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A B S T R A C T   

Background: To fully enhance the feature extraction capabilities of deep learning models, so as to accurately 
diagnose coronavirus disease 2019 (COVID-19) based on chest CT images, a densely connected attention network 
(DenseANet) was constructed by utilizing the self-attention mechanism in deep learning. 
Methods: During the construction of the DenseANet, we not only densely connected attention features within and 
between the feature extraction blocks with the same scale, but also densely connected attention features with 
different scales at the end of the deep model, thereby further enhancing the high-order features. In this way, as 
the depth of the deep model increases, the spatial attention features generated by different layers can be densely 
connected and gradually transferred to deeper layers. The DenseANet takes CT images of the lung fields 
segmented by an improved U-Net as inputs and outputs the probability of the patients suffering from COVID-19. 
Results: Compared with exiting attention networks, DenseANet can maximize the utilization of self-attention 
features at different depths in the model. A five-fold cross-validation experiment was performed on a dataset 
containing 2993 CT scans of 2121 patients, and experiments showed that the DenseANet can effectively locate 
the lung lesions of patients infected with SARS-CoV-2, and distinguish COVID-19, common pneumonia and 
normal controls with an average of 96.06% Acc and 0.989 AUC. 
Conclusions: The DenseANet we proposed can generate strong attention features and achieve the best diagnosis 
results. In addition, the proposed method of densely connecting attention features can be easily extended to other 
advanced deep learning methods to improve their performance in related tasks.   

1. Introduction 

Since outbreak in December 2019, coronavirus disease (COVID-19) 
has spread rapidly around the world [1–3]. As of August 11, 2021, there 
have been 204,644,849 confirmed cases worldwide, among which 4323, 
139 people have died [4]. Compared with Severe Acute Respiratory 
Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), 
although COVID-19 has a lower mortality rate, it spreads more widely, 
causing more deaths [5]. The average incubation period of SARS-CoV-2 
infection is 5.2 days, and during this time, patients will have flu-like 
symptoms such as fever and cough [6]. The SARS-CoV-2 virus-specific 
Reverse Transcription Polymerase Chain Reaction (RTPCR) is used 
clinically as the gold standard for the detection of COVID-19 [7], but 
RTPCR detection also has many limitations. On the one hand, the RTPCR 
detection may take up to two days to complete, and in order to reduce 
the false-negative results of patients, multiple tests need to be performed 
continuously, which will greatly reduce the efficiency of diagnosing 

COVID-19. On the other hand, RTPCR detection can only give qualita
tive analysis to patients, which is not conducive to the treatment of 
COVID-19 patients. In addition, the study [8] found that the positive rate 
of RTPCR assay for throat swab samples was 59%, and a number of any 
external factors may affect RTPCR testing results, including sampling 
operations, specimen source (upper or lower respiratory tract), sampling 
timing (different periods of the disease development) and performance 
of detection kits. Under such circumstances, there is an urgent need for 
supplementary methods to quickly and accurately diagnose COVID-19 
with quantitative analysis. 

Computed tomography (CT) examination, as a common method for 
detecting lung diseases, not only has a faster turnaround time than 
molecular diagnostic tests performed in standard laboratories, but also 
can provide more detailed imaging information. Besides, CT examina
tion is more suitable for quantitative measurement of lesion size and 
lung involvement. Now, researchers find that the lungs of patients 
infected with SARS-CoV-2 often show consistent CT imaging 
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manifestations, including glass opacities (GGO), multifocal patchy 
consolidation, and/or interstitial changes with a peripheral distribution 
[9]. Relying on these CT imaging characteristics, experienced radiolo
gists can accurately identify COVID-19 through chest CT. In addition, 
chest CT examination has the advantages of fast detection speed and low 
cost, so it can be used as a supplementary method to detect COVID-19. 
Therefore, compared with RTPCR detection, chest CT examination is 
not only faster, but also can give a quantitative analysis of the patient’s 
lung infection, which is more helpful to the patient’s follow-up treat
ment and prognosis. Fang et al. [10] found that the sensitivity of chest 
CT was greater than that of RTPCR (98% vs 71%, respectively), indi
cating that CT is very useful in the early detection of suspected 
COVID-19 cases. However, it takes a lot of time for radiologists to screen 
CT slices from the entire 3D CT layer by layer to find the lesions. When 
faced with a large number of CT images, radiologists are prone to fatigue 
and will reduce the efficiency of diagnosis. So, there is an urgent need to 
develop an automatic CT-based method to assist radiologists in diag
nosing COVID-19. 

In recent years, deep learning methods have been widely used in the 
field of medical image analysis, and have achieved beyond human 
performance in the classification and segmentation of lesions [11–17]. 
The chest CT imaging manifestation of COVID-19 patient has strong 
intra-class variability, and is highly similar to the imaging manifestation 
of other common pneumonia, as shown in Fig. 1. So, traditional machine 
learning methods based on manually extracted features are difficult to 
extract sufficiently fine features to distinguish COVID-19 from other 
common pneumonia. While deep learning methods can overcome the 
limitations of manually extracting features, and can automatically 
extract distinguishable features from CT images according to task re
quirements. Therefore, most recent researches [5,6,18–36] for diag
nosing COVID-19 adopt deep learning methods. 

In Fig. 1, Fig. 1(a) and Fig. 1(b) are COVID-19, Fig. 1(c) and Fig. 1(d) 
are common pneumonia, and the red arrows point to the lung lesions. 
From Fig. 1, we can see that the chest CT images of patients with COVID- 
19 and common pneumonia are similar, which brings challenges to the 
research of detecting COVID-19 through CT images. 

In the literature [6], the authors used a 2D convolutional neural 
network (CNN) to segment lung fields and lesions in chest CT images, 
and input the segmented lesions into a 3D CNN to detect COVID-19 
patients. The results showed that their method can distinguish 
COVID-19 from common pneumonia and healthy controls with an ac
curacy of 92.49% and an AUC of 0.9797. Wu et al. [20] proposed a 
weakly-supervised deep active learning framework called COVID-AL to 
diagnose COVID-19 with CT scans, and experimental results showed 
that, with only 30% of the labeled data, the COVID-AL achieved over 
95% accuracy of the deep learning method using the whole dataset. 
Chikontwe et al. [21] proposed an attention-based end-to-end weakly 
supervised framework for the rapid diagnosis of COVID-19 and achieved 
an overall accuracy of 98.6% and an AUC of 98.4%. Carvalho et al. [22] 
first proposed a convolutional neural network architecture to extract 
features from CT images, and then optimized the hyperparameters of the 
network using a tree Parzen estimator to choose the best parameters. 

Results showed that their model achieved an AUC of 0.987. Fang et al. 
[23] proposes a deep classification network model of COVID-19 based 
on convolution and deconvolution local enhancement. Experimental 
results showed their method achieved 0.98 sensitivity and 0.97 preci
sion. Li et al. [24] proposed a 3D deep learning model called COVNet to 
detect COVID-19, and achieved an AUC of 0.96. Mei et al. [25] com
bined chest CT with clinical symptoms, exposure history and laboratory 
testing to established an artificial intelligence (AI) model for rapid 
diagnosis of COVID-19 patients through a 2D CNN and a multilayer 
perceptron (MLP). In a test set of 279 patients, the AI system achieved an 
AUC of 0.92. Through analysis, most of the above studies used 2D CT 
slices to diagnose COVID-19. 

Singh et al. [30] used multi-objective differential evolution (MODE) 
to tune their proposed CNN model, and extensive results showed that 
their method can classify the chest CT images with a good accuracy. 
Wang et al. [31] developed a deep learning algorithm to diagnose 
COVID-19 using chest images, and achieved a total accuracy of 89.5% 
with a specificity of 0.88 and sensitivity of 0.87. Wang et al. [32] pro
posed a fully automatic deep learning system for diagnosing COVID-19, 
and obtained an AUC of 0.87. In the literature [33], a series of artificial 
intelligence algorithms based on deep learning were used to detect 
COVID-19, and the experimental results fully demonstrated the superi
ority of deep learning algorithms in the diagnosis of COVID-19. 

In the literature [5], the authors found that there is an imbalance in 
the size distribution of the infected lung areas between COVID-19 pa
tients and common pneumonia patients. So, they proposed a dual sam
pling strategy to alleviate the imbalance, and used an attention network 
to automatically diagnose COVID-19 patients. Results showed they ob
tained an AUC of 0.944 on the test set of 2057 patients. Xu et al. [34] 
first used a 3D deep learning model to segment the candidate infection 
regions, and used a location-attention classification model to classify 
COVID-19 and viral pneumonia. The results showed that their method 
achieved an overall accuracy of 86.7%. Li et al. [35] proposed the 
COVID-CT-DenseNet by using attention mechanism, and achieved 0.82 
accuracy. In addition, their method can help overcome the problem of 
limited training data when using deep learning methods to diagnose 
COVID-19. Wang et al. [36] proposed a Prior-Attention Residual 
Learning method to diagnose COVID-19, which is an extension of the 
attention residual learning [37]. In the literature [36], the author 
trained two separate 3D networks by using chest CT images, where one 
branch was used to generate attention maps of lesions to guide the other 
branch to diagnose COVID-19 more accurately. Experimental results 
showed that the attention framework they proposed can significantly 
improve the performance of screening COVID-19. It can be seen from the 
above studies that the attention mechanism has been widely used in the 
detection of COVID-19 based on chest CT, but there is still a problem of 
not effectively using attention features. In literatures [5,36], attention 
features are only generated inside the feature extraction block, not be
tween blocks or between features on different scales, resulting in 
incomplete focus areas learned by the model. 

Although deep learning methods are widely used in all aspects of 
medical image analysis, there are still many challenges in using chest CT 

Fig. 1. Chest CT images of the patients.  
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images to detect COVID-19 through deep learning methods. First of all, 
because chest CT is 3-dimensional (3D), and limited by computer 
memory and calculation speed, it is difficult to design a sufficiently deep 
3D deep learning model to fully utilize 3D CT information through a 3D 
CNN. However, the ability of the shallow model to extract image fea
tures is weak, resulting in poor diagnosis effects of the shallow model in 
diagnosing COVID-19. Second, because there are a large number of non- 
lesion areas in the lungs of patients, the method of detecting COVID-19 
in actual clinical practice is based on the accurate segmentation of the 
lesions. 

In this paper, in order to design a deep learning model with strong 
feature extraction capabilities and eliminate lesion segmentation pro
cess, a 2D CNN-based densely connected attention network (DenseANet) 
was constructed. Our proposed DenseANet takes 2D chest CT slices as 
input and can realize accurate diagnosis of COVID-19 without the need 
to finely segment lesion areas. Although the 2D CNN may lose part of the 
spatial information compared to the 3D CNN, it still contains enough 
features that can be used to distinguish different types of pneumonia. 
The radiologists also examine the 2D slices when reading the CT, and 
then combine the results of each slice to make the final diagnosis. 
Therefore, only the 2D slice of the CT image is sufficient to detect 
COVID-19. In literatures [19,25], the authors also constructed a 2D CNN 
model by using 2D slice of the CT image to diagnose COVID-19. In 
addition, the literature [38] showed that the model constructed using 2D 
CNNs can prevent overfitting compared to the model constructed using 
3D CNNs. Besides, compared with the 3D CNN, the 2D CNN can greatly 
reduce the number of model parameters. That is, in the same computing 
environment, we can use 2D CNN to design a deeper network and extract 
higher-order features that are more conducive to classification. 

In order to avoid losing the image characteristics of the lung lesions 
of COVID-19 patients, we only segmented the lung fields, and used the 
segmented lung CT images as the input of DenseANet. Inspired by the 
design idea of DenseNet [39], on the basis of our previous work [40], we 
generated a series of attention features in the construction of the deep 
model, and densely connected these attention features to enhance the 
feature extraction capabilities of the model. In summary, our contribu
tions have the following three aspects:  

1) We proposed a densely connected attention block (DAB) as the basic 
feature extraction block of CNN, this novel densely connected form 
of attention features can enhance the model’s ability to extract fea
tures of different pneumonia types, thereby improving the model’s 
diagnostic effect.  

2) The novel DAB block was introduced into U-Net, and an Attention U- 
Net model (A-U-Net) for semantic segmentation was constructed to 
achieve accurate segmentation of lung fields. We performed a five- 
fold cross-validation on a segmentation dataset containing 750 2D 
CT slices of 150 COVID-19 patients, and the results showed that the 
average Dice coefficient of A-U-Net for lung field segmentation was 
0.980, and the average pixel accuracy (PA) was 0.987.  

3) A densely connected attention network (DenseANet) was constructed 
based on the DAB, which can maximize the use of attention features 
at different depths and scales. The proposed DenseANet takes the CT 
image of the segmented lung parenchymal region as input and can 
achieve accurate detection of COVID-19. We performed a five-fold 
cross-validation on a dataset containing 860 CT scans of 534 
COVID-19 patients, and obtained an average of 96.06% Acc and 
0.989 AUC. The results show that the DenseANet can improve the 
effect of diagnosing COVID-19 with only a few additional 
parameters. 

2. Materials and methods 

2.1. Materials 

The dataset used in our research comes from China National Center 

for Bioinformation (CNCB). The dataset of the CT images and clinical 
metadata are constructed from cohorts from the China Consortium of 
Chest CT Image Investigation (CC-CCII), which consists of Sun Yat-sen 
Memorial Hospital and Third Affiliated Hospital of Sun Yat-sen Uni
versity, The first Affiliated Hospital of Anhui Medical University, West 
China Hospital, Nanjing Renmin Hospital, Yichang Central People’s 
Hospital, Renmin Hospital of Wuhan University. All CT images are 
classified into novel coronavirus pneumonia (NCP) due to SARS-CoV-2 
virus infection, common pneumonia (CP) and normal controls 
(Normal). In the dataset, NCP annotation was given when a patient had 
pneumonia with a confirmed reverse-transcriptase-PCR, and CP includes 
viral pneumonia, bacterial pneumonia and mycoplasma pneumonia. 

The dataset provides the locations of lesions in patients with NCP and 
CP. At the same time, we took 15 consecutive 2D slices from the whole 
CT of each healthy normal person in the middle position. Our experi
ment is based on these 2D slices, that is, only 2D slices are actually used 
to train and test the constructed DenseANet. The detailed data distri
bution of the dataset was shown in Table 1. Besides, we also downloaded 
a dataset for lung field segmentation from CNCB. The segmentation 
dataset contains 750 chest CT 2D slices of 150 cases and the masks 
corresponding to the lung field regions. 

2.2. The overall workflow 

In this paper, based on our previous work [40], firstly, a densely 
connected attention block (DAB) was proposed. Secondly, we replaced 
the convolutional layer in U-Net with the DAB to construct an Attention 
U-Net segmentation model (A-U-Net) to segment lung fields in chest CT 
images. Finally, the DAB blocks were used to construct the DenseANet, 
which can utilize 2D CT images of segmented lung field regions to detect 
COVID-19. Since the DenseANet outputs 2D slice-level detection results, 
we also explored methods of generating patient-level diagnosis results 
using 2D results through mean strategy and voting strategy. Fig. 2 
showed the overall workflow for diagnosing COVID-19 in our work. 

Fig. 2(a) represents data processing, and its main purpose is to 
generate lung CT images that only contain lung parenchymal regions. 
Fig. 2(b) represents the diagnosis process of COVID-19. The A-U-Net for 
segmentation and DenseANet for classification in Fig. 2 will be described 
in detail later. 

2.3. Densely connected attention block 

Since having excellent classification performance, ResNet [41] has 
been widely used in various tasks of image processing. ResNet is a re
sidual structure that can use skip connections to alleviate the problem of 
gradient disappearance. Using the residual structure, researchers can 
design deeper deep learning models to improve the performance of the 
model on corresponding tasks. The residual attention block is based on 
the feature extraction block in the original ResNet, and has gradually 
derived a variety of forms. Fig. 3 shows some structures of residual 
attention blocks. 

Fig. 3(a) is the feature extraction block in ResNet, and it does not 
contain any attention features. Fig. 3(b) is the attention residual learning 
block proposed in the literature [37], which generates attention features 
through higher-level features inside the block, and the generated 
attention features act on the output of the block. Therefore, the attention 
residual learning block is a kind of self-attention mechanism. Fig. 3(c) is 

Table 1 
The data distribution.  

Types Num. of patients Num. of CT scans Num. of 2D slices 

CP 738 1055 36894 
NCP 534 860 21872 
Normal 849 1078 16170 
Total 2121 2993 74936  
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the Prior-Attention block proposed in the literature [36], which provides 
attention features to the backbone network through a branch network, 
so the Prior-Attention block is not a self-attention mechanism. Fig. 3(d) 
is the feature extraction block proposed in our previous work [40]. It 
was verified in the literature [40] that the ability of Fig. 3(d) to extract 
features is better than that of Fig. 3(a). Therefore, we introduced the 
self-attention mechanism to the structure shown in Fig. 3(d) and con
structed the DAB (Fig. 3(e)), where the expansion coefficient of dilated 
convolution was set to 2. In the DAB, a convolution kernel with a size of 
3 × 3 was used to extract features, and a convolution kernel with a size 
of 1 × 1 was used to change the number of feature maps. In this way, 
attention feature maps at different depths can be merged. 

Different from the attention residual learning block (Fig. 3(b)), all 
internal higher-level features in the DAB (Fig. 3(e)) will correct the low- 
level features in the spatial domain to generate attention features. These 
attention features in DAB are first spliced in the channel domain to 
obtain dense attention features f, then f is subjected to a 1 × 1 convo
lution to perform feature selection to obtain selected feature maps, and 
finally the selected feature maps are weighted and added to the output of 
this DAB. The mathematical expressions of above blocks in Fig. 3 are as 
follows: 

y = F(x,W) + x (1)  

y = F(x,W) + [1 + α × S[F(x,W)]]x (2)  

y = F(x,W1) + [1 + α × S[G(x,W2)]]x (3)  

y = H(x,W) + x (4)  

y = H(x,W) + x + α × C[ζ] (5)  

ζ = Λ{ S[H(x,W)]x, S[H0(x,W0)]x, S[H(x,W)]C[H0(x,W0)] } (6) 

Equations (1)–(5) correspond to the mathematical expressions of 
Fig. 3(a)–3(e), where y represents the output of the residual attention 
block, the function F( ⋅) represents the mapping of the backbone path 
learned by the stacked layers in a block. The function G( ⋅) represents the 
mapping of the branch path learned by the stacked layer in the Prior- 
Attention module, and the function H( ⋅) represents the mapping of the 
main path learned by the stacked layer in Fig. 3(d). H0( ⋅) represents the 
result obtained through channel splicing in Fig. 3(d), and the weight 
coefficient α reflects the importance of the attention feature in the 
feature extraction block. C[ ⋅] represents the convolution operation with 
a size of 1 × 1 convolution kernel, and the function Λ { ⋅} indicates that 
the feature map is spliced in the channel dimension. S[ ⋅] represents the 
softmax operation in the spatial domain, as shown in Eq. (7). 

S
(

xn
i,j

)
=

exp
(

xn
i,j

)

∑w

j=1

∑h

i=1
exp

(
xn

i,j

) (7)  

where xn
w,h represents the feature map with a size of w×h and a channel 

number of n. 

2.4. A-U-Net 

Nowadays, researchers have proposed various semantic segmenta
tion models, including U-Net [42], FCN [43], RDUNET [44], SegNet 
[45] and DeepLabv3+ [46], UNet++ [47] etc. Since the skip connection 
in U-Net can combine low-resolution information and high-resolution 
information in a model, U-Net is conducive to accurate segmentation 
of object edges. On the basis of U-Net, using the DAB proposed in section 
2.3, we constructed an A-U-Net to segment the lung field regions of the 
chest CT images. The structure of A-U-Net was shown in Fig. 4. 

The number above the feature maps represented by the blue 

Fig. 2. The overall workflow for diagnosing COVID-19.  

Fig. 3. The residual attention blocks.  
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rectangular blocks in Fig. 4 represents the number of feature maps in 
different deep layers. We replaced the two convolutional layers in the 
original U-Net with the DAB on the same scale, and added the dropout 
[48] operation to DAB (drop rate = 0.85). Table 2 showed the detailed 
structure of the A-U-Net. 

In the A-U-Net, except for the activation function of the last layer 
which is softmax, others are ReLU, which is defined in Eq. (8), and the 
softmax activation function is in the form of channel domain, which is 
defined in Eq. (9). 

ReLU(ξ) = max(ξ , 0) (8)  

S
(

xk
i,j

)
=

exp
(

xk
i,j

)

∑n

k=1
exp

(
xk

i,j

) (9)  

2.5. DenseANet 

The overall framework of the DenseANet was shown in Fig. 5. The 
inputs of the DenseANet are 2D CT images of segmented lung field re
gions, which are first operated by a 3 × 3 convolution kernel to extract 
primary features. After that, these primary features are sequentially 
passed through five densely connected attention sub-networks (DA- 
SNets) with different scales and a densely connected attention feature 
aggregation block (DA-FAB) to finally get the outputs of the DenseANet. 
The structures of the DA-SNet and DA-FAB were shown in Fig. 5(a) and 
(b), respectively. 

As shown in Fig. 5(a), the backbone of the DA-SNet is in the form of 
residual structure, which is composed of N DAB stacked. The sizes of all 
attention feature maps inside a DA-SNet are the same, and the size of the 
feature maps are halved after a DA-SNet. Inside the DA-SNet, after the 
output of the later DAB passes through the softmax in the spatial 
domain, it is conducted element-wise product with the outputs of all 
previous DABs to generate attention features. All these attention fea
tures will be superimposed in the channel dimension. Finally, the 
Densely connected Attention Features (DAFs) are obtained. Then, these 

DAFs are selected through the 1 × 1 convolution kernel operation, and 
then the selected DAFs are weighted and added to the output of the last 
DAB. There are two ways to determine the weight coefficients α. One 
way to determine α is to be learned by the network as learnable pa
rameters, and the other way is to be manually specified as hyper
parameters. How to choose and determine α will be analyzed in the 
experimental part. 

Generally speaking, the more abstract the features extracted in the 
deeper layers of the network, the more specific the location of lung le
sions can be located. Therefore, in order to make full use of advanced 
abstract features, we added the DA-FAB after the output of the last DA- 
SNet, as shown in Fig. 5(b). The biggest difference between DA-FAB and 
DA-SNet is that the attention features densely connected in DA-FAB are 
of different scales. 

In Fig. 5(b), the features of the previous layer are reduced to the same 
size as the latter features by downsampling, and then the down sampled 
features are selected through the 1 × 1 convolution kernel operation, 
and finally the selected down sampled features are conducted element- 
wise product with the latter features to generate attention features. 
These attention features are first spliced with the later attention features 
in the channel domain to generate DAFs, and then DAFs are selected 
through a 1 × 1 convolution kernel operation, and then the selected 
DAFs are weighted and finally added to the output of the second 3 × 3 
convolution operation. In Fig. 5(b), the last 1 × 1 convolution layer will 
reduce the number of feature maps to the same as the number of cate
gories, playing the role of a fully connected layer. Then, the output of 
DenseANet is obtained after global average pooling and softmax in the 
channel domain. The detailed structure of the entire DenseANet was 
shown in Table 3. 

As can be seen from Table 3, the number of convolution layers in the 
backbone network of DenseANet is approximately the same as the 
number of convolution layers in ResNet101 [41], therefore, we will 
compare DenseANet with ResNet101 and its variants in the following 
experiment part. 

In addition, to accurately detect COVID-19 patients, the diagnosis 
results need to be obtained at the patient-level rather than the single 2D 
slice-level of the chest CT. Therefore, after obtaining the detection re
sults of all 2D slices of a patient, an integration strategy needs to be 
adopted to gather the detection results of all 2D slices together to 
generate patient-level diagnosis result. Here, we adopted two integrated 
strategies to generate patient-level diagnosis results. One is the average 
strategy, which averages the results of all 2D slices as the patient’s 
diagnosis result, and the integrated strategy was given by Eq. (10). The 
other is the voting strategy, that is, the most frequently occurring result 
among all the 2D slice results of one patient is selected as the patient’s 
diagnosis result, and this strategy was given by Eq. (11). Assuming that 
the detection results of 2D slices belong to one-hot form, Dslice

I,J,K ∈ R1×3×s 

represents the detection results of 2D slices, s represents the number of 
2D slices in the chest CT. 

Dpatient =
1
s

∑s

k=0
Dslice

I,J,k (10)  

Dpatient = max
{

Dslice
I,r,0,Dslice

I,r,1,…,Dslice
I,r,n

}
(11)  

r = max count
{

argmax
(

Dslice
I,J,0

)
, argmax

(
Dslice

I,J,1

)
,…, argmax

(
Dslice

I,J,s

)}

(12)  

where max count {A} represents the value that appears most frequently 
in the set A. In the experimental part, we conducted an experimental 
comparison of these two integrated strategies, and selected the strategy 
that has the best effect in diagnosing COVID-19 at the patient-level as 
the final integrated strategy. 

Fig. 4. The structure of the A-U-Net.  

Table 2 
The detailed structure of the A-U-Net.  

Layer name Output size Layer name Output size 

Input 512 × 512 × 1 Up-conv 64 × 64 × 512 
DAB 512 × 512 × 64 DAB 64 × 64 × 512 
Max pooling 256 × 256 × 64 Up-conv 128 × 128 × 256 
DAB 256 × 256 × 128 DAB 128 × 128 × 256 
Max pooling 128 × 128 × 128 Up-conv 256 × 256 × 128 
DAB 128 × 128 × 256 DAB 256 × 256 × 128 
Max pooling 64 × 64 × 256 Up-conv 512 × 512 × 64 
DAB 64 × 64 × 512 DAB 512 × 512 × 64 
Max pooling 32 × 32 × 512 Conv 512 × 512 × 1 
DAB 32 × 32 × 1024    
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3. Results 

In this paper, in order to verify our DenseANet, a five-fold cross- 
validation was performed on a dataset containing 2993 chest CT scans of 
2121 patients. The purpose of DenseANet is to accurately diagnose NCP, 
CP and Normal, therefore, the DenseANet is essentially a three- 
classification prediction model. 

3.1. Evaluation metrics 

In order to evaluate the segmentation performance of A-U-Net, we 
used Dice coefficient (Dice) and pixel accuracy (PA) as evaluation 
metrics. And to evaluate the classification performance of these models, 
Accuracy (Acc), Sensitivity (Se), Specificity (Sp), Precision (Pr), F1 score 
(F1) and area under the receiver operating characteristic curve (AUC) 
were used as evaluation metrics. The above metrics were defined as 
follows: 

Dice =
2 × TP

TP + TN + FP + FN
(13)  

PA = Acc =
TP + TN

TP + TN + FP + FN
(14)  

Se = Recall =
TP

TP + FN
(15)  

Sp =
TN

TN + FP
(16)  

Pr =
TP

TP + FP
(17)  

F1 =
2 × Pr × Se

Pr + Se
(18)  

AUC =
∑N+

i=1

∑N−

j=1

ψ
[
Γ
(
x+i

)
> Γ

(
x−i

)]
+ 0.5ψ

[
Γ
(
x+i

)
= Γ

(
x−i

)]

N+N−

(19)  

where TP, TN, FP, FN represent the number of true positive, true nega
tive, false positive, false negative, respectively. ψ( ⋅) is the indicator 
function which returns 1 if the argument is true and 0 otherwise. Γ( ⋅)
represents the nonlinear mapping of DenseANet from inputs to outputs, 
and x+, x− , N+, N− represent positive samples, negative samples, the 
number of positive samples and the number of negative samples, 
respectively. It should be noted that, unless otherwise specified, all 
evaluation metrics of a certain category are obtained by calculating this 
category and the other two categories. 

3.2. Experimental analysis of the A-U-Net 

The dataset used for lung field segmentation is composed of five 2D 
slices of each patient’s chest CT, so 150 patients contain a total of 750 2D 
slices. The resolution of the input images to the A-U-Net model is 512 ×
512, before entering the model, we first standardized the data according 
to Eq. (20). 

Xi,j =
Xi,j − μ

σ
(20)  

where μ is the mean value of the image, and σ is the standard deviation 
of the input image. 

The implement of the entire A-U-Net is based on the TensorFlow 
[49], and dual NVIDIA GTX1080ti GPUs (11 GB) were used to train and 
test the segmentation model. We used the “Xavier” algorithm to 
initialize A-U-Net, and used the Adam algorithm to update the param
eters of A-U-Net. The initial learning rate was set to 3 × 10− 4, the batch 
size was set to 8, and the epochs was set to 100. It should be pointed out 
that in the A-U-Net, we set the weight coefficient in DAB to 1, and used 
the cross-entropy loss function to train the A-U-Net model. The 

Fig. 5. The framework of the DenseANet.  

Table 3 
The structure of the DenseANet.  

Layer name Num. of DAB Output size 

Input – 224 × 224 × 1 
Convolution – 224 × 224 × 16 
DA-SNet 4 112 × 112 × 16 
DA-SNet 8 56 × 56 × 32 
DA-SNet 8 28 × 28 × 64 
DA-SNet 8 14 × 14 × 128 
DA-SNet 4 7 × 7 × 256 
DA-FAB – 3  
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cross-entropy (CE) loss function was defined as follows: 

L = −
1
m

∑m

j=1

∑n

i=1
lji⋅logpji

(
lji
⃒
⃒xj; θ

)
(21)  

where m represents the number of samples in a mini-batch, n represents 
the number of categories, lji represents ground truth (one-hot), pji rep
resents the output of the A-U-Net, xj represents the input of the A-U-Net, 
and θ represents all parameters of the A-U-Net. 

When using the A-U-Net to segment the lung field, in order to prevent 
data leakage, we divided the dataset at the patient-level. After the five- 
fold cross-validation, the average Dice coefficient of the segmentation 
results obtained by A-U-Net is 0.980 and the average pixel accuracy is 
0.987, while the average Dice coefficient of the segmentation result 
obtained by original U-Net is 0.971 and the average PA is 0.980. Fig. 6 
showed some segmented results of lung fields obtained by U-Net and A- 
U-Net. 

In Fig. 6, Fig. 6(a)–6(d) showed the segmentation results of lung 
fields under normal conditions, Fig. 6(e) and Fig. 6(f) showed the seg
mentation results under extreme conditions. It can be seen from Fig. 6 
that even in extreme cases, A-U-Net can accurately segment lung field 
regions in chest CT. From the comparison of the segmentation results of 
U-Net and A-U-Net, we can see that A-U-Net can ensure the integrity of 
the segmented lung parenchyma, that is, the segmentation result of A-U- 
Net has a higher recall. Besides, the overall segmentation effect of A-U- 
Net is better than U-Net, which not only provides a reliable basis for 
utilizing CT images of lung field areas to diagnose Covid-19, but also 
proves the effectiveness of the DAB we proposed. 

3.3. Experimental analysis of the DenseANet 

3.3.1. Experiment setups and data preprocessing 
In the process of analyzing the dataset, we found that the areas of the 

segmented lung fields are concentrated in the middle of the image, and 
the resolution of the CT images in the dataset is 512 × 512. Therefore, in 
order to reduce computational load, we crop the segmented images to a 
size of 448 × 448 at the center, and then downsample them to the res
olution of 224 × 224. It should be noted that mixup method [50] was 
used for data enhancement. Specifically, we randomly mixed two im
ages (X1, X2) in a certain ratio to generate a mixed image (Xmix), and 
mixed the corresponding labels (Y1,Y2) with one-hot form to obtain the 
mixed label (Ymix) of Xmix, as shown in Eq. (22) and Eq. (23). Actually, 

the DenseANet was trained through Xmix and Ymix. 

Xmix = λX1 + (1 − λ)X2 (22)  

Ymix = λY1 + (1 − λ)Y2 (23)  

where λ obeys the beta distribution with parameters (β, β) in a batch, in 
our experiment, we set β = 2. 

We performed a five-fold cross-validation on the patient-level, and 
randomly flip the input images left and right to enhance data during 
training. The “Xavier” algorithm was used to initialize the DenseANet, 
the Adam algorithm was used to update parameters of the DenseANet. 
The initial learning rate was set to 1 × 10− 4, the batch size was set to 64, 
the epoch was set to 100, and the cross-entropy loss function was used to 
train the DenseANet. The entire DenseANet was built based on the 
TensorFlow deep learning framework, and dual NVIDIA GTX1080ti 
GPUs (11 GB) were used for model training and testing. Noted that the 
parameter size of the DenseANet model is 361 MB, and the diagnosis 
result of a 2D slice can be obtained in 0.04 s on the above-mentioned 
experimental platform. 

3.3.2. Weight coefficient α 
There are weight coefficients in both DAB and DA-SNet (between 

DABs), the weight coefficients in DAB are defined as α1, and the weight 
coefficients between DABs in the DA-SNet are defined as α2. In the 
literature [37], α1 is obtained by training the network as a learnable 
parameter, the range of which is between (0, 2). In our experiment, we 
also tried the method in the literature [37] to automatically learn α1 and 
α2 through training the network. But we found that if α1 and α2 were 
used as learnable parameters, as the number of model training increases, 
α1 and α2 did not converge, which made the training results of the entire 
model poor. So, in our experiment, we took α1 and α2 as hyper
parameters to train the constructed DenseANet model. 

Specifically, given α1, α2 ∈ [0, 2], firstly, α2 was fixed to 0, α1 was 
initialized to 0, and an ablation experiment was performed for α1 every 
0.1. When the accuracy of the model on the validation set reaches the 
highest, the α1 at this time is selected as the final α1 (α′

1). Secondly, α1 

was fixed to α′

1, α2 was initialized to 0, and another ablation experiment 
was performed for α2 every 0.1. When the accuracy of the model on the 
validation set reaches the highest, the α2 at this time is selected as the 
final α2 (α′

2). After a lot of experiments, α1 was finally determined to 1.2 
and α2 was determined to 1.0, respectively. After a five-fold cross-vali

Fig. 6. Segmentation results of lung field. The top row showed the segmentation results of A-U-Net and the bottom row showed the segmentation results of U-Net. 
Blue area showed the overlap between the predicted result and the true result, red area showed the under-segmentation area and green area showed the over- 
segmentation area. 
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dation, we found that the results in patient-level generated by the 
average strategy are better than that generated by the voting strategy in 
any classification metrics. Therefore, all patient-level results in the 
following were generated by the average strategy. 

3.3.3. Experimental results 
Since the number of convolution operations in the backbone network 

of the DenseANet is roughly the same as the number of that in 
ResNet101, and the backbone networks of the two networks are all re
sidual structures, so, we introduced the structure in Fig. 3(b) into 
ResNet101 to construct a ResNet101+ARL model for comparing. At the 
same time, we combined ARL with the backbone network (Baseline) we 
proposed in the literature [40] to construct a Baseline+ARL model. In 
the experiments, we used ResNet101, ResNet101+ARL, Baseline, Base
line+ARL and DenseANet five networks to conduct five-fold cross-
validations. The training/validation curves and confusion matrixes of 
the DenseANet in the five-fold cross-validation experiment were shown 
in Fig. 7 and Fig. 8, respectively. 

In order to quantitatively analyze the DenseANet, we showed all 
results with a 95% confidence interval of the above five models at the 2D 
slice-level and the patient-level in Table 4. 

From Table 4, we can see that the classification effect of the Den
seANet is significantly better than that of the other four models, indi
cating that the densely connected attention mechanism is effective. 
From Table 4, we can also see that the classification effect of Baseline is 
better than ResNet101, which is consistent with the conclusion of our 
previous work [40]. From the results of the Baseline, Baseline+ARL and 
DenseANet models, it can be seen that as the number of attention fea
tures in the model increases, the better the classification effect of the 
mode. This shows that using more attention features can improve the 
model’s ability to classify chest CT images with different disease types, 
which is consistent with our starting point for designing the DenseANet 
model. 

In addition, we also showed the average receiver operating charac
teristic (ROC) curves and precision-recall (PR) curves of the five-fold 
cross-validation of the DenseANet, as shown in Fig. 9. 

In order to further demonstrate the classification effect of the Den
seANet on the test set, we plotted the kernel density estimation (KDE) 
diagram of the test results, as shown in Fig. 10. Fig. 10(a) represents the 
KDE of the prediction results of the CP, Fig. 10 (b) represents the KDE of 
the prediction results of the NCP, Fig. 10(c) represents the KDE of the 
prediction results of the Normal, and Fig. 10(d) represents the KDE of 
the prediction results of the average type. 

From Fig. 10 we can see that the output probability of the DenseANet 
are mostly concentrated around 0 or 1, indicating that DenseANet can 
accurately distinguish various types of pneumonia patients with a high 
degree of confidence. 

In addition, well known the distinction between normal controls and 
any kind of pneumonia is relatively easy, while the distinction between 
novel coronavirus pneumonia (NCP) and common pneumonia (CP) is 
not. In order to further verify the performance of DenseANet, we also 
calculated various evaluation metrics between CP and NCP. Since the 
output of the model is the three-classification probability, we first 
excluded the Normal samples in the test set, and got the preliminary 
result R1 (three-classification probability) through the model. Then the 
two-classification results (R2) of CP and NCP was obtained by Eq. (25), 
and the detailed results of the two-classification between CP and NCP 
was shown in Table 5. 

Rs = R1[argmax(R1[CP,NCP])] + R1[Normal] (24)  

R2 = Rs[CP,NCP]#(25) (25) 

In addition, in order to show the classification effect of the Den
seANet more intuitively and make the diagnosis results of the DenseA
Net more convincing, we used class activation mapping (CAM) [51] to 
visualize the attention regions in the lung fields, as shown in Fig. 11. 

In Fig. 11, Fig. 11(a) are original chest CT images, Fig. 11(b)–11(e) 
are images obtained by superimposing CAMs of each deep model on 
corresponding CT images, and red arrows point to the area of lung le
sions. The top row represents CP and the bottom row represents NCP, 
respectively. In Fig. 11(b)–11(e), the redder the color on the image in
dicates that the model payed more attention to this area, that is, the 
model considers this area to be a lesion area worthy of attention. 

From the CAM maps, we can see that the DenseANet can locate lung 
lesions more accurately than the other four models, so DenseANet can 
diagnose COVID-19 with a higher accuracy. From the comparison of 
Fig. 11(b) and (c) or from the comparison of Fig. 11(d) and (e), we can 
see that the introduction of the self-attention mechanism can indeed 
enhance the model’s ability to locate lung lesions, leading the model to 
make more accurate judgments. 

4. Discussions 

4.1. Analysis of the DenseANet architecture 

The core of A-U-Net for lung field segmentation and DenseANet for 
diagnosing COVID-19 are all the densely connected form of attention 
features. The obvious difference between our proposed method and 
existing attention models is the deep fusion of attention features at 
different depths and scales. From the structure of the model, DenseANet 
can obtain more potential discriminative representations by densely 
connecting the attention features of different depths and different scales. 
Compared with the self-attention model in the literature [37], DenseA
Net contains more attention features of different levels, both in the 
number and types of attention features. Due to the ability to use more 
attention features, compared with the other four models, DenseANet has 
the best classification accuracy in diagnosing COVID-19. More impor
tantly, the form of densely connected attention features we proposed is a 
general paradigm that can be easily integrated into various existing deep 
learning models. 

4.2. Result analysis of the DenseANet 

To prove the advantages of our proposed DenseANet, we listed re
sults of some models on the same data set in Table 4. From Table 4, we 
can see that the attention mechanism can indeed improve the classifi
cation ability of the model, which can support the argument in literature 
[37]. From the comparison of DenseANet and Baseline+ARL model, we 
can see that densely connected attention features can improve the Fig. 7. The training and validation curves of DenseANet.  
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performance of a model more than common attention features, which 
further prove the advantage of our proposed dense connection of 
attention features. So, from the whole results in Table 4, we can see that 
the densely connected form of the attention features at different depths 
and different scales is the reason for the higher performance of the 
proposed DenseANet. 

Fig. 10 showed the statistical distribution of the output results of the 
DenseANet model on the test set, and it can be seen that DenseANet can 
output the correct diagnosis result with a higher degree of confidence. At 
the same time, in order to reveal the feature representation ability of the 
DenseANet, we used CAMs to visualize attention regions in the lung 
field. The visualized results showed that the DenseANet can accurately 
locate the location of lung lesions, and then made accurate classification 
judgments, thus supporting the excellent performance of the DenseANet 
to a certain extent. 

Besides, to further demonstrate the effectiveness of our DenseANet in 
diagnosing COVID-19, we compared the DenseANet with COVID-AL 

[20], COVIDNet-CT [28] and COVID-CT-DenseNet [35] based on the 
same dataset. Table 6 showed the experimental results of the above four 
models at the patient level. 

It can be seen from Table 6 that DenseANet has achieved the best 
results in each category, which fully proved the superiority of our 
method. In addition, in order to better prove the effectiveness and the 
generalization of the DenseANet in diagnosing COVID-19, we tested the 
previously trained DenseANet and the other models on the COVID-CT- 
Dataset [52], which contains 349 COVID-19 CT images and 463 
non-COVID-19 CT images. The best result of each model was shown in 
Table 7. 

It can be seen from Table 7 that even if we performed cross-testing 
between two completely different data sets, DenseANet still has a 
higher accuracy than other models in identifying COVID-19, which can 
indicate that DenseANet has strong generalization ability and universal 
applicability. 

In our whole experiment, we also adopted the method in the 

Fig. 8. The confusion matrixes of the DenseANet. 0 represents CP, 1 represents NCP and 2 represents Normal.  

Table 4 
Detailed results (%) with a 95% confidence interval of five models. The numbers in bold black font represent the best classification result in the corresponding category. 
Note that the p-values are calculated between DenseANet and Baseline+ARL.   

Models Category Acc AUC Se Sp Pr F1 

Results of 2D slices ResNet101 CP 91.84 ± 1.21 97.64 ± 0.47 91.84 ± 1.05 91.85 ± 1.23 92.00 ± 1.37 91.72 ± 0.95 
NCP 92.63 ± 0.92 97.80 ± 0.43 88.04 ± 1.58 94.54 ± 0.74 86.98 ± 1.74 87.31 ± 1.49 
Normal 98.89 ± 0.27 99.71 ± 0.11 96.59 ± 0.37 99.47 ± 0.19 97.89 ± 0.55 97.03 ± 0.46 

ResNet101+ARL CP 92.99 ± 1.04 97.96 ± 0.35 91.72 ± 1.70 94.28 ± 0.76 94.25 ± 0.62 92.66 ± 0.82 
NCP 93.63 ± 1.19 98.01 ± 0.23 92.39 ± 1.21 94.14 ± 0.45 86.73 ± 1.29 89.37 ± 1.66 
Normal 99.08 ± 0.21 99.47 ± 0.17 96.33 ± 0.85 99.77 ± 0.08 99.06 ± 0.16 97.48 ± 0.58 

Baseline CP 94.07 ± 0.87 98.28 ± 0.28 97.09 ± 0.65 90.99 ± 1.58 91.67 ± 1.07 94.03 ± 0.89 
NCP 94.90 ± 0.49 98.23 ± 0.31 86.61 ± 1.18 98.34 ± 0.31 95.59 ± 0.65 90.65 ± 1.07 
Normal 98.95 ± 0.22 99.63 ± 0.14 96.81 ± 0.64 99.49 ± 0.18 97.95 ± 0.52 97.14 ± 0.41 

Baseline+ARL CP 93.50 ± 0.89 98.35 ± 0.20 92.08 ± 1.22 94.95 ± 0.53 94.91 ± 0.54 93.27 ± 0.73 
NCP 94.04 ± 0.72 98.40 ± 0.21 92.96 ± 0.97 94.48 ± 0.62 87.48 ± 1.17 90.04 ± 1.25 
Normal 99.03 ± 0.14 99.73 ± 0.07 96.78 ± 0.52 99.60 ± 0.29 98.39 ± 0.23 97.35 ± 0.46 

DenseANet CP 94.81 ± 0.39 98.38 ± 0.24 98.25 ± 0.21 91.02 ± 0.85 93.07 ± 0.71 94.66 ± 0.56 
NCP 95.67 ± 0.32 98.61 ± 0.12 87.19 ± 1.68 98.61 ± 0.33 95.83 ± 0.65 91.41 ± 0.71 
Normal 98.87 ± 0.16 99.57 ± 0.14 95.44 ± 0.81 99.74 ± 0.13 99.76 ± 0.14 97.53 ± 0.39 

p-value CP 0.003 0.742 6.35e-7 1.08e-4 0.002 0.007 
NCP 0.007 0.461 2.56e-5 5.38e-7 1.08e-7 0.012 
Normal 0.477 0.215 0.035 0.269 0.014 0.083 

Results of patients ResNet101 CP 91.05 ± 1.48 97.07 ± 0.52 90.55 ± 1.17 91.32 ± 1.19 84.65 ± 2.09 87.25 ± 2.17 
NCP 92.77 ± 1.09 97.63 ± 0.64 83.43 ± 1.88 96.60 ± 0.63 90.97 ± 1.32 86.91 ± 2.06 
Normal 98.28 ± 0.33 99.56 ± 0.13 97.63 ± 0.52 98.65 ± 0.38 97.63 ± 0.44 97.47 ± 0.42 

ResNet101+ARL CP 92.08 ± 0.96 97.55 ± 0.51 91.54 ± 1.29 92.37 ± 1.24 86.38 ± 2.17 88.65 ± 1.85 
NCP 93.80 ± 0.84 97.90 ± 0.32 86.39 ± 1.14 96.84 ± 0.58 91.82 ± 1.17 88.92 ± 1.75 
Normal 98.28 ± 0.27 99.71 ± 0.15 97.16 ± 0.43 98.92 ± 0.39 98.09 ± 0.36 97.41 ± 0.49 

Baseline CP 92.08 ± 1.21 98.12 ± 0.35 96.02 ± 0.61 90.00 ± 1.23 83.55 ± 1.75 89.15 ± 1.25 
NCP 93.63 ± 1.05 98.43 ± 0.47 80.47 ± 2.03 99.03 ± 0.20 97.14 ± 0.49 87.96 ± 1.19 
Normal 98.45 ± 0.24 99.53 ± 0.28 97.63 ± 0.34 98.92 ± 0.14 98.10 ± 0.38 97.64 ± 0.42 

Baseline+ARL CP 93.12 ± 0.71 97.80 ± 0.46 90.55 ± 0.91 94.47 ± 0.90 89.66 ± 1.26 90.04 ± 1.08 
NCP 93.80 ± 0.94 98.08 ± 0.32 88.17 ± 0.97 96.12 ± 0.57 90.30 ± 1.19 89.13 ± 1.12 
Normal 98.62 ± 0.33 99.64 ± 0.09 98.58 ± 0.21 98.65 ± 0.17 97.65 ± 0.32 97.91 ± 0.63 

DenseANet CP 94.11 ± 0.25 98.81 ± 0.17 98.10 ± 0.33 91.99 ± 0.32 86.68 ± 0.50 92.03 ± 0.32 
NCP 94.86 ± 0.33 98.13 ± 0.11 82.40 ± 1.28 99.06 ± 0.24 96.71 ± 0.82 88.98 ± 0.76 
Normal 99.20 ± 0.14 99.74 ± 0.08 98.00 ± 0.36 100.00 ± 0.00 100.00 ± 0.00 98.99 ± 0.18 

p-value CP 0.012 0.003 4.95e-7 1.75e-4 0.001 0.003 
NCP 0.004 0.098 9.17e-6 1.68e-5 9.22e-8 0.218 
Normal 0.021 0.273 0.047 0.013 0.004 0.016  
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literature [6] to establish a 3D classification model, but the classification 
effect is poor. Through further observation of the visualization method, 
we found that the 3D model payed more attention to the edge of the lung 
fields, rather than the whole lung fields. The reason for the above 
problem is that there is not sufficient data to train the model, since only 
part of the data in the literature [6] can be obtained. Therefore, the 
amount of patient-level data available to us is small, which makes it 
impossible to train a 3D prediction model with excellent classification 
effect. 

4.3. Disadvantages of the DenseANet 

Regarding the determination of the weight coefficient α1 within the 
feature extraction block (DAB) and the weight coefficient α2 between 
the DABs, in our experiment, we regarded α1 and α2 as two independent 
variables, without considering the relationship between α1 and α2. In 

addition, the weight coefficients α1 and α2 in different depths and stages 
in the DenseANet should not be completely the same. However, there 
are 39 weight coefficients in the entire DenseANet model, if these pa
rameters are used as different hyperparameters to be manually specified 
and determined through experiments, it is also unrealistic. Therefore, 
we treated the hyperparameters inside the DAB as the same, and treat 
the hyperparameters between the DABs as the same. From a method
ology point of view, the biggest limitation of our proposed method is to 
manually determine the weight coefficients of the attention features. 
And from the perspective of diagnosing COVID-19, the biggest limitation 
of our proposed method is the inability to use complete 3D CT 
information. 

4.4. The future work 

Considering the method of determining α1 and α2, a better approach 

Fig. 9. AUC curves and PR curves.  

Fig. 10. KDE of the probability values output by the DenseANet.  

Table 5 
Diagnosis results (%) of the DenseANet on the CP and NCP. The numbers in bold black font represent the best classification results. Note that the p-values are calculated 
between DenseANet and Baseline+ARL.   

Models Acc AUC Se Sp Pr F1 

Results of 2D slices ResNet101 88.65 ± 1.95 95.50 ± 0.61 93.03 ± 0.93 83.43 ± 1.47 86.98 ± 1.98 89.75 ± 1.35 
ResNet101+ARL 90.00 ± 1.01 96.06 ± 0.52 93.03 ± 0.89 86.39 ± 1.93 89.05 ± 1.24 90.91 ± 1.16 
Baseline 90.00 ± 1.13 97.13 ± 0.49 98.01 ± 0.30 80.47 ± 2.64 85.65 ± 2.47 91.24 ± 0.95 
Baseline+ARL 90.54 ± 1.37 96.75 ± 0.56 92.04 ± 1.02 88.76 ± 1.53 90.69 ± 1.17 91.19 ± 1.09 
DenseANet 91.28 ± 0.87 97.24 ± 0.41 98.18 ± 0.24 82.33 ± 1.97 86.85 ± 1.47 92.03 ± 0.69 
p-value 0.014 0.034 1.68e-5 8.61e-7 2.38e-4 0.002 

Results of patients ResNet101 90.88 ± 1.28 97.02 ± 0.49 92.45 ± 0.82 88.15 ± 1.17 93.08 ± 0.88 92.58 ± 0.75 
ResNet101+ARL 92.13 ± 0.89 97.41 ± 0.47 91.97 ± 0.97 92.43 ± 1.02 95.45 ± 0.47 93.81 ± 0.62 
Baseline 93.70 ± 0.77 97.72 ± 0.56 97.78 ± 0.66 86.67 ± 1.34 92.67 ± 0.91 95.07 ± 0.74 
Baseline+ARL 92.73 ± 0.93 97.98 ± 0.38 92.56 ± 1.04 93.04 ± 0.85 95.82 ± 0.58 93.94 ± 0.98 
DenseANet 94.67 ± 0.55 98.41 ± 0.27 98.31 ± 0.27 87.15 ± 1.16 93.47 ± 0.62 95.43 ± 0.38 
p-value 4e-4 0.015 1.33e-10 4.75e-7 0.001 0.002  
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is to use a grid search algorithm to comprehensively consider the rela
tionship between α1 and α2. However, the grid search algorithm will 
greatly increase the training times. In the case of a step size of 0.1, the 
grid search algorithm will require 400 retraining of the model, which 
greatly increases the computational cost and is unrealistic. In future 
work, we will search a more effective method to determine α1 and α2 
more reasonably. In order to further solve the problem of determining α1 
and α2 in different depth of the DenseANet model, we can try to divide 
the network into three different parts, namely the primary feature 
extraction part, the intermediate feature extraction part and the 
advanced feature extraction part. Under this experimental configura
tion, the α1 and α2 in these three parts will be determined separately, so 
that the model only has 6 different weight coefficients. We believe that 
this approach will make the model’s diagnosis results more accurate. In 
addition, we further plan to track the CT images and treatment plans of 
patients during the treatment phase to carry out researches on evalu
ating the treatment effects of COVID-19 patients. 

5. Conclusions 

During the COVID-19 pandemic, the sooner patients with COVID-19 
are identified, not only can the patients be treated in time, but also the 
transmission risk of COVID-19 can be effectively reduced. At present, 
although RTPCR detection is the gold standard for detecting COVID-19, 
since has long detection cycle and the disadvantage of can not give a 
quantitative analysis of patients, RTPCR detection will also be limited in 
the diagnosis of COVID-19. In this paper, a densely connected attention 
network (DenseANet) was constructed by utilizing chest CT images to 
accurately diagnose COVID-19. All experimental results show that our 
DenseANet has a better effect in diagnosing CIVID-19 than some existing 
models. The cross-validation experiment between different data sets 
show that the DenseANet model has a high robustness, which can pro
vide solid reliability for the actual clinical application of the DenseANet 
model. 

In clinic, the proposed DenseANet model can be used as a 

Fig. 11. Visualization of the attention regions.  

Table 6 
Diagnosis results (%) of the DenseANet, COVID-AL, COVID-CT-DenseNet and COVIDNet-CT. The numbers in bold black font represent the best classification result in 
the corresponding category. And the numbers in italic font indicate that the p-value (between DenseANet and other corresponding models) is greater than 0.05.  

Models Category Acc AUC Se Sp Pr F1 

COVID-AL CP 92.27 ± 0.43 95.66 ± 0.49 95.12 ± 0.61 90.74 ± 0.71 84.59 ± 1.03 89.54 ± 0.55 
NCP 92.93 ± 0.41 97.39 ± 0.33 78.47 ± 1.55 97.79 ± 0.01 92.29 ± 0.12 84.81 ± 0.96 
Normal 96.70 ± 0.32 98.73 ± 0.28 95.17 ± 0.55 97.72 ± 0.47 96.54 ± 0.68 95.85 ± 0.39 

COVID-CT-DenseNet CP 93.21 ± 0.56 97.46 ± 0.31 96.48 ± 0.62 91.47 ± 0.71 85.79 ± 1.10 90.82 ± 0.75 
NCP 93.82 ± 0.50 97.19 ± 0.23 80.34 ± 1.56 98.36 ± 0.16 94.28 ± 0.58 86.75 ± 1.11 
Normal 97.69 ± 0.34 98.85 ± 0.13 96.35 ± 0.55 98.58 ± 0.39 97.85 ± 0.57 97.09 ± 0.42 

COVIDNet-CT CP 93.54 ± 0.51 96.53 ± 0.49 97.16 ± 0.81 91.61 ± 0.58 86.13 ± 0.93 91.29 ± 0.66 
NCP 94.15 ± 0.85 97.39 ± 0.33 80.84 ± 2.44 98.67 ± 0.38 95.39 ± 1.30 87.50 ± 1.74 
Normal 98.40 ± 0.59 98.73 ± 0.28 97.05 ± 0.79 99.29 ± 0.47 98.92 ± 0.72 97.98 ± 0.74 

DenseANet CP 94.11 ± 0.25 98.81 ± 0.17 98.10 ± 0.33 91.99 ± 0.32 86.68 ± 0.50 92.03 ± 0.32 
NCP 94.86 ± 0.33 98.13 ± 0.11 82.40 ± 1.28 99.06 ± 0.24 96.71 ± 0.82 88.98 ± 0.76 
Normal 99.20 ± 0.14 99.74 ± 0.08 98.00 ± 0.36 100.00 ± 0.00 100.00 ± 0.00 98.99 ± 0.18  

Table 7 
Diagnosis results of the DenseANet on the COVID-CT-Dataset. The numbers in bold black font represent the best classification results.  

Models Acc AUC Se Sp Pr F1 

ResNet101 0.8633 0.9274 0.8797 0.8510 0.8165 0.8469 
ResNet101+ARL 0.8793 0.9416 0.8968 0.8661 0.8347 0.8646 
Baseline 0.8903 0.9473 0.9083 0.8769 0.8476 0.8769 
Baseline + ARL 0.8941 0.9607 0.9112 0.8812 0.8525 0.8809 
COVID-AL 0.8670 0.9318 0.8739 0.8618 0.8266 0.8496 
COVID-CT-DenseNet 0.8879 0.9475 0.9026 0.8769 0.8468 0.8738 
COVIDNet-CT 0.8916 0.9514 0.9083 0.8791 0.8499 0.8781 
DenseANet 0.9027 0.9564 0.9226 0.8877 0.8610 0.8907  
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supplementary method for RTPCR detection. Especially in the current 
situation of Delta variant (a new variant of COVID-19) with high 
infection rate and long incubation period spreading, and in the case of 
long time of RTPCR detection and the false negatives that may easily 
exist in one RTPCR detection, our proposed DenseANet method can 
provide the quantitative analysis results of the examinee in time through 
lung CT images, which is helpful for the screening cases with COVID-19 
in the early stage of the patients. 
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