validation methods are considered for
selection of training and test instances of ELM and SVM
classifiers. In the first method, 70% of CWSB feature instances
are used for training and the rest of 30% are considered for
testing of both classifiers. Similarly, 80% of CWSB feature
instances are used for training in the second method. It is
observed that the SVM classifier have a higher accuracy value
using 20% of CWSB feature instances.

For SVM and ELM classifiers, the IA of NSR, BBB, HMD and
MI classes are evaluated along each fold and these values are shown
in Table 3. It is observed that the SVM classifier has higher accur-
acy value for MI, HMD and BBB classes using cA6 and cD6 CWSB
features. When cD5 and cD4 CWSB features are used, the accuracy
value of ELM classifier is higher than the SVM classifier for BBB
class. For ELM classifier, the performances of cA6 and cD6 CWSB
features are higher than the cD5 and cD4 CWSB features. The SVM
classifier shows better performance for each class using cD5 and
cD4 CWSB features. The SVM classifier has higher IA values for
BBB, MI and HMD classes using all CWSB features. The patho-
logical variations in 12-lead ECG due to BBB, MI and HMD are
effectively captured using proposed CWSB magnitude and phase
features. This maybe the reason for better performance of ELM
and SVM classifiers for MI, HMD and BBB classes. In 12-lead
ECG, eight ECG leads (I, II, V1–V6) are directly recorded from
the patient, whereas the remaining four leads (III, aVR, aVL and
aVF) are derived from lead I and lead II. It is natural to get correla-
tions in 12-lead ECG and these correlations are reflected in the
CWSB feature matrix. In this Letter, the performances of classifiers
are compared using the CWSB features of both 12-lead and 8-lead
ECG signals. The OA values of ELM and SVM classifiers for
12-lead ECG and 8-lead ECG CWSB features are shown in
Table 4. It is observed that the OA value of RBF kernel-based
SVM classifier is 97.75% using 12-lead ECG CWSB features.
Similarly, using 8-lead ECG, the OA value of SVM classifier is
NSR classes

IA (MI), % IA (HMD), % IA (BBB), %

96.47 91.30 88.08
94.56 91.52 91.41
93.76 95.00 68.17
96.19 94.13 92.51
98.37 97.39 92.79
98.37 96.52 96.12
97.83 98.70 94.45
98.37 97.39 96.40
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Table 4 OA values of ELM and SVM classifiers using CWSB features of
8-lead ECG and 12-lead ECG

8-lead ECG 12-lead ECG

Classifiers Kernels OA, % Classifiers Kernels OA, %

ELM sigmoid 84.51 ELM sigmoid 88.11
ELM radbas 92.67 ELM radbas 95.05
ELM sine 94.66 ELM sine 96.08
SVM linear 91.97 SVM linear 94.54
SVM polynomial 78.80 SVM polynomial 85.86
SVM RBF 95.63 SVM RBF 97.75
95.63%. The performance of ELM classifier for 12-lead ECG
CWSB features is higher than the 8-lead ECG CWSB features.
The characteristics of lead III and lead aVF ECG signals are differ-
ent for inferior MI and NSR [1]. These pathological changes can
affect the CW bi-spectrum matrices of lead III and lead aVF in
different sub-bands. This maybe the reason for which the higher
OA values of ELM and SVM classifiers are observed using the
CWSB features of 12-lead ECG.

The classes of cardiac ailments in the proposed method are differ-
ent than the reported techniques. In this work, to verify the effect-
iveness of the proposed method, we have compared only the IA
values of MI and HMD classes with existing 12-lead ECG-based
cardiac arrhythmia detection approaches and it is shown in
Table 5. In [9], Sun et al. have used the polynomial coefficients
of ST-segments of 12-lead ECG as diagnostic features and different
classifiers for detection of MI. In [10], the hermite coefficients of
12-lead ECG and the artificial neural network (ANN) are used for
detection of MI. The method in [16] has used MEES features of
multilead ECG for detection of MI. The principal component multi-
variate multiscale sample entropy (PMMSE) features have been
used in [11] for classification of cardiac disorders. The detection
of hypertrophic CM using the temporal and the morphological fea-
tures of 12-lead ECG has been proposed in [14]. The proposed
method show better performance for MI class than the techniques
reported in [9–11, 15, 16]. The IA value of proposed CWSB
features and the SVM classifier for HMD classes is higher than
the performance of morphological features of 12-lead ECG. The
method for detection of cardiac ailments using CWSB features is
implemented in MATLAB 2010 with a desktop computer (4 GB
random access memory and Intel i5 processor with 3.20 GHz).
The simulation times for preprocessing and evaluation of CWSB
features are 0.016 and 0.355 s, respectively. For SVM and ELM
classifiers, the simulation times for testing of the CWSB feature
vector of multilead ECG block are found to be 0.032 and 0.026 s,
respectively. The above observations establish that the CWSB
Table 5 Comparison of the proposed work with existing methods for
12-lead ECG signals

Features+classifier IA (MI), % IA (HMD), %

morphological features+ANN [15] 95 NU
polynomial coefficients+MIL [9] 91 NU
hermite coefficients+ANN [10] 83.4 NU
PMMSE features+LS-SVM [11] 93.95 89.16
morphological features+RF [14] NU 90
MEES features+SVM [16] 96 NU
proposed multiscale PA features+fuzzy
KNN [20]

94.31 80.90

proposed CWSB features+SVM 98.37 97.39

NU – not used.; MIL – multi instance learning; RF – random forest, LS –
least square
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features evaluated using HOCWA are useful for detection of
various cardiac ailments from 12-lead ECG.

5. Conclusion: In this Letter, a new method is proposed for
estimating diagnostic features from 12-lead ECG. The HOCWA
of 12-lead ECG is used for evaluation of CWSB. The CWSB
magnitude and phase features of 12-lead ECG at different scales
are evaluated. The statistical significance of CWSB magnitude
and phase features are shown. The SU score-based feature
selection approach is used. The SVM and the ELM classifiers are
used for detection and classification of cardiac ailments using the
CWSB features and the selected features. The OA values of
97.17 and 97.75% are found using ELM and SVM classifiers.
The accuracy values for MI and HMD classes using the proposed
method are higher than the existing techniques based on 12-lead
ECG. The important finding of this Letter is that the CWSB
magnitude and phase features correctly capture the clinical
components of multilead ECG and provide discriminative
diagnostic information for detection of cardiac ailments. In future,
new diagnostic features of 12-lead ECG and vectorcardiogram
maybe required for detection and localisation of other cardiac
ailments.

6. Funding and declaration of interests: Conflict of interest: none
declared.
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