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Abstract

We present a dynamical model of drug accumulation in bacteria. The model captures key

features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase

response; and long-term acclimation. In combination with experimental data, the model

provides estimates of import and export rates in each phase, the time of entry into the sec-

ond phase, and the decrease of internal drug during acclimation. Global sensitivity analysis,

local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information

about the robustness of these estimates, and about the relative importance of different

parameters in determining the features of the accumulation time courses in three different

bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aerugi-

nosa. The results lead to experimentally testable predictions of the effects of membrane

permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key

prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus

is accompanied by a decrease in membrane permeability.

Introduction

Drug resistance in bacteria can be increased by efflux pump systems [1], and pump inhibition
has emerged as a strategy for overcoming drug resistance [2]. Many details of how efflux
pumps work are still unclear, however. In particular, quantitative information about how efflux
influences drug accumulation in bacteria is still scarce [3].

Drug accumulation is a key factor in obtaining a quantitative understanding of resistance.
For example, predictions of minimum inhibitory concentrations (MICs) of β-lactams in
Escherichia coli were obtained by equating the steady state periplasmic drug concentration
with a periplasmic binding protein inhibitory concentration [4]. A predicted MIC was calcu-
lated as the external concentration that would yield the accumulated internal inhibitory con-
centration in steady state, considering flux terms from membrane permeation and β-lactamase
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degradation.MIC predictions also have been made considering the action of efflux pumps on
cephalosporins [5] and β-lactams [6] in E. coli. These predictions were accompanied by esti-
mates of efflux pump kinetic constants (i.e., Km and Vmax values), providing an explicit connec-
tion between efflux and resistance.

Time-dependent drug accumulation studies also have yielded insight into drug transport
[7–9]. Diver et al. [8] found exposure of E. coli to five different quinolones induced a rapid ~10
sec uptake followed by a ~30 min phase of more gradual accumulation. Similar two phase
behavior was seen by Asuquo and Piddock [7] in accumulation of fifteen different quinolones
in E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus [7]. The experiments of Asuquo
and Piddock [7] highlighted exposure to ofloxacin, which exhibited apparently different accu-
mulation behavior in each species (Fig 1). Whereas drug levels appeared to plateau in E. coli
(Fig 1A) and S. aureus (Fig 1C) levels in P. aeruginosa gradually decreased at longer times (Fig
1B), suggesting an acclimation process.

Mathematical modeling has provided substantial insights into accumulation of β-lactams
[4,6], cephalosporins [5], and tetracycline [9] in E. coli. Quinolone accumulation, however, has
not yet been analyzed in the context of a mathematical model. Here we present a mathematical
model of drug accumulation and use it to analyze experimental data on accumulation of the
quinolone ofloxacin in E. coli, S. aureus, and P. aeruginosa [7]. The analysis yields estimates of
permeation and efflux rates, the time of entry into the second phase of the response, and the
rate of decrease of drug during acclimation. We also perform global sensitivity analysis, local
sensitivity analysis, and Bayesian sensitivity analysis of the model. The sensitivity analyses pro-
vide information about the robustness of parameter estimates and enable assessment of the rel-
ative importance of the short-term response and long-term acclimation in different bacterial
species.

The results lead to experimentally testable predictions of membrane permeability and drug
efflux, which influence drug resistance. A key prediction is that an increase in E. coli and S.
aureus drug accumulation is accompanied by a decrease in membrane permeability. Overall
the results indicate the utility of mathematical modeling and sensitivity analysis in obtaining
new insights into drug accumulation in bacteria.

Results

Model behavior

Both the E. coli (Fig 1A) and P. aeruginosa (Fig 1B) behaviors clearly show two phases of drug
accumulation dynamics, which are captured by our model of drug accumulation (Methods).
The model also allows for the possibility of acclimation in the second phase; this was initially
added to capture the longer-time (~10–60 min) behavior of P. aeruginosa (Fig 1B). Although S.
aureus data initially appeared to involve only one phase (Fig 1C), the modeling and sensitivity
analysis later revealed a significant two-phase behavior, with acclimation.

The relationship between the model parameters and the model behavior is illustrated in Fig
2. After exposure at t = 0, the first phase begins, where cellular antibiotic levels rise and relax
toward an asymptotic value a1. The relaxation in this phase is exponential with rate β1. At time
t = τ, the second phase begins, where antibiotic levels may either rise or fall towards a new
asymptotic value a2. The relaxation in this phase is initially dominated by exponential relaxa-
tion with rate β2. Later, acclimation can dominate the dynamics, specified by modulation of β2

by the factor [1+ δ(t- τ)] (or, equivalently, modulation of α2 by [1+ δ(t- τ)]-1; see Discussion).
Together these features capture the full set of salient behaviors exhibited by the experimental
data on ofloxacin accumulation [7] (Fig 2).
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Parameter estimates

Optimal parameter values were estimated by fitting the model to data on ofloxacin accumula-
tion in E. coli, P. aeruginosa, and S. aureus. The fits were performed assuming the same mea-
surement error for each data point within the same curve (Methods). Reasonable fits were
obtained for all datasets (Fig 1), with an optimal value of the goodness of fit χ2/NDF of 0.98,
1.5, and 0.74 for E. coli, P. aeruginosa, and S. aureus, respectively. Values of β1, β2, and τ for E.
coli and S. aureus were surprisingly similar (Table 1) given the visible differences between the
two datasets (Fig 1); the parameter values for P. aeruginosa differed from the other two cases
(Table 1). E. coli exhibits two phases of accumulation with little apparent long-term acclima-
tion, consistent with the low value of δ. P. aeruginosa shows a stronger acclimation response,
corresponding to the higher value of δ. S. aureus exhibits a degree of acclimation (δ) that is
intermediate between E. coli and P. aeruginosa.

Sensitivity analysis results

We applied three types of sensitivity analysis to the model: global sensitivity analysis (GSA),
local sensitivity analysis (LSA), and Bayesian sensitivity analysis (BSA). The GSA yielded a
fine-grained assessment of the importance of each parameter in determining the model behav-
ior at each time point. The LSA indicated parameters that are responsible for the principal vari-
ations in the immediate neighborhoodof the optimal values. The BSA provided a detailed
picture of the shapes of probability distributions of parameters in a more extended range about

Fig 1. Ofloxacin accumulation data (open squares) with model fits (solid lines). A) E. coli. B) P.

aeruginosa. C) S. aureus. Each data point is assumed to have the same measurement error, estimated from

the maximum values reported for norfloxacin in Ref. [7] (vertical bars). The external drug concentration of 10

mg/L is shown in each panel in ng/mg units (dashed straight lines), converted using the factors derived from

the buoyant densities and dry fraction (Methods). The x-axis is plotted using a log scale, reflecting the time

sampling of the data.

doi:10.1371/journal.pone.0165899.g001

Fig 2. Behavior of the model and connection to parameters.

doi:10.1371/journal.pone.0165899.g002
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the optimum than for the LSA, including correlations that arise due to the nature of the model
equations. Semi-quantitative sensitivity rankings of parameters for each case are presented in
S1 Table; the detailed results are describedbelow.

Global SensitivityAnalysis (GSA. GSA results were obtained using log-uniformprior dis-
tributions over the ranges in Table 2. The results for E. coli (Fig 3A and 3B) and S. aureus (Fig
3E and 3F) are similar, due to the identical priors (Table 2) and the similarity in the optimal
parameter values for these cases (Table 1). The “main effect” index (a.k.a. the first-order sensi-
tivity index) quantifies the contribution to the variance of the model of each parameter alone,
while averaging over variations in other parameters, whereas the “total effect” index quantifies
the change in the variance of the model caused by the investigated parameter and its interac-
tions with any of the other parameters (Methods). Both the main effect and total effect are
measured on a scale from 0 to 1 for each parameter. As a reference for the following para-
graphs, a1 and a2 correspond to the initial steady-state level of antibiotic in the first and second
phase; β1 and β2 correspond to the relaxation rates at the entry into the first and second phase;
τ is the time of entry into phase 2; and δ is the rate constant associated with acclimation.

For E. coli and S. aureus, the main effect of a1, a2, and β1 is high, and the main effect of β2, τ,
and δ is low (Fig 3A and 3E). The total effect of a1, β1, a2, and τ is high, and the total effect is
low for β2 (especially at later times) and δ (Fig 3B and 3F). The total effect of a1 remains high at
long times, despite being associated with the first phase; this is because the prior for τ spans the
entire range 0–3600 s, enabling the first phase to extend to long times in the analysis.

For P. aeruginosa, the main effect of a1, a2, and δ is high, and the main effect of β1, β2, and τ
is low (Fig 3C). The total effect of a1, a2, τ, and δ is high, and the total effect of β1 and β2 is low
(Fig 3D). The increased importance of δ for P. aeruginosa compared to E. coli and S. aureus is
consistent with the more pronounced acclimation response (Fig 1). The low importance of β1

and β2 is consistent with the unbounded upper limit due to the step-like transitions in P. aeru-
ginosa; in comparison, the behavior of E. coli and S. aureus shows more gradual relaxations
with improved sampling (Fig 1), leading to increased importance of β1 and β2.

Table 1. Estimated parameter values obtained after fitting the model to data on ofloxacin accumulation in different bacteria.

a1 (ng/mg) a2 (ng/mg) β1 (1/s) β2 (1/s) δ (1/s) τ (s)

E. coli 32.0 67.1 0.116 0.00125 0.000048 772

P. aeruginosa 7.43 13.7 >0.1a >0.1a 0.000314 44.5

S. aureus 66.6 85.2 0.169 0.0014 0.000091 740

aEntries using ‘>‘ represent lower bounds.

doi:10.1371/journal.pone.0165899.t001

Table 2. Parameter ranges used for prior distributions for GSA and BSA (Log10 transformed values). Units of parameters are as in Table 1.

Log10 a1 Log10 a2 Log10 β1 Log10 β2 Log10 δ Log10 τ

E. coli

min 0 0 -3 -3 -7 0

max 2 2 0 0 -3.5 4

P. aeruginosa

min 0 0 -1 -1 -7 0

max 2 2 4 4 -2 4

S. aureus

min 0 0 -3 -3 -7 0

max 2 2 0 0 -3.5 4

doi:10.1371/journal.pone.0165899.t002
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Local sensitivity analysis (LSA). The LSA results are presented using the eigenvectors and
eigenvalues of the covariance matrix of model parameters (Methods). The eigenvectors are

Fig 3. Global sensitivity analysis results for E. coli (A, B); P. aeruginosa (C, D); and S. aureus (E, F) models. The left panels (A, C, E) show the main effect

results, and the right panels (B,D,F) show the total effect results. Color code: a1 (cyan); a2 (yellow); β1 (magenta); β2 (green); δ (lavender); and τ (red).

doi:10.1371/journal.pone.0165899.g003
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visualized in columns of colored squares in Fig 4, ordered in importance from left to right
using the eigenvalues (Table 3; sensitivity values correspond to -Log10(λ), where λ is the eigen-
value). For all cases, the first two eigenvectors are dominated by a1 and a2, indicating that these
are the most sensitive parameters. For E. coli, the third eigenvalue is more than 10-fold larger
than the first eigenvalue (corresponding to a lower sensitivity), with an eigenvector that is dom-
inated by τ. The lowest sensitivities correspond to combinations of β1, β2, and δ. For P. aerugi-
nosa, the third eigenvalue is 50-fold larger than the first, and corresponds to δ. The lowest
sensitivities correspond to β1, β2, and τ. For S. aureus, the third eigenvalue is 100-fold larger
than the first, and corresponds to β1. The lowest sensitivities correspond to combinations of β1,
δ, and τ. The relatively low sensitivity of τ in the LSA is consistent with the very sharp transi-
tion between the two phases, as the precise value of τ is ill-determinedbetween the discretely
sampled time points. The higher sensitivity of τ for E. coli is consistent with the extrapolation
of the phase 2 relaxation curve to a more precise value of τ.

Bayesian sensitivity analysis (BSA). We used BSA with Markov Chain Monte Carlo
(MCMC) sampling (Methods) to obtain insight into probability distribution functions (PDFs)
of parameter values (Figs 5–7). Because the measurement errors were not available for individ-
ual data points, we used an arbitrary error of 1 ng/mg for each data point (Methods). The
resulting PDFs therefore should not be interpreted as actual posterior PDFs, but only as indica-
tors of: (1) the overall shape of the distributions; (2) the relative degree to which different
parameters are constrained; and (3) the relative degree and nature in which different parame-
ters are correlated.

Fig 4. Local sensitivity analysis (LSA) results for A) E. coli; B) P. aeruginosa; and C) S. aureus. Columns correspond to eigenvectors, ordered left

to right from the most to the least sensitive, as in Table 3. Rows correspond to parameters, with labels indicated at the left. The strength and sign

of the coefficient of each parameter with each eigenvector is indicated using the color code in the legend to the right.

doi:10.1371/journal.pone.0165899.g004

Table 3. Sensitivities calculated from eigenvalues corresponding to each eigenvector from LSA. Sensitivity values are calculated as -Log10(λ),

where λ is the eigenvalue. The connection of each eigenvector to the model parameters is visualized in Fig 4.

Eigenvector # E. coli P. aeruginosa S. aureus

1 3.6 3.7 3.6

2 3.5 2.7 3.1

3 2.4 2.0 1.5

4 1.7 -1.9 1.2

5 1.3 -6.7 0.5

6 -1.0 -12 -1.2

doi:10.1371/journal.pone.0165899.t003
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The parameters β1, β2, and τ in P. aeruginosa have relatively flat PDFs that deviate substan-
tially from a normal distribution (Fig 6). Sharpening the likelihood function by decreasing the
errors 10-fold led to sharper PDFs for peaked distributions (S1–S3 Figs) while maintaining

Fig 5. Bayesian sensitivity analysis for E. coli. Pairwise parameter PDFs are shown using scatter plots in off-diagonal panels; Monte Carlo

sampled points illustrate the extent of the PDFs in the space of parameter values indicated on the x- and y-axes. Panels in transposed positions

within the grids contain identical information with the x- and y-axes swapped. PDFs for individual parameters are shown on the diagonals using

histograms, with the number of counts in each bin (out of 106 total samples) indicated on the y-axis.

doi:10.1371/journal.pone.0165899.g005
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similarly flat distributions for these parameters (S2 Fig), providing evidence that the flat distri-
butions are not an artifact of the sampling.

The individual PDFs for the parameters of both E. coli (Fig 5) and S. aureus (Fig 7) all show
peaks, which is justification for the providing the estimates for all parameters in Table 1 (the
distribution of β2 for S. aureus is truncated at low values due to the restricted range of the
prior; however, the peak clearly falls within the range of the prior when the likelihood function
is sharpened (S3 Fig)). The range of the values of β2 and δ among the MCMC sampled points
(an indicator of the width of the PDFs) is greater than for other parameters (Table 4), indicat-
ing that estimates of β2 and δ are less reliable (there is a noticeable tail in the a2 distribution for
E. coli, but the range of 0.14 Log10 units is still sufficiently narrow to provide an estimate). The
pairwise scatter plots indicate relatively strong correlations between a2 and both β2 and δ.
These correlations follow from Eq 4, in which both β2 and δ appear in factors that multiply a2;
a weaker correlation between δ and β2 is explained by the same term. The correlations involv-
ing δ are only substantial when δ is sufficiently large; this is because the effect of δ is negligible

Fig 6. Bayesian sensitivity analysis for P. aeruginosa. Plots of posterior PDFs for parameter values and

pairwise distributions are as in Fig 5.

doi:10.1371/journal.pone.0165899.g006

Model of Drug Accumulation in Bacteria

PLOS ONE | DOI:10.1371/journal.pone.0165899 November 8, 2016 9 / 20



when it is smaller than about 10−5 s-1 (Eq 4, considering the experiment duration of 3600 s). In
addition, β1 appears in the term modulating a1 in Eq 4, explaining a weak correlation between
these two.

Like for E. coli and S. aureus, the PDFs of a1, a2, and δ for P. aeruginosa show peaks (Fig 6),
justifying the entry of estimates in Table 1. In addition the PDF for τ, although flat, is confined
to a very narrow range, leading to an estimate in Table 1. The lack of a peak for τ can be under-
stood by the sharp, step-like increase (Fig 1B) combined with the discrete sampling in time; i.e.,
the step can be located anywhere between the time points that mark the increase, with approxi-
mately equal probability. Step-like increases in accumulation also lead to high uncertainty in
both β1 and β2 (Table 4); these parameters can assume essentially any value that is large enough
to enable the antibiotic to rise between the time points that mark the increase, with equal prob-
ability. Like for E. coli and S. aureus, a2 and δ are correlated for P. aeruginosa; however, com-
pared to E. coli and S. aureus, increased uncertainty masks any underlying correlations
involving β1 and β2.

Fig 7. Bayesian sensitivity analysis for S. aureus. Plots of posterior PDFs for parameter values and

pairwise distributions as in Fig 5.

doi:10.1371/journal.pone.0165899.g007
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Predictions of permeability, net efflux rate, and accumulation factor

We used Eqs 5–7 to predict the values of parameters that directly characterize permeation, net
efflux, and the degree of drug accumulation. The predictions are quantified in the form of the
permeabilityαi in each phase i, the net efflux rate εi, which is defined as the portion of the spe-
cific export rate not associated with permeation, and the accumulation factor, ϕi, which is the
fold-increase of antibiotic concentration inside the cell compared to the external concentration.
A positive value of ε is associated with a net efflux and a value ϕ<1, while a negative value is
associated with a net trapping of drug and a value ϕ>1. The total value of ε can be determined
by a combination of individual positive or negative fluxes, potentially involving multiple mech-
anisms including efflux pumps and drug binding to DNA (Discussion).

The resulting predictions of αi, εi, and ϕi are shown in Table 5. Predictions of αi and εi for
P. aeruginosa are provided as lower bounds, following from the entries for βi in Table 1. The
true reliability of the predictions of ϕi depends both on the robustness of the estimation of ai

(Sensitivity analysis results) and the uncertainty in the factor used to convert a0 to ng/mg dry
weight units (Methods). The reliability of the predictions of αi, εi additionally depends on the
robustness of the estimation of βi.

The predictions of permeability behavior are strikingly similar for E. coli and S. aureus. At
early times, the permeability is high, corresponding to about a 5.5 s half-equilibration time for
E. coli, and a 1.5 s half-equilibration time for S. aureus (α1 from Table 5). The permeability
then decreases dramatically after about 12.5 minutes (τ from Table 1): by a factor of ~50 for E.
coli and a factor of ~100 for S. aureus (α2/α1 from Table 5). In addition, the value of ε at both
early and late times is negative for both E. coli and S. aureus, and the values of ϕ are greater
than one, indicating a net trapping of antibiotic.

Table 4. Minimum and maximum values of parameters among 106 random samples obtained by BSA MCMC (Log10 transformed values). Units for

parameters are as in Table 1.

Log10 a1 Log10 a2 Log10 β1 Log10 β2 Log10 δ Log10 τ

E. coli

min 1.49 1.75 -1.05 -3.00 -7.00 2.81

max 1.52 1.90 -0.80 -2.57 -3.90 2.94

range 0.03 0.14 0.25 0.43 3.10 0.13

P. aeruginosa

min 0.76 1.08 -1.00 -1.00 -3.75 1.53

max 0.97 1.18 4.00 4.00 -3.28 1.69

range 0.21 0.10 5.00 5.00 0.47 0.16

S. aureus

min 1.82 1.88 -0.84 -3.00 -4.53 2.76

max 1.83 1.98 -0.69 -0.77 -3.80 2.96

range 0.01 0.10 0.15 2.23 0.73 0.20

doi:10.1371/journal.pone.0165899.t004

Table 5. Predicted accumulation factors (ϕ), permeabilities (α), and net efflux (ε) rates.

ϕ1 ϕ2 α1 (1/s) α2 (1/s) ε1 (1/s) ε2 (1/s)

E. coli 1.09 2.29 0.126 0.0029 -0.011 -0.0016

P. aeruginosa 0.39 0.72 >0.039a >0.072a >0a >0a

S. aureus 2.93 3.75 0.495 0.0053 -0.326 -0.0039

aEntries with a ‘>‘ indicate a lower bound.

doi:10.1371/journal.pone.0165899.t005
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In contrast to E. coli and S. aureus, the values of ϕ are less than one for P. aeruginosa, indi-
cating a net efflux of antibiotic. The lower bound of α1 for P. aeruginosa is consistent with E.
coli and S. aureus but the lower bound of α2 is higher by a factor O(10). The upper bounds of ε
for P. aeruginosa are consistent with the estimates for E. coli and S. aureus.

Discussion

The present modeling and analysis of ofloxacin accumulation time courses indicates that E. coli
and S. aureus exhibit a similar two-phase ofloxacin accumulation behavior. Whereas the two-
phase behavior for E. coli was easily visible in the data, for S. aureus it was only detected as a
result of the BSA. Even though the change in antibiotic level entering phase 2 is small for S.
aureus, the BSA indicates a clear peak in the posterior distributions of all of the influx and out-
flux parameters, increasing confidence in the two-phase model for this case (Fig 7).

The contribution of sensitivity analysis to the present study was substantial. The BSA
enabled us to identify a significant two-phase model for S. aureus that we were unable to detect
in the data by eye. In addition, the BSA enabled us to identify correlations in the data that are
consistent with the way the parameters work together in the model. We also note that the lack
of individual error estimates for each data point in the present study prevented calculation of
true posterior PDFs; the availability of error estimates for future datasets will enable a substan-
tial increase in the information provided by the BSA. The sensitivity analysis also enables a
quantitative means of distinguishing of important from unimportant parameter values in the
modeling. This further enables a degree of confidence to be associated with results based on the
quantitative analysis, which can be used to assess which predictions are more or less likely.
Some aspects of the sensitivity analysis confirm what is already apparent in just looking at the
data, such as the increased importance of δ for P. aeruginosa compared to E. coli; however,
even in this case, it provides quantitative measures that can enable obvious results to be
obtained automatically. Automation will become increasingly important as we increase the
number of data sets being analyzed. In addition, future data sets might not be as straightfor-
ward to interpret by eye, and the present study serves as an example that demonstrates the con-
sistency of the sensitivity analysis with the interpretation of a relatively clear-cut case, so that
the methods can be applied with increased confidence to cases where the interpretation might
not be so obvious.

The rapid initial accumulation of ofloxacin in E. coli, P. aeruginosa, and S. aureas has been
cited as evidence that these bacteria lack a substantial permeability barrier for fluoroquinolones
[7]. Our modeling supports the high permeability at early times in the accumulation dynamics.
The permeation rates in Table 5 lead to a half-equilibration time for ofloxacin permeation of
5.5 s into E. coli,<18 s into P. aeruginosa, and 1.5 s for S. aureus. These values are similar to
the expected 5 s half-equilibration time for permeation of norfloxacin across a lipid bilayer
[10]; as measured in Ref. [7], the apparent partition coefficient of ofloxacin is 4-fold greater
than that of norfloxacin, so their permeabilities across the cytoplasmic membrane are expected
to be within a similar range.

In contrast with the early time behavior, after about 12.5 mins, both E. coli and S. aureus
show a predicted 50-to-100-fold decrease in permeability (Table 5). This sudden decrease in
permeability only was detected using the modeling and was not detected in the prior qualitative
analysis of the data [7]. One way to test this prediction is to shift the cells to a medium with
radiolabeled drug, looking for a difference in labeled drug accumulation in phase 1 versus
phase 2. At this point we can only speculate about the mechanism. E. coli is gram negative,
whereas S. aureus is gram positive, suggesting the common decrease in permeability does not
involve the outer membrane. That the permeability rates are consistent with diffusion across
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the cytoplasmicmembrane indicates that the decrease in permeability is not necessarily be associ-
ated with transporters. It is possible that the sacculus, a mesh structure common to both E. coli
and S. aureus, might be involved in a decrease in permeability. The ability of the sacculus to allow
translocation of proteins as large as 25 kDa [11] or 100 kDa [12] would seem to rule out a role for
the sacculus by itself, as ofloxacin has a molecularweight of 361 Da, and should ordinarily freely
diffuse across the mesh. However, the sacculus is associatedwith a comparable mass of other bio-
molecules in both gram negative and positive bacteria [13] [14]. If ~98% of the mesh were to
becomeblocked somehow, it could explain the ~50-fold decrease in permeability for E. coli.

For E. coli and S. aureus, the values of the accumulation factor ϕ>1 indicate net trapping of
antibiotic. The trapping is weak for E. coli in phase 1 (ϕ1 = 1.09) and becomes stronger in
phase 2 (ϕ2 = 2.29). Compared to E. coli, the trapping is stronger in S. aureus for both phases:
ϕ1 = 2.93 and ϕ2 = 3.75. For P. aeruginosa, the values of ϕ<1 indicate a net efflux of antibiotic
that is stronger in phase 1 (ϕ1 = 0.39) than in phase 2 (ϕ2 = 0.72).

Several individual effects can combine to determine whether there is a net trapping or efflux
of antibiotic. Targeted experiments will be required to determine the role of specificmecha-
nisms, but we can gain some insights by assuming that an important effect favoring trapping is
the immobilization of antibiotic on DNA. This effect can be estimated using the dissociation
constant KD = 633 μM reported by Shen et al. [15] for nonspecific binding to DNA of norfloxa-
cin at high concentrations (10–1000 μM). Assuming roughly 2.1 genome equivalents per cell
[16], a volume of 1.25 fL, and 4.7 x 106 bp per chromosome yields an estimated DNA bp con-
centration in E. coli [D] = 1.3 x 104 μM. Then, assuming the KD for norfloxacin applies to oflox-
acin and that each bp can bind one drug molecule yields a fraction of DNA-bound drug of 1/(1
+KD/[D]) = 0.95, or a mobile fraction of just 0.05. In this case, the contribution of permeability
to the outflow would be only 5% of that assumed in Eq 6, leading to an increase in efflux by
0.95α. This translates into an increase in the specific efflux rate by 0.12 s-1 for E. coli in phase 1.

Based on the above estimates, despite the small negative value of the net efflux parameter ε1

(= -0.011 s-1) in Table 5, due to the effect of trapping by DNA binding, we expect the underlying
rate of efflux in E. coli to be 0.11 s-1 (= 0.12 s-1–0.011 s-1), which is comparable to the rate of per-
meation. To assess the importance of efflux in S. aureus, we use similar reasoning as for E. coli,
noting that the net efflux parameter ε1 is -0.326 s-1 and the effective permeabilityα is 0.495 s-1

(Table 5). Assuming the same degree of trapping in S. aureus as in E. coli yields a contribution
0.48 s-1 and an estimated specific efflux rate of roughly 0.15 s-1 (= 0.48 s-1–0.326 s-1) in phase 1,
which is close to the value for E. coli. In contrast to E. coli, however, where the efflux rate is com-
parable to the inflow rate, in S. aureus the efflux rate is less than 1/3 of the inflow rate.

The estimated specific efflux rates in phase 1 of 0.11 s-1 for E. coli and 0.15 s-1 for S. aureus can
be used to estimate the rate of outflow of drug due to efflux.Multiplying by a1 yields an outflow
of 3.5 ng/mg/s (= 0.11 s-1 x 32 ng/mg) for E. coli, and 10 ng/mg/s (= 0.15 s-1 x 66.6 ng/mg) for S.
aureus. Dividing by the molecularweight of ofloxacin (361.368 g/mol) yields 0.0097 nmol/mg/s
for E. coli and 0.028 nmol/mg/s for S. aureus. These values are similar to the Vmax value of
0.0235 ± 0.003 nmol/mg/s found by Lim and Nikaido [6] for efflux of nitrocefin from E. coli, and
are much lower than the value of 1.82 ± 0.85 nmol/mg/s found for cephaloridine efflux from E.
coli in the same study. Therefore our predictions are consistent with the Vmax for efflux of ofloxa-
cin in E. coli and S. aureus being similar to the Vmax for efflux of nitrocefin in E. coli.

In addition to DNA binding, differential permeability of ionic subspecies of ofloxacin or
Mg2+ chelates of ofloxacin might also influence the balance of inflows and outflows [10].
These effects can easily lead to two-fold or greater accumulation or exclusion of antibiotic [10].
In addition to the predicted change in membrane permeability, therefore, changes in DNA
binding, efflux, pH, and the availability of Mg2+ all might potentially be linked to the two-
phase behavior of ofloxacin accumulation.
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Because we predict that the underlying efflux rate is comparable to the inflow rate in E. coli,
we also predict that efflux plays an important role in ofloxacin accumulation. In contrast, for S.
aureus, we predict efflux plays a less important role in ofloxacin accumulation, because the
efflux rate is predicted to be substantially lower than the inflow rate. For P. aeruginosa, we are
unable to make predictions based on quantitative estimates of rate constants, due to uncer-
tainty in the key parameter values in Table 1 and Table 5. However, because the internal con-
centration of antibiotic is predicted to be less than the external concentration (ϕ< 1 in
Table 5), we predict that efflux is important in P. aeruginosa accumulation of ofloxacin.

Both P. aeruginosa and S. aureus exhibit a visible slow decrease in accumulated drug during
the second phase (Fig 1). The model captures this decrease in terms of the parameter δ which
increases β2 by a factor [1 + δ(t − τ)] in Eq 3. Mechanisms for increasing β include enhancing
efflux (e.g., by increased expression of pumps) or decreasing trapping (e.g., by chromosome
remodeling that results in a decrease in drug binding to DNA). Importantly, the combination
of Eq 4 and Eq 5 indicate that δ can be interpreted alternatively as decreasing α2 by a factor [1
+ δ(t − τ)]−1. Thus, in addition to an increase in efflux or a decrease in trapping, the acclima-
tion behavior can be attributed to a decrease in permeability (e.g., through the hypothetical
mechanisms described above). Additional experiments targeted at the mechanism of decrease
will be required to determine the cause of the acclimation response.

Ofloxacin is bactericidal at the concentration of 10 mg/L used in the experiments [7], which
might have important implications for the interpretation of the results. If nonviable cells are
excluded from the analyzed pellet after centrifugation (e.g. because they have been lysed and
remain suspended), the accumulation data simply correspond to viable cells, and the interpre-
tation is straightforward. If nonviable cells are included in the pellet, the interpretation depends
on the relative populations of viable and nonviable cells. According to Ref. [7], 5 mins after
exposure in phosphate buffer, the viable count of E. coli decreased by 0.74 Log10 units, the
count of P. aeruginosa decreased by 0.45 Log10 units, and the count of S. aureus decreased by
0.4 Log10 units. These data indicate that in all cases, the number of viable cells decreases by at
least 2.5-fold after 5 mins. At the longest times, 60 mins after exposure, the values were 2.06,
3.75, and 0.54 Log10 units, respectively, indicating that the number of viable cells of E. coli and
P. aeruginosa decreases by at least 100-fold over the course of the experiment. These results
indicate that if nonviable cells are included in the analyzed pellet, the behavior should be domi-
nated by the nonviable cells; indeed, trapping of antibiotic in nonviable cells removes antibiotic
from the environment, which would increase the chance of survival of neighboring viable cells,
leading to a fitness advantage at the population level.

That the model matches the data well (Fig 1) is consistent with the interpretation that the
behavior is predominantly due to one type of cell, either viable or nonviable. However, the kill-
ing kinetics do indicate that the number of viable cells is still not negligible at early times for all
cells, and at late times for S. aureus. In addition, including the effect of antibiotic on cell growth
and death will be critical to connecting the present results to drug resistance. Future work
should therefore include investigating an expanded dynamical model that includes subpopula-
tions of viable and nonviable cells, including the dependence of cell growth (for bacteriostatic
effect) and death (for bactericidal effect) on intracellular antibiotic concentration. Including
the antibiotic effect (e.g., via the target inhibitory concentration [4–6]) is essential for under-
standing the relation between the amount of accumulated drug and antibacterial activity, as
they are not necessarily correlated [7]. In particular, Nagano and Nikaido [5] used mathemati-
cal modeling to predict MIC values of drugs for E. coli, and to show how efflux pump deletion
or overexpression might not change the MIC value of drugs that are nevertheless strong efflux
pump substrates.
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It is interesting to consider the importance of models of drug accumulation in light of a
recent survey of physical properties of active compounds in a drug screening collection and
their relation to whole cell antibacterial activity [17]. The survey reported on the difficulties
encountered in simultaneously optimizing both biochemical potency and antibacterial activity,
and concluded that “what is clearly needed is greater insight into medicinal chemistry strategies
which optimize transport through porins and decrease efflux through the prolific efflux
pumps.” Together, the findings reported here and elsewhere [5,6] suggest that mathematical
modeling of drug accumulation can provide these insights, and thus can be a key tool in
enabling antibacterial medicinal chemistry.

Materials and Methods

Model

Our dynamical model of drug accumulation lumps together transport across the inner and
outer membranes. This is appropriate as the drug target is in the cytoplasm, there are no data
on drug accumulation in the periplasm, and we wish to use the same model for gram positive
or negative bacteria.We note that this lumping does not prevent the interpretation of results in
light of differences between the outer and inner membranes (Discussion).

The time dependence of accumulated drug a(t) is modeled using

daðtÞ
dt
¼ a tð Þao � b tð Þa tð Þ ð1Þ

where ao is the environmental antibiotic concentration, α(t) is the specific rate of increase, and
β(t) is the specific rate of decrease. The term “specific” is used to indicate that the rate constant
is multiplied by the antibiotic concentration. We assume α(t) corresponds to the permeability,
although it also can include active transport. We assume β(t) corresponds to both active and
passive transport, although it also can include degradation and cell growth. Cell growth in E.
coli occurs by a constant cell size extension [18], which is consistent with including cell growth
in β. If included, assuming a 42 min doubling time, cell growth would contribute a specific rate
of 2.75 x 10−4 s-1; this is orders of magnitude smaller than the values of β at early times
(Table 1), when growth is expected to be highest, and is at least 4-fold smaller than the values
of β at early times (Table 1), when growth is expected to be lowest. Ignoring cell growth there-
fore is a reasonable approximation in the present study, although it might be necessary to
include it in other studies.

Eq 1 was developed assuming that only viable cells are analyzed. This corresponds to the
case when nonviable cells are disrupted and are excluded from pellet after centrifugation in
Ref. [7]. Even when nonviable cells are not excluded from analysis (Discussion), Eq 1 applies to
viable cells when the external antibiotic level is low and there is a negligible fraction of nonvia-
ble cells at all times. If nonviable cells are included in the pellet and there is a negligible fraction
of viable cells at all times, Eq 1 will still be relevant but will instead describe accumulation in
the nonviable cells. If both viable and nonviable cells are analyzed and there is an intermediate
drug concentration, the model should be extended to include both viable and nonviable cells,
with population dynamics (Discussion).

To model the data in Fig 1, we assume α(t) and β(t) both switch rapidly from a constant
value in phase 1 to a different constant value in phase 2. The import rate α(t) is given by

aðtÞ ¼
a1; t < t

a2; t � t
; ð2Þ

(
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where α 1 applies to the early phase of the accumulation dynamics (t<τ), and α 2 applies to the
late phase (t� τ).

The export rate β(t) is given by

bðtÞ ¼
b1; t < t

b2½1þ dðt � tÞ�; t � t
; ð3Þ

(

where β1 applies during the early phase (t<τ), β2 applies during the late phase (t�τ), and δ is
the fractional rate of increase of export during the later phase.

Assuming rapid relaxation (β2) compared to acclimation (δ) in phase 2 yields

a tð Þ ¼
e� b1tað0Þ þ ð1 � e� b1tÞa1; t � t

e� b2ðt� tÞa tð Þ þ 1 � e� b2ðt� tÞ½ �
a2

1þ dðt � tÞ
; t > t

ð4Þ

8
<

:

where a1 = α1 ao/ β1, and a2 = α2 ao/ β2.
Given additional assumptions, the α and β parameters can be used to derive permeation

and net efflux rates (see below). The δ parameter models long-term acclimation by, e.g., gene
regulation.

Parameter estimation

Parameter estimation for Eq 4 was performed using published experimental time courses of
ofloxacin accumulation in E. coli, P. aeruginosa, and S. aureus [7]. Data points were extracted
from Figure 1 in Ref. [7]. Numerical solutions to Eq 4 were obtained for each data point using
functions defined in Mathematica Version 10 (Wolfram Research, Inc., Champaign, IL). Errors
for each individual data point were not available, and were therefore estimated using the maxi-
mum values given for norfloxacin in Ref. [7]: ±12.5, ±11.6, and ±9.7 ng/mg for E. coli, P. aeru-
ginosa, and S. aureus, respectively. To obtain error estimates for ofloxacin, these maximal
errors were scaled using the initial rapid phase concentration entries in Tables II, III, and IV of
Ref. [7], and were then divided by two. The following were the resulting estimated errors for
each data point: 2.3 ng/mg for E. coli, 0.75 ng/mg for P. aeruginosa; and 4.35 ng/mg for S.
aureus. We also performed the fits using the maximal errors as the estimates, without dividing
by two; however, we favored using the half-maximal errors for the following reasons: (1) the
maximal values are very likely overestimates; and (2) the half-maximal values yielded χ2/NDF
values close to 1, whereas the maximal values yielded values substantially lower than 1. The
choice of errors between these cases merely resulted in a different overall scaling χ2 and did not
influence the optimal parameter values obtained in the fits.

A standard χ2/NDF was used as a goodness of fit measure between the model and the data,
using a number of degrees of freedom NDF = number of data points minus six parameters.
The χ2/NDF was minimizedwith respect to values of a1, a2, β1, β2, δ, and τ using the FindMini-
mum method, assuming a(0) = 0. The values of a1, a2, β1, β2, δ were varied over twelve decades.
For E. coli and P. aeruginosa, the value of τ was varied from 0–10,000 s (covering the full span
of each 3,600 s time course) to seek an optimal solution. For S. aureus, optimization was ini-
tially performed for τ = 10,000 s (a time beyond the last data point), as the behavior appeared
to be one phase. A more thorough investigation of the parameter space using Bayesian sensitiv-
ity analysis (BSA), however, revealed a relatively weak but significant two-phase response, with
a value of τ that is similar to E. coli. Therefore the optimization for S. aureus also was per-
formed varying τ from 0–10,000 s. Mathematica workbooks, experimental data, and model fits
for all cases are available in a compressed archive (S1 File).
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Sensitivity analysis methods

All sensitivity analyses were performed using the open source code Model-Analysis and Deci-
sion Support (MADS), developed at Los Alamos National Laboratory (http://mads.lanl.gov).

Global Sensitivity Analysis (GSA). We performed variance-basedGSA [19], which
decomposes the variance of the output into parts ascribed to different input parameters using a
Fourier Haar decomposition [20,21]. Both the “main effect “and the “total effect” results pre-
sented here for each input parameter were calculated using the Sobol Monte Carlo algorithm
[22] using about 106 independent model evaluations drawn from log-uniform distributions
defined by Table 2. We found that this number of samples was sufficient to achieve conver-
gence for the estimated quantities. The ranges in Table 2 were chosen arbitrarily to encompass
the optima in Table 1 while exploring a reasonably broad region of parameter space and satis-
fying the requirement of rapid relaxation (β2) compared to acclimation (δ) in phase 2 for Eq 4.

Local Sensitivity Analysis (LSA). LSA has a rich history of use in assessing the robustness
of biochemical network model behavior to changes in parameter values [23,24]. In LSA, the
local gradients of the model output are calculated with respect to model parameters at a fixed
point (the point with the lowest χ2). Here we use the gradients to define a covariance matrix of
variations [25]. We used a finite difference method requiring a limited number of model evalu-
ations (equal to the number of unknown parameters). As a result, we obtain a gradient matrix J
(i.e. the Jacobian) with dimensions [m × n] where m is the number of model parameters and n
is the number of model inputs (we use logarithmic derivatives, to obtain an analysis in terms of
dimensionless parameters). Each component of the Jmatrix represents the local sensitivity of
each model parameter to each model output [25]. We analyze the covariance matrix C of
model parameters which is computed as C = [JTJ]-1. The covariance matrix is analyzed using
eigenanalysis where eigenvectors and eigenvalues of the covariance matrix are explored. How
dominant (important) is each eigenvector depends on the respective eigenvalues; the smaller
the eigenvalue, the higher the importance of the eigenvector. The components of each eigen-
vector represent the contributions of each model parameter to the simultaneous variation of
multiple parameters: the larger the absolute value of the components, the larger the contribu-
tion. Model parameters with a large contribution in dominant eigenvectors are important (sen-
sitive) model parameters. Model parameters with large contribution in non-dominant
eigenvectors are unimportant (insensitive) model parameters. If several model parameters
have an important contribution in a single eigenvector, these model parameters are correlated.
If these contributions have the same sign, the correlation is positive. If these contributions have
opposite signs, the correlation is negative.

Bayesian Sensitivity Analysis (BSA). Posterior probability density functions (PDFs) of
the model parameters given observeddata (Figs 5–7) were obtained following Bayes’ theorem
[26,27]. The PDFs were obtained using a log-uniform prior with the ranges indicated in
Table 2, with a likelihood function defined as e� w2=2, using an arbitrary error value of 1 ng/mg
for each data point. The error was decreased to 0.1 ng/mg to demonstrate the effect of sharpen-
ing the likelihood function in S1–S3 Figs. The BSA was performed using the Robust Adaptive
Metropolis Markov Chain Monte Carlo (MCMC) algorithm [28]. Analysis was performed
using sample sizes of 104, 105, and 106; we found a sample size of 106 yielded adequate sam-
pling. The posterior PDF scatter plots (off-diagonal panels in Figs 5–7) show an overlay of indi-
vidual counts; the extent of the plots reflects the parameter range over which 106 random
samples can fall. The posterior parameter ranges in Table 4 were obtained by identifying the
minimum and maximum parameter values among 106 points sampled using the MCMC. (The
values in Table 4 must be interpreted in light of the fact that the range might increase with
increasing number of samples, and that the precise values can change depending on differences
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in sampling, e.g., using different random number seeds.) The histograms (diagonal panels in
Figs 5–7) indicate the shape of the individual marginalized PDFs using the number of counts
on the y-axis.

Predictions of permeability, net efflux rate, and accumulation factor

Estimation of the model parameters enables prediction of permeability and efflux rates. Given
ao, the specific import rate αi in each phase i may be calculated as

ai ¼ aibi=a0: ð5Þ

Assuming the import is due to permeation,αi is the permeability. Next, assume the specific
export rate β is a sum of contributions from permeability, α and other effects. The other effects
are then captured by the difference ε between β and α:

εi ¼ bi � ai: ð6Þ

When εi> 0, outward flow is enhanced compared to permeation, and εi indicates a net
efflux.When εi< 0, the outward flow is decreased compared to permeation, and εi indicates a
net trapping of drug.

Finally, the accumulation factor ϕ is used as a measure of the degree to which antibiotic is
either accumulated in or expelled from the cell. It is given by

�i ¼ ai=ao: ð7Þ

If ϕi < 1 the internal antibiotic concentration is less than the external antibiotic, which is
associatedwith net efflux (εi>0). If ϕi > 1 the internal antibiotic exceeds the external antibiotic,
which is associated with net trapping (εi<0).

Eqs 5–7 are only valid under the same assumptions as for Eq 4. Predictions of αi and εi are
only meaningful using reliable estimates of both ai and βi. In contrast, ϕi can be predicted just
with estimates of ai and ao.

The predictions use the environmental drug concentration a0 in ng drug/mg dry weight
units. The external ofloxacin concentration in the experiments was 10 mg/L [7]. To convert to
ng/mg dry weight units, following Ref. [29], we used a buoyant density of 1.1 g/mL and a 31%
dry weight for E. coli, a buoyant density of 1.2 g/mL and a 48% dry weight for P. aeruginosa
(transferred from P. putida), and assumed a buoyant density of 1.1 g/mL and a 40% dry weight
for S. aureus. This yielded conversion factors of 0.341 (mg drug/L)/(ng drug/mg dry weight)
for E. coli, 0.528 for P. aeruginosa, and 0.440 for S. aureus. The uncertainty in the dry weight
fraction for S. aureus should be estimated at about 25%, given the range spanned by E. coli and
P. aeruginosa. This introduces uncertainty in the predictions beyond those indicated by the
sensitivity analysis alone.

Supporting Information

S1 Fig. Bayesian sensitivity analysis for E. coli using a sharpened likelihood function. The
analysis and presentation is the same as in Fig 5, but using a 10-fold lower error value.
(TIF)

S2 Fig. Bayesian sensitivity analysis for P. aeruginosausing a sharpened likelihood func-
tion. The analysis and presentation is the same as in Fig 6, but using a 10-fold lower error
value.
(TIF)
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S3 Fig. Bayesian sensitivity analysis for S. aureus using a sharpened likelihood function.
The analysis and presentation is the same as in Fig 7, but using a 10-fold lower error value.
(TIF)

S1 File. ArchiveModel.tgz containing Mathematica workbooks, experimental data, and
model fits for the E. coli, P. aeruginosa, and S. aureus models of drug accumulation.The
archive is in TAR format and has been compressed using GZIP.
(TGZ)

S1 Table. Parameter rankings based on different sensitivitymethods (values in bold are
representing ranking ties).
(DOCX)
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