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Abstract

Melioidosis is an often-severe tropical infection caused by Burkholderia pseudomallei (Bp)

with high associated morbidity and mortality. Burkholderia thailandensis (Bt) is a closely

related surrogate that does not require BSL-3 conditions for study. Lactoferrin is an iron-

binding glycoprotein that can modulate the innate inflammatory response. Here we investi-

gated the impact of lactoferrin on the host immune response in melioidosis. Lactoferrin con-

centrations were measured in plasma from patients with melioidosis and following ex vivo

stimulation of blood from healthy individuals. Bt growth was quantified in liquid media in the

presence of purified and recombinant human lactoferrin. Differentiated THP-1 cells and

human blood monocytes were infected with Bt in the presence of purified and recombinant

human lactoferrin, and bacterial intracellular replication and cytokine responses (tumor

necrosis factor-α (TNF-α), interleukin-1β and interferon-γ) were measured. In a cohort of 49

melioidosis patients, non-survivors to 28 days had significantly higher plasma lactoferrin con-

centrations compared to survivors (median (interquartile range (IQR)): 326 ng/ml (230–748)

vs 144 ng/ml (99–277), p<0.001). In blood stimulated with heat-killed Bp, plasma lactoferrin

concentration significantly increased compared to unstimulated blood (median (IQR): 424

ng/ml (349–479) vs 130 ng/ml (91–214), respectively; p<0.001). Neither purified nor recombi-

nant human lactoferrin impaired growth of Bt in media. Lactoferrin significantly increased

TNF-α production by differentiated THP-1 cells and blood monocytes after Bt infection. This

phenotype was largely abrogated when Toll-like receptor 4 (TLR4) was blocked with a mono-

clonal antibody. In sum, lactoferrin is produced by blood cells after exposure to Bp and lacto-

ferrin concentrations are higher in 28-day survivors in melioidosis. Lactoferrin induces

proinflammatory cytokine production after Bt infection that may be TLR4 dependent.
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Author summary

Melioidosis is a severe tropical infection caused by the bacterium Burkholderia pseudomal-
lei. Despite antibiotics, mortality in some regions remains very high, necessitating the

need for alternative treatment strategies, including targeting the immune system. Lacto-

ferrin is an iron-binding protein with a variety of different functions. In this study, we

wanted to test whether lactoferrin alters how the immune system responds during melioi-

dosis. To achieve this, we first tested the blood of melioidosis patients and found that

patients who later died had higher lactoferrin levels compared to those who survived. We

also stimulated blood obtained from healthy individuals with B. pseudomallei and found

that lactoferrin levels increase. We next analyzed whether lactoferrin impaired how the

bacteria grows and found that the growth of Burkholderia thailandensis, a closely related

bacterium, was not affected by the addition of lactoferrin to the media. When human

immune cells, called monocytes, were infected with B. thailandensis, we found that levels

of a specific inflammatory protein, TNF-α, increased after adding lactoferrin and that this

effect was related to a specific immune recognition pathway called Toll-like receptor 4.

These findings provide new data about the role of lactoferrin in modulating the immune

response in melioidosis.

Introduction

Melioidosis is a tropical bacterial infection which can cause pneumonia and sepsis. The etio-

logic agent of melioidosis, Burkholderia pseudomallei (Bp), a Gram-negative saprophytic bacte-

ria, causes disease following inoculation by inhalation, ingestion or cutaneous exposure [1].

Endemic to southeast Asia and parts of northern Australia, melioidosis has mortality rates

upwards of 40% in certain regions, including northeast Thailand, despite appropriate antibi-

otic therapy [2,3]. Due to the difficulty in eradicating the facultatively intracellular pathogen,

treatment regimens last several months [1]. Given its pathogenicity, Bp is classified as a Tier 1

select agent by the US Centers for Disease Control and Prevention. Importantly, the worldwide

prevalence of melioidosis is unknown and may represent a burgeoning global threat with over

160,000 cases worldwide annually [4].

Lactoferrin is an iron-binding glycoprotein typically found in human milk, saliva and other

mucosal secretions and is produced by multiple cells, including neutrophils, during inflamma-

tion [5,6]. This apparent enrichment in secretions has been postulated to be related to lactofer-

rin’s broad antimicrobial properties [7]. Historically, these defense mechanisms were ascribed

to lactoferrin’s iron sequestration properties [8,9]. However, more recent evidence suggests

that lactoferrin may play a direct antimicrobial role by preventing bacterial biofilm formation,

activating proteolysis of bacterial virulence factors and blocking the adhesion of bacteria to

host immune cell membranes [6,10]. In fact, lactoferrin’s non-iron binding protein domains

have exhibited frequent evolvement of polymorphisms, suggesting an importance of lactofer-

rin’s other moieties [11]. Taking advantage of these properties, bovine lactoferrin, sharing 77%

amino acid homology with human lactoferrin, has been studied as an adjuvant therapy in sev-

eral clinical trials for patients with sepsis [12,13].

Iron metabolism may play a role in Bp’s virulence as iron supplementation enhances bacte-

rial growth in soil and Bp-infected mice [14,15]. Bp can also capture iron from lactoferrin and

transferrin in vivo through a specific siderophore, malleobactin [16]. However, in contrast to

several other Gram-negative bacteria, lactoferrin supplementation does not impede Bp growth

in media [17]. Lactoferrin may also directly regulate innate immunity by interacting with
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intracellular signaling pathways, including NF-κB [18–20]. The immune response to Bp infec-

tion is dependent on multiple Toll-like receptor (TLR) pathways, including TLR4 [21]. How-

ever, whether lactoferrin regulates the immune response during Bp infection is unknown.

We hypothesized that human lactoferrin modulates the innate immune response in

melioidosis. We initially tested our hypothesis by measuring plasma lactoferrin in patients

with melioidosis as well as Bp-stimulated blood of healthy individuals. We then assessed

the immunomodulatory effects of lactoferrin experimentally in vitro using B. thailandensis
(Bt). Bt is a closely related bacterium to Bp which does not require high containment labora-

tory conditions but induces a similar innate inflammatory response in vivo and in vitro

[22–24].

Methods and materials

Ethics statement

The Ethical Review Committee for Research in Human Subjects, Ministry of Public Health,

Thailand; the Ethics Committee of the Faculty of Tropical Medicine, Mahidol University,

Bangkok, Thailand (MUTM2012-024-01 and MUTM2015-002-01); the Ethical Review Com-

mittee for Research in Human Subjects, Sunpasitthiprasong Hospital, Ubon Ratchathani,

Thailand (039/2556); the Oxford Tropical Medicine Ethics Committee, Oxford UK

(OXTREC172-12); and the University of Washington Human Subjects Division Institutional

Review Board (42988) approved the studies involving human subjects research. Written

informed consent for enrollment in the clinical studies was obtained from subjects or their

representatives at the time of enrollment.

Melioidosis patient cohort

Subjects aged 18 years or older admitted to Sunpasitthiprasong Hospital, Ubon Ratchathani,

Thailand with suspected infection were prospectively enrolled between 2013 through 2017.

Inclusion criteria were enrollment within the first 24 hours of admission to the hospital and

the presence of at least three documented systemic manifestations of infection, as proposed

by the 2012 Surviving Sepsis Campaign [25]. Patients suspected of having a hospital-

acquired infection, those hospitalized in the 30 days prior to the current hospitalization or

those transferred from another healthcare facility after more than 72 hours were excluded.

This cohort, and subsets of it, have previously been described [26–29]. For this study, we

analyzed plasma, obtained at the time of enrollment, from the subset of 49 subjects with

melioidosis, defined by any growth of Bp in any clinical specimen submitted for culture,

recruited during the first year of the study. Subjects were followed until 28 days after enroll-

ment to determine survival.

Healthy donor whole blood stimulation

Three hundred healthy Thai adults presenting to donate blood at Sunpasitthiprasong Hospital,

Ubon Ratchathani, Thailand were recruited. After subjects provided informed consent, a

peripheral blood sample was obtained and stimulated as described previously [30]. For this

study, we analyzed blood stimulated with heat-killed Bp and unstimulated blood. Blood was

mixed 1:1 with RPMI media and 380μl were added to a pre-prepared 96-well plate containing

20μl heat-killed Bp K96243 (to achieve a final concentration of 2.5 x 106 CFU/ml) or 20μl

media. Plates were then incubated for 6 hours at 37˚C under 5% CO2 before being spun down,

and plasma was removed and frozen.
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Lactoferrin assay

Frozen plasma samples were thawed and human lactoferrin concentrations measured by

ELISA (EMD Millipore, San Diego, CA) according to the manufacturer’s directions. Lactofer-

rin levels in all samples were within the manufacturer’s stated range of detection.

Bacterial culture

B. thailandensis E264 [24] was cultured at 1 x 103 CFU/ml at 37˚C in either Luria broth (LB),

tryptic soy broth (TSB) or M9, minimal salt, media. LB media was prepared by mixing 20g of

Difco LB broth (BD Biosciences, Franklin Lakes, NJ) with 1 liter of water. TSB media was pre-

pared by mixing 30g of TSB broth (Sigma-Aldrich, St. Louis, MO) with 1 liter of water and 50

mM glutamate and 1% glycerol. M9 media was prepared by combining 6g Na2HPO4, 3g

KH2PO4, 0.5g NaCl, 1g NH4Cl, 20 ml 20% glucose, 1ml 1M MgSO4, 0.1 ml 1M CaCl2 in 1L of

water [31]. Partially iron-saturated recombinant human lactoferrin (rhLTF; L4040, 0.07% Fe

saturation, expressed in rice, Sigma-Aldrich, St. Louis, MO) or partially saturated purified

human lactoferrin (phLTF; L0520, 0.006% Fe saturation, purified from human milk, Sigma-

Aldrich) were added to the culture media at varying concentrations. Bacterial colony forming

units in the broth were quantified using serial dilutions at 3, 6 and 24 hours after inoculation.

Cell culture

Human monocytic THP-1 cells were purchased and cultured according to manufacturer speci-

fications (ATCC TIB-202; Manassas, VA). THP-1 cells were cultured in RPMI 1640 with 10%

FBS, 1% L-glutamine, 1% HEPES and 0.05 mM 2-mercaptoethanol. For differentiation to mac-

rophages, THP-1 cells were stimulated with 100 nM Vitamin D3 for 24 hours in a 48-well poly-

styrene plate at a density of 2 x 105 cells/well prior to infection.

Peripheral blood samples were obtained from healthy subjects at Harborview Medical Cen-

ter, Seattle, USA. Peripheral blood was collected in three 8 ml sodium citrate-containing vacu-

tainers (BD Biosciences, Franklin Lakes, NJ). Peripheral blood monocytes were isolated with

centrifugation within 1 hour of collection. Monocyte isolation was performed using a

microbead monocyte separation kit (Monocyte Isolation Kit II) according to the manufactur-

er’s specifications (Miltenyi Biotec, Bergisch Gladbach, Germany). Monocytes were then

plated on a 48-well polystyrene plate at 2x105 cells/well, suspended in RPMI 1640 with 10%

fetal bovine serum (FBS), 1% L-glutamine and 1% 4-(2-hydroxyethyl)-1-piperazineethanesul-

fonic acid (HEPES) overnight prior to infection.

Monocyte infection

Both peripheral blood monocytes and differentiated THP-1 cells were infected with Bt at a

multiplicity of infection (MOI) of 1 and 10 in 48-well plates. Plates were centrifuged for 10

minutes at 300 x g and incubated at 37˚C for 6 hours. At 1 hour after infection, rhLTF or

phLTF were added at 100 μg/ml or 500 μg/ml. At 6 hours, supernatants were removed and

stored at -30˚C pending protein measurement. In samples designated for assessing the role of

TLR4, 20 μg/ml of monoclonal mouse IgG1 for TLR4 or IgG1 isotype control (InvivoGen, San

Diego, CA) were added to cell cultures one hour prior to infection. As a control condition, des-

ignated cells were exposed to either 10 or 50 ng/ml of E. coli K12-derived LPS (Ultrapure

LPS-EK, InvivoGen, San Diego, CA). In samples designated for intracellular bacterial mea-

surement, at 1 hour after infection 100 μg/ml of kanamycin was added. At 6 hours after infec-

tion, cells were washed with Hank’s balanced salt solution and lysed with 0.1% Triton-X100

(Promega, Madison, WI) and lysed supernatants were plated and incubated at 37˚C for 24
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hours, at which point colonies were counted. The endotoxin concentration of the rhLTF and

phLTF was quantified by a limulus amebocyte lysate assay (Thermo Scientific, Waltham, MA).

The final concentration of endotoxin from lactoferrin within each cell culture was determined

to be 0.02 endotoxin units/ml for both rhLTF and phLTF conditions. In samples designated

for cytokine measurement, uninfected cells were additionally exposed to either media or

100 μg/ml of rhLTF or phLTF, in order to determine effects from direct stimulation by lacto-

ferrin supplementation.

Cytokine assays

Concentrations of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interferon-γ
(IFN- γ) were measured in cell supernatants by ELISA according to manufacturer specifica-

tions (R&D, Minneapolis, MN). Absorbance of each sample was determined at 450 nm by

microplate reader and final cytokine levels were determined using a standard curve for each

experiment.

Statistical analysis

Combined data following a normal distribution are reported as mean ± SD. The Student’s t-
test or ANOVA was used to compare groups with normally distributed data. Data following a

non-normal distribution are presented as medians with interquartile range (IQR). Correla-

tions of non-normal data were assessed by Spearman’s correlation coefficient. Lactoferrin con-

centrations were log10-transformed for statistical analysis. Comparison of means between

individuals were performed using the paired t-test and between unpaired groups using an

unpaired t-test. Categorical data were analyzed using the chi-square test. Analyses were per-

formed using Stata version 14.2 (College Station, TX) or GraphPad Prism (San Diego, CA). A

two-sided P-value� 0.05 was considered to be significant.

Results

Blood lactoferrin concentrations are associated with survival in melioidosis

and increase after Bp exposure ex vivo

To quantify lactoferrin levels in human melioidosis and determine whether they differ based

on clinical outcome, we measured plasma lactoferrin concentrations in 49 patients with

melioidosis. Subject characteristics are listed in Table 1. Non-survivors to 28 days had signifi-

cantly higher lactoferrin concentrations compared to survivors (median (IQR): 326 ng/ml

(230–748) vs 144 ng/ml (99–277), p<0.001) (Fig 1). As neutrophils can produce lactoferrin,

we evaluated whether neutrophil count was correlated with lactoferrin concentration. Neutro-

phil count was not significantly higher in non-survivors compared to survivors (p = 0.06) and

was only moderately correlated with lactoferrin concentration in all subjects with melioidosis

(Spearman’s rank correlation coefficient 0.43, p<0.01).

To evaluate whether blood cells produce lactoferrin in response to Bp, we compared lacto-

ferrin concentrations in whole blood from 26 healthy individuals stimulated ex vivo with heat-

killed Bp to concentrations in unstimulated blood from the same individuals. The average lac-

toferrin concentration in Bp-stimulated blood was significantly higher compared to the aver-

age concentration in unstimulated blood (median (IQR): 424 ng/ml (349–479) vs 130 ng/ml

(91–214), respectively; p<0.001) (Fig 2). The median neutrophil count in the healthy subject

cohort was 3,000 with an IQR of 2,200–3,600. Neutrophil count was not correlated with lacto-

ferrin concentration before stimulation (Spearman’s rank correlation coefficient 0.12,

p = 0.33) but was more strongly correlated after stimulation (Spearman’s rank correlation
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coefficient 0.67, p<0.01). These results taken together suggest that early plasma lactoferrin lev-

els are increased in melioidosis patients who do not survive to 28 days, and that Bp induces lac-

toferrin production by blood cells.

Lactoferrin does not impair Bt growth in culture

Lactoferrin has iron-sequestering capabilities that inhibit bacterial growth as well as microbici-

dal effects against some bacteria [32]. In order to evaluate whether lactoferrin impairs bacterial

growth, Bt was cultured in liquid media in the presence of rhLTF. To account for lactoferrin’s

ability to sequester iron, three different medias were used: LB, minimal M9 and TSB media.

For each of the three medias used, the addition of rhLTF up to 100 μg/ml did not consistently

impair growth of Bt over 24 hours (Fig 3A–3C). In selected experiments, rhLTF concentra-

tions of 500–1000 μg/ml did not impair Bt growth in any media. Similarly, the addition of

phLTF (Fig 3D) showed no reduction in Bt growth in TSB media at 24 hours.

Lactoferrin does not inhibit intracellular replication of Bt in differentiated

THP-1 cells or blood monocytes

Bp and Bt are facultative intracellular pathogens. This intracellular lifestyle may be an important

contributor to subversion or avoidance of the host response and eradication of the bacterium

[33]. To determine whether lactoferrin alters intracellular bacterial replication in monocytic

cells, we infected differentiated THP-1 cells with Bt at an MOI of 10. After one hour either

100 μg/ml of rhLTF or phLTF was added and an antibiotic protection assay was performed. Six

hours after infection, no differences in intracellular Bt counts were noted between cells exposed

to 100 μg/ml of either rhLTF or phLTF compared to control cells (Fig 4A). We repeated this

experiment infecting fresh human peripheral blood monocytes with Bt at an MOI of 10. We

observed no difference in the six-hour intracellular Bt counts between cells treated with rhLTF,

phLTF or control cells (Fig 4B). Therefore, supplemental lactoferrin does not alter intracellular

replication of Bt in differentiated THP-1 cells or primary blood monocytes.

Table 1. Melioidosis cohort characteristics.

Characteristics All (n = 49) Survivors (N = 19) Non-survivors (N = 30)

Demographics

Age, median (IQR) 53 (46–62) 56 (46–70) 51 (42–56)

Male sex, N (%) 30 (61) 14 (74) 16 (53)

Pre-existing conditions

Charlson Comorbidity Index, median (IQR) 2 (1–3) 1 (1–2) 2 (1–4)

Diabetes, N (%) 21 (43) 7 (37) 14 (47)

Chronic liver disease, N (%) 2 (4) 2 (11) 0

Chronic kidney disease, N (%) 4 (8) 1 (5) 3 (10)

Chronic cardiovascular disease, N (%) 1 (2) 0 1 (3)

Chronic lung disease, N (%) 5 (10) 1 (5) 4 (13)

Cancer, N (%) 1 (2) 0 1 (3)

HIV, N (%) 0 0 0

White blood cell count (�103), median (IQR)a 14 (11–18) 14 (11–16) 16 (12–19)

Neutrophil count (�103), median (IQR)a 12 (9–15) 11 (8–12) 14 (10–17)b

Bacteremia, N (%) 41 (84) 13 (68) 28 (93)

aHighest recorded cell count within 24 hours of admission
bp = 0.06 for comparison of the neutrophil count in survivors vs. non-survivors

https://doi.org/10.1371/journal.pntd.0008495.t001
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Lactoferrin increases TNF-α production by monocytic cells infected with

Bt
To test whether lactoferrin modulates monocytic cell cytokine production in response to Bt
infection, differentiated THP-1 cells were infected with Bt at an MOI of 1 or an MOI of 10.

After one hour, cells were treated with either rhLTF or phLTF. Levels of TNF-α, IL-1β and

IFN-γ in cell supernatants were measured by ELISA at 6 hours. At an MOI of 1, infected

Fig 1. Plasma lactoferrin concentrations are higher in patients who do not survive melioidosis. Plasma lactoferrin

concentrations, obtained at study enrollment, in survivors (N = 19) compared to 28-day non-survivors (30) of

melioidosis. Data presented as individual values with median and IQR. Comparisons are made following log10-

transformation of data using unpaired t-test.

https://doi.org/10.1371/journal.pntd.0008495.g001
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differentiated THP-1 cells exposed to rhLTF produced significantly more TNF-α compared to

infected cells without lactoferrin (p = 0.01; Fig 5A). At an MOI of 10, infected differentiated

THP-1 cells exposed to rhLTF or phLTF produced significantly more TNF-α compared to

unexposed infected cells (p = 0.01, p = 0.008, respectively; Fig 5A). This effect did not appear

to be related to direct stimulation from either rhLTF or phLTF as uninfected cells exposed to

Fig 2. Lactoferrin is produced by blood cells of healthy individuals after stimulation with Bp. Plasma lactoferrin

concentrations of matched, unstimulated (naïve) blood from healthy individuals and blood stimulated with heat-killed

Bp K96243 (hkBp) at 2.5 x 106 CFU/ml (N = 26). Data presented as individual values with median and IQR.

Comparisons are made following log10-transformation of data using paired t-test.

https://doi.org/10.1371/journal.pntd.0008495.g002
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either media, rhLTF or phLTF had TNF-α concentrations below the level of detection for the

assay. No differences in IL-1β (Fig 5B) or IFN-γ expression (S1 Fig) were noted following dif-

ferentiated THP-1 cell infection.

Fig 3. Lactoferrin does not impair growth of B. thailandensis in media. In the presence of varying concentrations of rhLTF, B. thailandensis (Bt) growth was quantified

over 24 hours in A) LB, B) M9 or C) TSB media. In the presence of varying concentrations of phLTF, Bt growth was quantified over 24 hours in D) TSB media. Each graph

is representative of at least two independent experiments.

https://doi.org/10.1371/journal.pntd.0008495.g003

Fig 4. Lactoferrin does not alter intracellular replication of Bt in differentiated THP-1 cells or blood monocytes. Differentiated

THP-1 cells (A) and primary blood monocytes (B) were infected with Bt at an MOI of 10 and 1 hour later were treated with either media

or 100 μg/ml of rhLTF or phLTF, along with kanamycin (100 μg/ml). After 6 hours, cells were washed, lysed and intracellular bacteria

were cultured and quantified in CFU/ml at 24 hours. Means ± standard deviations of duplicate or triplicate conditions are displayed.

rhLTF vs media and phLTF vs media groups were compared by t-test (p>0.05 for all comparisons). One representative example of two or

three independent experiments is shown.

https://doi.org/10.1371/journal.pntd.0008495.g004
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Fig 5. Lactoferrin increases proinflammatory cytokine production by differentiated THP-1 cells or blood

monocytes infected with Bt. Differentiated THP-1 cells (A-B) and primary blood monocytes (C) were infected with Bt
at an MOI of 1 (THP-1 cells) and an MOI of 10 (THP-1 cells and primary blood monocytes), and 1 hour later were

treated with either media, or 100 μg/ml of rhLTF or phLTF. At 6 hours after infection, cell supernatants were collected

and TNF-α (A and C) or IL-1β (B) were measured by ELISA. Means ± standard deviations of duplicate or triplicate

conditions are displayed. rhLTF vs media and phLTF vs media groups were compared for each MOI by t-test (�

p<0.05; �� p<0.01); The concentrations of cytokines in uninfected THP-1 cells, for all conditions, were below the level

of detection. One representative example of two or three independent experiments is shown.

https://doi.org/10.1371/journal.pntd.0008495.g005
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The effect of lactoferrin on cytokine production was next tested in human primary blood

monocytes infected with Bt. Similar to the response noted in infected differentiated THP-1

cells, blood monocytes infected with Bt at MOI 10 produced significantly more TNF-α when

exposed to either rhLTF (p = 0.02) or phLTF (p = 0.01) compared to no lactoferrin (Fig 5C).

While uninfected peripheral blood monocytes had low detectable levels of TNF-α, no differ-

ence in concentration was noted between cells exposed to rhLTF or phLTF (S2 Fig). Together,

these observations indicate that in monocytic cells infected with Bt, lactoferrin promotes TNF-

α production.

The effect of lactoferrin on TNF-α is partially dependent on TLR4 in Bt
monocyte infection

Lactoferrin may modulate LPS-TLR4 pathways by direct binding of LPS and by nuclear inhibi-

tion of NF-κB activation [18,19,34,35]. However, the lactoferrin-LPS complex may also be

proinflammatory under certain conditions [36]. In order to determine whether lactoferrin-

induced activation of TLR4 may be responsible for the increased TNF-α production by mono-

cytic cells noted in the presence of lactoferrin, we investigated whether the addition of a

TLR4-blocking antibody (TLR4-ab) attenuates production of this cytokine. Differentiated

THP-1 cells were exposed to either 20 μg/ml of TLR4-ab or an IgG isotype control prior to

infection by Bt and subsequent treatment with lactoferrin. In control experiments, the addition

of TLR4-ab markedly reduced TNF-α production after differentiated THP-1 cells were

exposed to E. coli K12-derived LPS, with or without rhLTF or phLTF treatment (Fig 6A). Fol-

lowing infection of differentiated THP-1 cells with Bt at an MOI of 1, treatment with

TLR4-ab–compared to an isotype control–significantly reduced supernatant TNF-α concen-

trations in the presence of rhLTF (p = 0.03) or phLTF (p = 0.008), but not media alone (Fig

6B). A comparable effect was noted for Bt infection at an MOI of 10 (Fig 6B). The TLR4-ab-

dependent reduction in TNF-α after lactoferrin treatment approximated the baseline TNF-α
levels in infected cells not treated with lactoferrin. These results suggest that TLR4 contributes

substantially to the lactoferrin-dependent induction of TNF-α production during Bt infection.

Discussion

Melioidosis remains an important cause of sepsis and death in subtropical regions [2] and elu-

cidating the immune response to Bp may facilitate the development of novel therapeutics. The

main findings of our study are that lactoferrin concentrations are increased in 28-day non-sur-

vivors with melioidosis compared to survivors and that lactoferrin concentrations in blood

from healthy subjects increase following ex vivo stimulation with heat-killed Bp. Furthermore,

while lactoferrin does not impair Bt growth in culture or intracellular bacterial replication

within monocytic cells, lactoferrin drives TNF-α production in Bt-infected monocytic cells in

a TLR4-dependent manner.

Iron sequestration is likely one mechanism by which lactoferrin exerts antimicrobial prop-

erties, including in Bp infection [15,16]. However, few reports describe or discern between

iron-saturation levels when assessing lactoferrin’s protective effects during bacterial infection.

Furthermore, significant variance exists regarding the utilization of human or bovine and

recombinant or purified lactoferrin. Here, we specifically analyzed the effect of human lacto-

ferrin, utilizing both recombinant and human milk-purified versions. Iron-saturated lactofer-

rin–also known as holo-lactoferrin–may become quickly partially unsaturated and quantifying

saturation levels can be challenging [37,38]. Our objective was to study lactoferrin-dependent

immune modulation rather than antimicrobial properties. In order to limit possible confound-

ing of our results by lactoferrin-dependent iron sequestration, we chose to use partially-iron
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saturated lactoferrin in our studies after establishing that partially-iron saturated lactoferrin

does not impair Bt replication. Others have found similarly little effect of supplemental

Fig 6. Lactoferrin-induced TNF-α production following Bt infection of differentiated THP-1 cells is attenuated by blockade of

TLR4. Differentiated THP-1 cells were exposed to E. coli K12 LPS at 10 ng/ml or 50 ng/ml (A) or infected with Bt at an MOI of 1 and 10

(B). At one hour, cells were treated with media or with 100 μg/ml of either rhLTF or phLTF and concurrently with either 20 μg/ml of

TLR4-ab or IgG isotype control. After six hours, cell supernatants were collected and TNF-α was measured by ELISA. Means ± standard

deviations of duplicate or triplicate conditions are displayed. TLR4-ab vs isotype groups were compared for each condition by t-test (�

p<0.05; �� p<0.01; ���p<0.001). The concentration of cytokines in uninfected cells, for all conditions, was below the level of detection.

One representative example of two independent experiments is shown.

https://doi.org/10.1371/journal.pntd.0008495.g006
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lactoferrin on the growth of Bp in culture [17]. However, the degree of iron saturation of

rhLTF and phLTF may differ in culture and so this report does not directly address the role of

iron saturation on the immunoregulatory properties of lactoferrin.

One of the pathogenic mechanisms of Bp and Bt is to invade intracellularly, replicate, and

ultimately lyse the host cell or infect nearby cells [39–41]. The spread of Bp to adjacent host

cells results in the formation of multinuclear giant cells which eventually lyse resulting in local-

ized spread [33,42]. Bp has variable sensitivity to two potentially bactericidal amino acid resi-

dues on bovine lactoferrin [43–45]. Bovine lactoferrin has also been previously described as

enhancing phagocytic killing in Staphylococcus aureus infection but recently was reported not

to interfere with monocytic bacterial uptake [46,47]. In our studies, we found no difference in

intracellular bacteria replication when Bt-infected, differentiated THP-1 cells were exposed to

lactoferrin. These findings suggest that lactoferrin neither enhances, nor interferes with, the

intracellular replication of Bt.
The initial inflammatory response to Bp is characterized by a robust activation of the innate

immune system [48–50]. This activation relies, in part, on multiple Toll-like receptor (TLR)

pathways, including TLR4 and TLR5 [21,51,52]. Recent population genetic studies have identi-

fied TLR genetic variants associated with outcomes in melioidosis, further suggesting an

important role of these pathways [51,53]. Besides iron-sequestration and other direct antimi-

crobial properties, lactoferrin may have immunomodulatory properties as well, though its role

in TLR4 signaling is unclear. For example, human lactoferrin may promote TLR4-mediated

activation through its carbohydrate chains [35]. Lactoferrin can also bind and sequester LPS or

even inhibit LPS-binding, decreasing TLR4 intracellular signaling [54–56]. Conversely, neona-

tal and adult human monocyte-derived macrophages, differentiated in the presence of lacto-

ferrin, express reduced TLR4 activation and signaling, even after LPS stimulation [57]. Our

findings support a TLR4-mediated mechanism of increased TNF-α production in the presence

of lactoferrin.

Even in the absence of LPS, lactoferrin increases IL-8 and TNF-α mRNA expression in

monocytes [58]. However, lactoferrin may alter LPS-induced intracellular cytokine production

through NF-κB interference [18]. In vitro studies of methicillin-resistant Staphylococcus
aureus (MRSA)-infected monocytes treated with lactoferrin demonstrated an increase in IFN-

γ and IL-2 but a decrease in TNF-α, IL-1β and IL-6 [59]. TLR4 activates NF-κB, but so do mul-

tiple other pathways, including NF-κB-inducing kinase (NIK). Although lactoferrin does not

have a known receptor on monocytes, it can stimulate NIK porcine monocyte-derived macro-

phages [58]. Lactoferrin can also activate NF-κB through TLR4-independent pathways as well,

potentially accounting for the partial attenuation of lactoferrin’s TNF-α production by

TLR4-blockade in our study [60].

Our study has several limitations. The association we observed between lower lactoferrin

levels and survival in melioidosis patients was not adjusted for potential confounders. Our in

vitro experiments may not represent the effects of lactoferrin in a systemic infection model.

We also cannot rule out an effect related to the iron-saturation state of our lactoferrin prepara-

tions. Complete iron-depletion of lactoferrin is difficult, requiring acidic buffers which may

affect protein function [37]. Finally, many other reports regarding the effects of lactoferrin on

host response to bacterial infection have used bovine lactoferrin [10,46,58,61]. In our report,

we limited our assessment to human-derived lactoferrin and so comparisons are limited.

Finally, our infection model utilized Bt, a BSL-1 organism, as a surrogate for Bp infection.

While monocyte infection with Bt may yield similar in vitro inflammatory cytokine patterns,

further studies are needed to confirm a similar pattern in Bp infection [23]. Importantly, we

studied the role of lactoferrin on monocyte infection; other cells, including neutrophils, may

play a critical role in lactoferrin production during infection [62]. Finally, while we chose to
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focus on the TLR4 pathway due to its importance in melioidosis, other TLR pathways, includ-

ing TLR2, may be modulated by lactoferrin [63,64].

In conclusion, our results implicate lactoferrin as a dynamic protein in melioidosis. We

show that lactoferrin does not impair growth of Bt in culture or intracellular replication in

monocytic cells but that it does enhance activation of specific proinflammatory pathways in

monocytic cells. Furthermore, we have identified TLR4 as a contributor to this proinflamma-

tory cytokine activation. These investigations add to our growing knowledge of host defense in

melioidosis.

Supporting information

S1 Fig. Lactoferrin does not alter IFN-γ production by THP-1 cells infected with Bt. THP-1

cells were infected with Bt at an MOI of 1 and 10, and 1 hour later were treated with either

media, or 100 μg/ml of rhLTF or phLTF. At 6 hours after infection, cell supernatants were col-

lected and IFN-γ was measured by ELISA. Means ± standard deviations of duplicate condi-

tions are displayed. rhLTF vs media and phLTF vs media groups were compared for each MOI

by t-test. The concentrations of cytokines in uninfected cells, for all conditions, were below the

level of detection. One representative example of two or three independent experiments is

shown.

(TIF)

S2 Fig. Lactoferrin does not alter TNF-α production by uninfected peripheral blood mono-

cytes. Peripheral blood monocytes were treated with either media, 100 μg/ml of rhLTF, or

100 μg/ml of phLTF. At 6 hours after treatment, cell supernatants were collected and TNF-α
was measured by ELISA. Means ± standard deviations of triplicate conditions are displayed.

rhLTF vs media and phLTF vs media groups were compared by t-test and both comparisons

were above the limit of statistical significance (p>0.3 for both). One representative example of

two independent experiments is shown.

(TIF)
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