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Abstract

Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface
proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method
for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic
techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional
electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-
released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence
factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2
cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis.
An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new
method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits
and disease diagnostics.
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Introduction

Streptococcus suis is a swine pathogen that can cause meningitis,

pneumonia, septicemia, and arthritis in animals [1]. As a zoonotic

agent, S. suis can also be transmitted to humans that come into

contact with infected pigs or pork-derived products, and infection

can lead to fever, nausea and vomiting [2], meningitis,

endocarditis, and septic shock [3,4]. Among the 33 serotypes of

S. suis, serotype 2 (SS2) is the most virulent and prevalent serotype

found in diseased pigs. The mechanisms of S. suis pathogenesis are

still not well understood [1], and this hampers efforts to develop

effective vaccines and treatments.

Surface proteins of pathogenic bacteria can serve as protective

antigens and virulence markers, though they can be technically

challenging to identify. Several biochemical and microbiological

techniques have been employed to characterize bacterial surface

proteins, including multidimensional protein identification [5], stable

isotope labeling [6], biotinylation approaches [7], surface shaving

approaches [8], genome analyses, and protein and antibody arrays

[9]. During the last decade, immunoproteomics has become an

increasingly popular method used for identifying immunoreactive

proteins. This technique involves the separation of proteins by two-

dimensional electrophoresis (2-DE) and Western blotting. Though

host antibodies primarily recognize proteins on the surface of a

bacterium, non-surface proteins can also become immunogenic after

proteolytic digestion in host antigen presenting cells (APCs). Thus,

distinguishing between antibodies that recognize surface and non-

surface proteins is an important consideration when designing

immunoproteomics experiments to identify potential vaccine candi-

dates.

Cross-absorption is a powerful method used in conventional

serological techniques to minimize cross reaction during agglutina-

tion [10]. The serum cross-absorption process was modified to

remove antibodies that recognized bacterial surface antigens and this

produced novel ‘‘pre-absorbed’’ antiserum. We used untreated and

‘‘pre-absorbed’’ antisera to probe 2-DE blots of S. suis cell lysates.

Protein spots that appeared in the blot probed with untreated serum,

but that were absent in the blot treated with pre-absorbed serum,

were assumed to be surface proteins. These proteins were identified

using matrix-assisted laser desorption ionization–time of flight mass

spectrometry (MALDI-TOF MS). We used bioinformatics predic-

tions and immunofluorescence to verify that the proteins identified

were located on the bacterial cell surface. A schematic diagram of the

surface protein detection method is shown in Figure 1.

In this present study, we demonstrate that our immunopro-

teomic-based approach can detect bacterial surface proteins.

Indeed, we identified two SS2 surface proteins from S. suis,

including muramidase-released protein precursor (MRP), which is

known to be a strong SS2 virulence factor [11,12], and an ABC

transporter protein that we show is located on the bacterial cell

surface. Our method may prove useful for the development of new

vaccine subunits and disease diagnostics.

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21234



Results and Discussion

A novel method that combined immunoproteomic and immu-

noserologic approaches was established for identifying bacterial cell

surface proteins. Using this method, two surface proteins of S. suis

were identified, demonstrating the utility of this approach for

studying bacterial outer surface proteins.

The sample preparation of proteins for 2-DE analyses was

improved, and better 2-DE profiles were obtained than previously

[13,14,15]. Proteomic-based approaches for investigating S. suis

have been hampered by the preparation of protein samples.

Mutanolysin, which is purified from the culture supernatant of

Streptomyces globisporus, is an efficient reagent that can be used to

obtain protoplasts of Streptococcus mutans [16,17], as it is highly

effective for inducing the lysis of bacterial cells without any

associated proteolytic activity [18]. The small quantity of mutano-

lysin used in these experiments was not visible on the 2-DE gels and

did not influence the protein profiles [19,20]. Based on previous

results from our lab and other workers [13,21], mutanolysin was

used to generate S. suis protoplasts, which subsequently were

disrupted by sonication. This yielded bacterial proteins for 2-DE

separation analyses by isoelectric point (pI) and pH (range 4–7). The

2-DE separation profiles were stained with colloidal Coomassie

brilliant blue G-250 reagent and these are shown in Figure 2A.

Ponceau S-stained membranes revealed that only very few proteins

were found in high abundance (Figure 2B).

Western blots of the 2-DE
An initial cross-absorption step to produce ‘‘pre-absorbed’’

serum eliminates cross antigens and ensures the specificity of slide

agglutination and ring precipitation [10]. Gu et al. [22] cross-

adsorbed whole bacterial cells and bacterial cell lysates with

convalescent serum to eliminate antibodies reactive with in vitro-

expressed antigens. This approach allows for the identification of

in vivo-expressed protein antigens that are upregulated during S.

suis infection. Thus, the removal of antibodies that recognize S. suis

outer surface proteins from antiserum using intact bacteria prior

to blotting could provide a means of differentiating outer and

cytoplasmic bacterial proteins in an immunoproteomic analysis.

So in this present study, Western blots of the 2-DE protein gels

were probed with either untreated or the ‘‘pre-absorbed’’ sera.

Probing with the untreated serum identified many immune-

reactive protein spots (Figure 2C). However, when an identical

blot was probed using the ‘‘pre-absorbed’’ serum, some of the

spots, such as HX1, HX2 and HX3, were less distinct or had

disappeared (Figure 2D). This experiment was repeated in

triplicate, and the separation profiles were consistent and highly

reproducible.

Identification of immunoreactive proteins by
bioinformatic analyses

In total, 17 immune-reactive protein spots were excised from

preparative 2-DE gels, subjected to tryptic digestion, and then

analyzed by MALDI-TOF MS. The top ranking protein identified

in each spot and their predicted subcellular locations are listed in

Table S1.

Spot HX1 contained MRP (gi|253753453), which is an

important protective antigen in SS2. The HX1 spot in the 2-DE

blot probed with untreated serum was much darker than the HX1

spot in the blot probed with ‘‘pre-absorbed’’ serum. This indicates

that the amount of antibody against MRP in ‘‘pre-absorbed’’

serum was decreased by the absorption process. Spots HX2 and

HX3 contained the same protein, specifically a periplasmic ABC

transporter protein (gi|146319723), which is a new immunoreac-

tive protein from S. suis identified for the first time. The small

differences in pI and molecular weight values of the two spots on

the 2-DE gel are likely to be due to slight protein modifications.

Table 1 shows the predicted transmembrane regions and

subcellular localizations of the different proteins according to three

software programs, namely PSORTb v.3.0.0, LocateP and Gpos-

mPLoc. The location of the ABC transporter was unknown

according to the PSORT server. However, a recent study showed

that PSORT does not detect lipoprotein motifs and assigns low

probability scores to the topological organization of proteins with

transmembrane regions, especially in Gram-positive bacteria [23].

Moreover, PSORT results are based on the annotation of the data in

the Swiss-Prot database [24], and consequently inconsistencies are

inherited from those designations. The LocateP program [25]

predicts the localization of bacterial proteins to one of seven

compartments within Gram-positive bacteria: intracellular, multi-

Figure 1. Schematic diagram of the surface protein detection assay. One sample of the S. suis-derived antiserum was pre-absorbed with
whole-cell S. suis to remove the antibodies that recognize outer surface proteins (‘‘pre-absorbed’’). Then, untreated and ‘‘pre-absorbed’’ antisera were
used to probe 2-DE gels of S. suis proteins. Spots that appear in the blot probed with untreated antiserum, but that were absent from the blot probed
with ‘‘pre-absorbed’’ antiserum, were evaluated to identify the surface proteins.
doi:10.1371/journal.pone.0021234.g001

Detecting Streptococcus suis Surface Proteins

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21234



transmembrane, N-terminally membrane anchored, C-terminally

membrane anchored, lipid-anchored, LPXTG-type cell-wall an-

chored, and secreted/released proteins. Furthermore, the Gpos-

mPLoc software [26], originally developed for identifying the

subcellular localization of Gram-positive bacterial proteins by fusing

information on gene ontology, can be used to predict the subcellular

location of a query protein to one of four sites: cell membrane, cell

wall, cytoplasm, and extracellular. Therefore, LocateP and Gpos-

mPLoc were the preferred primary references used for subcellular

protein location predictions. LocateP predicted that HX2 is a lipid-

anchored protein located on the outer membrane, while Gpos-

mPLoc predicted that HX2 is located on the cell wall.

Many other significant proteins were identified that localized in

the cytosol. For instance, we identified that pyruvate kinase (HX7,

HX8), a key cytosolic regulatory enzyme in the glycolytic pathway,

was also found in the immunoproteomic study of Streptococcus suis

serotype 9 [27]. Eight new S. suis immunoreactive proteins (spots

HX5, HX9–13, HX16) are reported here for the first time. The

protein in spot HX5 was identified to be the molecular chaperone

DnaK, which promotes protein folding, interaction and transloca-

tion in response to stress, by binding to unfolded polypeptide

segments. DnaK is a major antigen in Streptococcus pneumoniae [28],

and is associated with the pathogenesis of this bacterium in

pneumonia and meningitis [29]. The protein in spot HX11 shares

homology with an ADP glucose pyrophosphorylase, an enzyme that

is required for the biosynthesis of bacterial intracellular polysac-

charide. This protein is associated with cavity formation by S. mutans

[30], and biofilm formation and virulence in Salmonella enteritidis [31].

Table 1. The predicated subcellular location of differential proteins.

Spot
no. Protein Identified The score of PSORTb version 3.0.0 programs LocateP

Gpos-
mPLoc

Cytoplasmic
Cytoplasmic
Membrane Cellwall Extracellular

Final
Prediction

HX1 muramidase-released
protein precursor

0.00 0.00 10.00 0.00 Cellwall Cellwall Extracell

HX2 amino acid ABC
transporter periplasmic
protein

0.00 3.33 3.33 3.33 Unknown Extracellular Cellwall

HX3 amino acid ABC
transporter periplasmic
protein

0.00 3.33 3.33 3.33 Unknown Extracellular Cellwall

doi:10.1371/journal.pone.0021234.t001

Figure 2. 2-DE gel and Western blot analyses of HA9801. (A) HA9801 total cell proteins (pH 4–7, 13 cm), stained with colloidal Coomassie
brilliant blue G-250. (B) 2-DE blot of S. suis stained with Ponceau S. (C) 2-DE blot of S. suis proteins probed with untreated antiserum. (D) 2-DE blot of
S. suis proteins probed with ‘‘pre-absorbed’’ antiserum.
doi:10.1371/journal.pone.0021234.g002
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Western blotting of recombinant proteins
To verify the subcellular location of HX2, HX1 and HX2 were

expressed recombinantly. Sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) revealed that recombinant HX1

(rHX1) and HX2 (rHX2) were approximately 45 kDa (Figure 3,

lanes 1 and 2). Western blot analysis revealed that both

recombinant proteins were immunoreactive, but rHX2 reacted

more weakly than rHX1 with the antiserum derived from S. suis

HA9801 (Figure 3, lanes 5 and 6). This was consistent with the

earlier immunoproteomics data. In addition, the serum against an

avirulent S. suis strain (T15) did not react with rHX1 (MRP), but it

did react with rHX2 (Figure 3, lanes 3 and 4), thus proving that

T15 was not expressing the MRP protein [11]. Interestingly, the

genome of T15 contains a similar MRP gene (unpublished

observation), but the lack of expression is probably due to gene

insertions or deletions in the operon.

Subcellular location of HX2 on HA9801 and rHX2 binding
of HEp-2 cells

ABC transporters are associated with virulence in bacteria. They

import various nutrients required for survival in different niches and

export substances toxic to the cell [32]. Lipid-anchored proteins are

involved in a large variety of functions, and these include adhesins,

transporters, receptors, enzymes, and virulence factors [33]. In order to

identify whether HX2 from our immunoproteomic analysis resides on

the outer surface of S. suis, whole-cell HA9801 bacteria were labeled

with antiserum to rHX2, and HX2 was indirectly detected using

fluorescein-conjugated goat anti-rabbit IgG (IgG-FITC). A strong

fluorescent signal was detected on the outer surface of the HA9801 cells

(Figure 4), confirming that HX2 is located on the outer surface and is in

support of the bioinformatic prediction. Then, an indirect immuno-

fluorescence assay was used to determine whether rHX2 adhered to

HEp-2 cells. Green fluorescence was detected on HEp-2 cells pre-

incubated with rHX2, whereas greater fluorescence intensity was seen

on cells pre-incubated in rHX1, while no fluorescence was observed

using bovine serum albumin in phosphate-buffered saline (PBS-BSA)

(Figure 5). Thus, this transporter may be involved in the pathogenesis

of S. suis by facilitating bacterial attachment to host cells.

Distribution of HX2 gene among Streptococcus strains
Most S. suis strains examined gave the expected fragment size of

approximately 750 bp of DNA per reaction mixture confirming the

presence of the HX2 gene, while no amplification product was

observed in another Streptococcus sp. (Table S2). Further, the gene

encoding HX2 is present in diverse S. suis strains, and its distribution

is unrelated to any particular serotype.

In conclusion, a novel immunoproteomics-based method was

developed for detecting bacterial surface proteins. This method was

used to detect surface proteins of S. suis with the goal of identifying

proteins that could serve as potential vaccine candidates. Many

experimental conditions were tested in order to separate proteins by

2-DE in attempts to identify greater numbers of outer surface

antigens, including a pH range of 3–10 and Silver Staining;

however, the initial results were unsatisfactory. Thus, the method

presented herein will continue to be modified and improved to

expand the range of surface proteins that can be detected.

Materials and Methods

Bacterial strains and culture conditions
The SS2 strain (S. suis HA9801) was isolated in 1998 [34]. S. suis

T15, the avirulent SS2 strain, was kindly donated by Dr H.E.

Smith (DLO-Institute for Animal Science and Health, The

Netherlands) [35]. All the strains were grown in Todd Hewitt

broth (THB; pH 7.8; BD Inc.) at 37uC.

Protein sample extraction
Protein precipitations were performed according to Winterhoff

[13], but with some modifications. Briefly, exponential-phase

bacterial cultures were centrifuged at 10,0006g for 15 min at 4uC,

and washed twice in PBS. Pellets were resuspended in buffer (Tris-

HCl, MgCl2, 50% sucrose) that contained 1,000 U/mL mutano-

lysin (Sigma), and incubated for 90 min at 37uC. Then the

spheroplasts were collected, resuspended in solution B (7 M urea,

2 M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate [CHAPS], and 65 mM dichlorodiphenyltri-

chloroethane [DTT] ; GE Healthcare) and sonicated in an ice

bath for 50 cycles (5 s on at 100 W, followed by 10 s off). After

30 min incubation at 25uC, unbroken cells were removed by

centrifugation at 10,0006g for 15 min at 4uC. Proteins in the

supernatant were precipitated in 10% pre-chilled trichloroacetic

acid (TCA) and incubated in ice-water for 30 min. After

centrifugation at 10,0006g for 10 min at 4uC, the pellet was

Figure 3. SDS-PAGE and Western Blot analysis of recombinant HX2 and HX1. SDS-PAGE analysis of purified rHX2 (lane 1) and rHX1 (lane 2)
from the induced producer E. coli strains; Western blot analysis of rHX2 (lane 3) and rHX1 (lane 4) with hyperimmune sera against T15; Western blot
analysis of rHX2 (lane 5) and rHX1 (Lane 6) with hyperimmune serum against HA9810; molecular size markers in kDa (Lane M).
doi:10.1371/journal.pone.0021234.g003
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resuspended in 10 mL of pre-chilled acetone and washed twice.

The final pellet was dried in air.

Isoelectric focusing
Isoelectric focusing (IEF) was performed using an Ettan

IPGphor-3 IEF system (GE Healthcare) and 13 cm gel strips

(Immobiline DryStripk, pH 4–7; GE Healthcare). Prior to

rehydration, the precipitated proteins were treated using a 2-DE

Clean-up kit (GE Healthcare) to remove contaminants that can

interfere with electrophoresis. Immobilized pH gradient (IPG)

strips were rehydrated overnight at room temperature (RT) using

rehydration solution (7 M urea, 2 M thiourea, 2% CHAPS, 0.2%

DTT, 0.5% IPG buffer [pH 4–7], and 0.002% bromophenol

blue). Each strip was loaded with 200 mg of protein, and IEF was

carried out at 20uC for 12 h (maximum voltage of 8,000 V and

maximum current of 50 mA per IPG strip; total 28,000 Vh).

2D SDS-PAGE
Prior to 2D SDS-PAGE, each IPG strip was washed in

equilibration buffer 1 (375 mM Tris-HCl [pH 8.8], 6 M urea, 2%

SDS, 2% DTT) for 15 min, followed by equilibration buffer 2

(375 mM Tris-HCl [pH 8.8], 6 M urea, 2% SDS, 2.5% iodorace-

tamide) for 15 min. Each IPG strip plus an SDS-PAGE molecular

weight standard (Invitrogen) was loaded onto a homogeneous 12%

polyacrylamide gel and sealed with 1% agarose. Electrophoresis was

performed at 15uC using an initial voltage of 110 V for 30 min,

followed by 220 V until the tracking dye had reached the bottom of

the gel. All gels were stained with colloidal Coomassie brilliant blue

G-250 according to the manufacturer’s instructions (GE Healthcare).

Each 2D IEF/SDS-PAGE experiment was repeated three times.

Preparation of hyperimmune sera
Rabbits were first determined to be negative for S. suis antibodies

using an indirect enzyme-linked immunosorbent assay (ELISA)

developed in-house. Subsequently, these rabbits were immunized

with formaldehyde-inactivated S. suis HA9801 and T15 bacteria,

using Montanide ISA 206 VG (SEPPIC Co. Ltd) as the adjuvant.

Two doses of 1.06109 cells/rabbit were administered by intramus-

cular injections at 3-week intervals. Sera from immunized and

control rabbits were collected before the first and after the second

immunizations. The titers of the sera were evaluated using indirect

ELISA.

Preparation of ‘‘pre-absorbed’’ sera
The absorption protocol used was as described by Mittal et al.

[10,22]. Briefly, exponential cultures of S. suis HA9801 were

centrifuged at 3,0006g for 15 min at 4uC, and then washed twice

in PBS. A total of 1.06108 bacteria were suspended in 100 ml of

HA9801 hyperimmune serum, incubated for 2 h at 37uC, and

then overnight at 4uC. Bacteria were pelleted by centrifugation at

10,0006g for 30 min. The supernatant was collected and used for

Western blotting as the ‘‘pre-absorbed’’ serum.

Western blotting
Protein samples from each SDS-PAGE gel were transferred

onto polyvinylidene fluoride (PVDF) membranes (GE Healthcare)

for 2 h at 0.65 mA/cm2 using a semi-dry blotting apparatus

(TE77, GE Healthcare). Membrane-bound proteins were detected

by staining with Ponceau S [36]. For this, the PVDF membrane

was submerged in the stain solution, containing 0.1% Ponceau S

(Solarbio) (w/v) and 5% acetic acid (v/v), with gentle agitation for

5 min. The membrane was washed several times with dH2O until

Figure 4. Analysis of HX2 outer surface localization on S. suis HA9801. Oil immersion fluorescence microscopy (61,000) was conducted on S.
suis HA9801 bacteria labeled with rHX2 antiserum (panel A), control rabbit serum (panel B), and PBS negative control (panel C); IgG-FITC was the
secondary antibody.
doi:10.1371/journal.pone.0021234.g004

Figure 5. Adherence of rHX1 and rHX2 to HEp-2 cells. HEp-2 cells were incubated with (A) rHX2, (B) rHX1, and (C) PBS-BSA (negative control),
and after washing, cells were incubated with rabbit antiserum to rHX2, antiserum to rHX1 and PBS-BSA, respectively. Then, HEp-2 cells were labeled
with anti-rabbit IgG-FITC and examined by fluorescence microscopy.
doi:10.1371/journal.pone.0021234.g005
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the protein bands were visible, and then digitally scanned using a

Umax scanner (GE Healthcare). Subsequently, the Ponceau S

stain was removed from the membranes by rinsing gently in

dH2O. After removing Ponceau S, the membrane was blocked

with 5% (w/v) skim milk in 50 mM Tris-HCl buffer (pH 7.4)

containing 0.05% Tween 20 (TBST) for 2 h at RT. Then, the

blocked membrane was incubated with HA9801 hyperimmune

serum or HA9801 ‘‘pre-absorbed’’ serum (1:5,000 dilution) for 2 h

at RT, followed by three washes with TBST for 10 min each

wash. The membrane was incubated with horseradish peroxidase-

goat anti-rabbit serum (Boster; 1:10,000 dilution) for 1 h at RT,

washed three times with TBST, and then developed by adding

3,39-diaminobezidine (Tiangen Co. Ltd) until optimal color was

obtained. Western blotting was performed in triplicate.

MALDI-TOF MS and database searching
Proteins identified from the 2-DE blots as potential surface

proteins were excised from duplicate SDS-PAGE gels and used for

in-gel trypsin digestion and MALDI-TOF MS (TOF Ultraflex II

mass spectrometer, Bruker Daltonics). Peptide mass fingerprinting

(PMF) data were analyzed using the MASCOT server (http://

www.matrixscience.com). MASCOT searches were used to

determine which peptides were to be considered significant and

used for the combined peptide scores. The extent of sequence

coverage, number of matched peptides, and the score probability

obtained from the PMF data were all used to validate protein

identifications. Low-scoring proteins were either verified manually

or rejected.

Bioinformatics analysis
Sequences of the identified proteins were searched using the

BLASTX server (http://www.ncbi.nlm.nih.gov/BLASTX/) to find

homologous sequences. The PSORT server (http://www.psort.org/

), LocateP (http://www.cmbi.ru.nl/locatep-db) and Gpos-mPLoc

(http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/) programs were

used to predict subcellular localizations for the proteins.

Expression of recombinant proteins
Genes encoding proteins identified as potential surface proteins

were amplified by PCR from genomic DNA of S. suis HA9801

using the primers listed in Table 2. PCR products were cloned into

the pET-28a or pET-32a expression vectors, and the resulting

plasmids were used to transform Escherichia coli BL-21. Trans-

formed cells were grown at 37uC until the OD600 reached 0.3, at

which point protein expression was induced by adding 1 mM

isopropyl-b-D-thiogalactopyranoside for 4–5 h at 37uC. Cells were

harvested by centrifugation at 10,0006g for 10 min at 4uC.

Protein purification was performed using Ni-TrapTM columns (GE

Healthcare). Purified recombinant protein was analyzed by SDS-

PAGE stained with Coomassie brilliant blue R-250, or transferred

to PVDF membranes and probed using the HA9801 or T15

hyperimmune rabbit sera.

Antisera to recombination proteins
Purified recombinant proteins were used to immunize rabbits

and Montanide ISA 206 VG (SEPPIC Co., Ltd) at 0.5 mg/mL was

used as adjuvant. The proteins were administered by intramuscular

injections three weeks apart. The titers of sera were evaluated using

indirect ELISA.

Subcellular location of HX2 in HA9801 cells
S. suis HA9801 was grown overnight in THB at 37uC, then

centrifuged at 10,0006g for 5 min at 4uC, and washed twice in

PBS. Bacteria were diluted in PBS to 56107 cell/mL. To the wells

of an immunofluorescence slide (Cel-line) were added 10 mL of the

bacterial suspensions, while PBS was used as the negative control.

Slides were dried in air, fixed for 10 min in cold acetone and

stored at 270uC until required. Antisera to purified recombinant

protein or control rabbit antisera were added to each well (1:200

dilution) and incubated at 37uC for 2 h. The slide was washed

three times with PBS, and then goat anti-rabbit IgG-FITC (1:200

dilution; Boster) was added to each well. Wells were incubated for

1 h at 37uC, and then the wash procedure was repeated [37].

Fluorescence was detected microscopically (ZEISS, Germany).

Cell culture methods
HEp-2 cells (ATCC CCL 23) were maintained in modified

Eagle’s medium supplemented with 10% fetal bovine serum

(GIBCO). Cells were incubated at 37uC in a humidified 5% CO2

incubator. For all experimental assays, 24-well tissue culture trays

(TPP) were seeded with 5.06104 HEp-2 cells/mL. Prior to the

assays, semi-confluent monolayers were washed using PBS, dried

in air and fixed in 4% paraformaldehyde for 1 h at RT. To each

well was added 30 mM aminoacetic acid for 5 min, followed by

0.1% Triton X-100 (Sigma) for a further 5 min. After three washes

with PBS, the wells were blocked with 3% PBS-BSA (GIBCO)

overnight at 4uC, and then washed prior to use.

Indirect immunofluorescence assay on HEp-2 cells
Purified recombinant proteins, rHX1 and rHX2, were diluted in

PBS-BSA to 10 ng/mL and added to the HEp-2 monolayers in 24-

well cell culture trays, and then incubated at 37uC for 2 h. PBS-BSA

was used as control. Wells were washed three times with PBS. Antisera

to each recombinant protein (1:200 dilution in PBS-BSA) were added

to the corresponding wells and incubated at 37uC for 2 h [38]. Then,

wells were incubated for 1 h at 37uC with anti-rabbit IgG-FITC (1:200

dilution in PBS-BSA; Santa). After a final wash, wells were observed

using the fluorescence microscope.

Supporting Information

Table S1 Summary of analysis performed on protein
spots identified by MALDI-TOF MS.

(DOC)

Table 2. Primer sequences used for cloning immunoreactive genes candidates.

Spot no. Primer sequence used for clone Length of PCR products expression vector

HX1 Forward: 5-CGAGAATTCTGCTGAAAATACGAGTGC 970 bp pET-30a

Reverse: 5-TATCTCGAGCTATGCCACATAATCATACCC

HX2 Forward: 5-TGAGAATTCGCCTGCAATTCATCTGCA 750 bp pET-28a

Reverse: 5-CCGCTCGAGTTACTTAGCTTTTGATACG

doi:10.1371/journal.pone.0021234.t002
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Table S2 Distributions of the HX2 gene in Streptococcus
sp. Strains. aThe serotypes of SS strains were confirmed by the

agglutination test. N, nontypeable.
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