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Background: To develop and validate a deep learning–based model on CT images for
the malignancy and invasiveness prediction of pulmonary subsolid nodules (SSNs).

Materials and Methods: This study retrospectively collected patients with pulmonary
SSNs treated by surgery in our hospital from 2012 to 2018. Postoperative pathology
was used as the diagnostic reference standard. Three-dimensional convolutional
neural network (3D CNN) models were constructed using preoperative CT images to
predict the malignancy and invasiveness of SSNs. Then, an observer reader study
conducted by two thoracic radiologists was used to compare with the CNNmodel. The
diagnostic power of the models was evaluated with receiver operating characteristic
curve (ROC) analysis.

Results: A total of 2,614 patients were finally included and randomly divided for training
(60.9%), validation (19.1%), and testing (20%). For the benign andmalignant classification,
the best 3D CNN model achieved a satisfactory AUC of 0.913 (95% CI: 0.885–0.940),
sensitivity of 86.1%, and specificity of 83.8% at the optimal decision point, which
outperformed all observer readers’ performance (AUC: 0.846±0.031). For pre-invasive
and invasive classification of malignant SSNs, the 3D CNN also achieved satisfactory AUC
of 0.908 (95% CI: 0.877–0.939), sensitivity of 87.4%, and specificity of 80.8%.

Conclusion: The deep-learning model showed its potential to accurately identify the
malignancy and invasiveness of SSNs and thus can help surgeonsmake treatment decisions.

Keywords: pulmonary subsolid nodules, computed tomography, diagnosis, computer-aided diagnosis (CAD),
deep learning
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INTRODUCTION

Lung cancer is one of the most lethal malignancies worldwide
(1). Early detection and accurate diagnosis of pulmonary nodules
can decrease the mortality of lung cancer (2). According to the
content of solid component, pulmonary nodules can be divided
into solid nodules and subsolid nodules (SSNs). They have great
difference in clinical management due to their different biological
characteristics (3).

SSNs are defined as nodular areas of homogeneous or
heterogeneous attenuation that did not completely cover the
whole lung parenchyma within them, including pure ground-
glass nodules (PGGNs) and part-solid nodules (PSNs) (4)
(Supplementary Figure S1). According to the pathology, SSNs
can be further divided into benign and malignant lesions, of
which malignant SSNs include pre-invasive (atypical
adenomatous hyperplasia, AAH; adenocarcinoma in situ, AIS;
minimally invasive adenocarcinoma, MIA) and invasive lesions
(invasive pulmonary adenocarcinoma, IA) (5). The three
categories of SSNs have different biological characteristics and
need different clinical management. Benign SSNs include
hemorrhage, inflammation, fibrosis, pulmonary alveolar
proteinosis, etc. (6), which need almost no intervention but
only follow-up. In contrast, malignant SSNs include subtypes
of adenocarcinoma, and those malignant pathological types need
careful intervention, such as surgical resection and stereotactic
body radiation therapy (SBRT) (7). To be specific, receiving
systematic lymph node dissection has no statistical significance
on improving the prognosis of patients with pre-invasive SSNs
(8, 9). The pre-invasive malignant SSNs may just need to be
treated with conservative approach (sub-lobectomy or wedge
resection) with long-term CT follow-up, while more aggressive
surgical treatment (standard lobectomy with extended lymph
node dissection) is necessary for patients with invasive (IA)
SSNs. Also, the prognosis of different pathological subtypes
varies greatly after the corresponding treatment (10, 11).
Therefore, accurate classification of SSNs has a great
importance for clinical decision-making and prognosis
evaluating, especially for thoracic surgeons as it determines the
candidates of surgery and the type of lung resection.

Nowadays, the prevalence application of high-resolution CT
scanning makes more SSNs be detected at an early stage.
However, for those detected SSNs, there exist many difficulties
for accurate diagnosis during clinical practice. For example, the
synchronous or asynchronous appearance of multiple primary
SSNs, the inappropriate location of the SSNs, and the poor
physical condition of the patients make it impossible to access
each SSN by biopsy. Therefore, CT imaging has become the most
important method to help clinicians make the diagnostic
decisions of SSNs. As reported, clinicians often make decisions
according to some CT morphological features (12, 13).
Nevertheless, these morphological features are subjective and
qualitative, which often lead to low inter-observer agreement
and unsatisfied accuracy (14–16). The inaccurate diagnosis
caused by the above limitations have led to undertreatment or
Frontiers in Oncology | www.frontiersin.org 2
overtreatment for patients with SSNs in clinical practice.
Therefore, a more objective and quantitative method to
accurately distinguish the malignancy and invasiveness of SSNs
is urgently needed.

Recently, deep learning has been widely used to analyze
medical images on various image modalities (17–20). Previous
studies have shown the efficiency of deep learning in pulmonary
nodule detection and classification areas (21–23). However, most
of these studies are based on solid nodules, and few concentrate
on SSNs. Therefore, this study aims to develop and validate a
deep learning–based malignancy and invasiveness prediction
model in patients with SSNs from the realistic clinical cohort.
MATERIALS AND METHODS

Patients
With approval from the institutional review board, we
retrospectively collected patients with pulmonary nodules in
Shanghai Chest Hospital from January 1, 2012, to December
31, 2018. The inclusion criteria include the following: (1) Patients
received surgical resection of pulmonary nodules in our hospital.
(2) Patients received pre-surgery chest CT scanning (thickness
≤5 mm) in our hospital. (3) Subsolid nodules were confirmed in
the chest CT. Patients were excluded if (1) post-surgery
pathological results were not available; (2) distant metastasis
was found in preoperative examinations; (3) other malignant
radiological features were present including enlarged hilar nodes,
pleural effusion, atelectasis, etc.

CT Image Acquisition and
Nodule Segmentation
Chest CT scans were taken with a 64-detector CT row scanner
(Brilliance 64; Philips, Eindhoven, Netherlands). Part of the
patients conducted a target thin-section helical CT scan with
layer thickness of 1 mm, while the others only had the whole lung
scan with a layer thickness of 5 mm.

SSNs were manually segmented by one radiation oncologist
(with 5 years of experience in CT interpretation) using the MIM
software (version 5.5.1, shown with window level −400 and
window width 1,600), then the region of interest (ROI) was
confirmed by one radiologist (with over 10 years of experience in
CT interpretation).

Image Preprocessing
The image preprocessing procedure are as follows: CT scans were
converted into Hounsfield units (HU), then voxel intensity was
clipped to [−1,024, 400] and [−160, 240] HU, respectively. Min-
Max normalization was used to rescale the image to [0,1]. Linear
interpolation was applied to get isotropic volumes with a
resolution of 0.5 mm × 0.5 mm × 0.5 mm. Then, an image
cube and the corresponding segmentation mask with 64 × 64 ×
64 voxels were cropped from the interpolated CT image centered
on the tumor. The cropped image cubes were used as the input of
our 3D CNN classification model.
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Pathological Information
According to the pathological report, each SSN was given a
specific label (benign, AAH, AIS, MIA, IA). For the malignancy
classification, patients who had at least one pathologically
confirmed malignant SSN (including AAH, AIS, MIA, IA)
were regarded as positive samples with label 1, and those
without malignant findings were negative samples with label 0.
For the invasiveness classification, patients who were
pathologically confirmed as AAH, AIS, or MIA were regarded
as pre-invasive samples with label 0, while patients confirmed as
IA were regarded as invasive samples with label 1.

Development of the Classification Model
We respectively established a binary classifier to distinguish
benign and malignant SSNs and another one to recognize pre-
invasive and invasive SSNs. The framework of our models is
shown in Figure 1.

We totally constructed three models for the malignancy and
invasiveness prediction of SSNs, respectively. First, a logistic
regression model built with nodule size was used as the baseline
clinical model. Second, a 3D CNN model based on modified
adaptive DenseNet using the lung window image as input was
constructed (AdaDense) (24). The adaptive dense connected
structure can effectively reuse the shallow layers’ features by
allowing each layer access to feature maps from all of its
preceding layers, which makes it easier to get a smooth
decision function with better generalization performance.
However, as most of the subsolid nodules’ size are small,
there exist lots of noisy information from the background
in the cropped image patches. Therefore, we considered
incorporating the segmentation mask as attention map to help
Frontiers in Oncology | www.frontiersin.org 3
the network focus on regions within the nodule. Moreover,
studies have shown that solid portions of SSNs detected by
mediastinal window can help distinguish pure ground-glass
nodules and part-solid nodules (25, 26), and the proportion of
solid components are considered to be related with the
malignancy and invasiveness classification (8, 27). Therefore,
to take the segmentation mask and solid component factors into
account, we finally built another 3D CNN model using the lung
window image [HU: (−1,024,400)] incorporated with
mediastinal window image [HU: (−160,240)] and mask image
as input (AdaDense_M). Then, given the CT image of SSNs, the
CNN model output the predicted probability of the SSN being
malignancy or invasiveness.

The architecture of the AdaDense_M model can be seen in
Figure 1, which consists of two parts, data fusion and main
structure. For the data fusion part, the CT image patch in
different windows and the corresponding segmentation mask
were separately convolved by a kernel of 3×3×3 to obtain
channels 1, 2, and 3, respectively. Then the three channels
were concatenated together and convolved by a 3×3×3 kernel
with stride=2 as the input of the main structure. This operation
reduced the original feature map of 64×64×64 to the size of
32×32×32. For the main structure part, there were three dense
blocks connected by transition layers. Each of the dense block
contained four bottleneck structures, and after each bottleneck
layer, all feature maps in the previous layers were adaptively
concentrated together to realize feature reuse. The bottleneck
layer can reduce the number of input feature maps, thereby
improving the computational efficiency. The transition layer
further compressed parameters by reducing half of the feature
maps after dense blocks.
FIGURE 1 | Framework of our model. We developed a 3D CNN model for the malignancy and invasiveness recognition of subsolid pulmonary nodules. The 3D
CNN model was based on modified 3D adaptive DenseNet and was improved by incorporating different window images and segmentation mask.
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As the sample size was limited, we used data augmentation to
avoid overfitting. We did online augmentation including
rotations, reflection, and translation. For a given nodule patch
and the corresponding mask, they were first translated by one to
three voxels in three directions. Then the translated images were
randomly rotated by 90, 180, 270, and 360° around the x-, y-, and
z-axis. Finally, the rotated images were randomly flipped along
the x-, y-, and z-axis.

For the network training, we used cross-entropy function as
loss function and Adam optimizer to train the model. Xavier was
used to initialize the network. The learning rate was set to 1e-4.
Maximum iterative epoch was 1,000. We early stopped the
training process when the validation dataset’s performance had
no improvement within five epochs. The batch size for each
iteration was set to 24. The multiple test method was used to
improve the stability of testing performance. Given a test
example, the input image patch with different windows and the
corresponding mask was randomly generated 10 times to obtain
10 different prediction probabilities, and the final prediction
result was computed by averaging all prediction probabilities.
The study was implemented with Tensorflow framework on a
GeForce GTX 1080Ti GPU.

Observer Reader Study
To compare the performance of the CNN model with human
experts for malignancy prediction, an observer reader study was
conducted in the same testing dataset. Two radiologists (with
over 10 years of clinical experience) were respectively asked to
grade the SSNs based on preoperative CT images. The scores
ranged from 0 to 10, and the higher the score was, the more likely
they thought the SSN was malignant. The detailed scoring
criteria can be found in Supplementary Figure S2. The
radiologists made their own decisions independently. Also, the
radiologists were given access to patients’ demographics and
clinical history as auxiliary information.

Model Evaluation and Statistical Analysis
To evaluate different models’ performance, the receiver operating
characteristic curve (ROC) was plotted, and the area under the
ROC curve (AUC), sensitivity, and specificity were calculated to
evaluate these models’ discrimination ability. Delong test was
used to pairwise compare different ROCs. Calibration curve was
utilized to assess the calibration ability of the model. Brier score
was calculated to quantify the calibration of those models, of
which lower values (closer to 0) indicate better calibration.
Decision curve analysis was used to determine the clinical
usefulness of different models by calculating the net benefit of
the constructed models at different threshold probabilities.

Mann-Whitney test was used to compare differences of the
mean value of patient’s age and max diameter in different groups.
Pearson’s c2 test was used to compare differences of patients’
gender and location proportion in different groups.

The statistical analysis was conducted with R software
(Rproject.org) and python (version 3.7). P-value less than 0.05
was considered as statistically significant difference.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Patient Characteristics
From the total of 2,614 patients, 1,791 were malignant and 823
were benign nodules. The number of patients with 1 mm layer
thickness was 1,735 (accounting for 66.4%), while the other 879
(33.6%) patients were with scans of 5 mm thickness. The median
nodule diameter was 1 cm. All patients’ characteristic statistical
information are shown in Table 1. Detailed distribution of
nodule sizes is shown in Supplementary Figure S3. Generally,
female patients with larger diameter and location of right upper
and left upper lobe were more likely to be malignant. The
patients were randomly divided into training (60.9%),
validation (19.1%), and testing datasets (20%) for the following
analysis. The distribution of different subtypes of SSNs on each
dataset is shown in Table 2. No significant difference was found
among the datasets (Supplementary Table S1).

Performance of the Observer
Reader Study
The observer readers’ classification ROC, AUC, sensitivity, and
specificity are shown in Table 3 and Supplementary Figure S4.
As we can see, one radiologist achieved the best performance
with an AUC of 0.877 (95% CI: 0.843–0.911), sensitivity of
95.4%, and specificity of 66.7%, which was significantly better
than another radiologist reader with an AUC of 0.815 (95% CI:
0.774–0.856). The difference also indicated the low inter-
observer agreement of the malignancy recognition in
clinical practice.

Performance of the 3D CNN Model for
Malignancy Prediction
The ROC curves of the 3D CNN models for malignancy
classification in the testing dataset are shown in Figure 2. As
we can see, the best CNN model based on CT images was 3D
CNN incorporated with different window images and the
segmentation mask (AdaDense_M). The AUC of the best
CNN model was 0.913 (95% CI: 0.885–0.940), which was
significantly better than the 3D CNN only with the lung
window image input (AdaDense) with an AUC of 0.848 (95%
CI: 0.810–0.886). Also, the CNN model performed significantly
better than clinical features-based model (AUC: 0.618),
and adding clinical features to the CNN model yielded no
significant improvement (AUC: 0.914, p = 0.489). The
sensitivity and specificity of the AdaDense_M model at the
optimal decision point were 86.1 and 83.8%. With a sensitivity
of 100, 98, and 95%, the percentages of benign nodules that
could be correctly identified was 32.5, 47.4, and 63.0%. Also, the
Adadense_M model performed better than all the observer
readers (AUC: 0.846±0.031).

The calibration curve and decision curve of the CNN model
(AdaDense_M) were plotted in Figure 3. The Brier score was
0.101, showing satisfactory consistency between the predicted
malignant probability and actual observation (Figure 3A). Also,
the model can bring apparent benefits for the malignancy
July 2021 | Volume 11 | Article 700158
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classification when the threshold was set to 0.01–0.99 compared
with the treat-all strategies (perform surgeries in all
patients) (Figure 3B).
Performance of the 3D CNN Model for
Invasiveness Prediction
The ROC curves of the 3D CNN models for invasiveness
classification in the testing dataset are shown in Figure 4A.
The CNN model (AdaDense_M) achieved satisfactory AUC of
0.908 (95% CI: 0.877–0.939), sensitivity of 87.4%, and specificity
of 80.8% at the optimal decision point. The confusion matrix is
shown in Table 4. Calibration curve showed satisfactory
consistency between the predicted invasiveness probability and
the actual observation with a Brier score of 0.124 (Figure 4B).
TABLE 2 | Distribution of SSN subtypes on each dataset.

Training Validation Testing Total

Benign 516 154 154 824
AAH/AIS 180 53 64 297
MIA 371 118 129 618
IA 525 175 175 875
Frontiers in Oncolo
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FIGURE 2 | The ROC curves of the CNN models for malignancy prediction.
The ROC curves of the AdaDense_M (CNN incorporated with different
window images and segmentation mask), AdaDense (CNN only with the lung
window image as input), and baseline clinical model (diameter) for malignancy
prediction in the testing dataset. The three models’ corresponding AUCs
were 0.913, 0.848, and 0.618, respectively. DeLong tests showed that the
AdaDense_M performs significantly better than the AdaDense model and the
clinical model (p<0.001).
TABLE 1 | Clinical characteristic of total patients.

Clinical Characteristics Total Patients (n=2,614) Malignant Nodules
(n=1,791, 68.5%)

Benign Nodules (n=823, 31.5%) Statistical Significance (Test Used)

Gender
Male 924 (35.3%) 577 (32.2%) 347 (42.2%) P<0.0001

(Pearson c2)Female 1,690 (64.7%) 1,214 (67.8%) 476 (57.8%)
Age
Median (Range) 57 (15–84) 58 (15–84) 57 (19–81) P=0.055

(Mann-Whitney)
Max Diameter (cm)
Median (Range) 1.0 (0.2–4.5) 1.1 (0.2–4.5) 0.9 (0.2–4.4) p<0.0001

(Mann-Whitney)
Solid Ingredients
PGGNa 1,768 (67.6%) 1,199 (66.9%) 569 (69.1%) P=0.286

(Pearson c2)
PSNb 846 (32.4%) 592 (33.1%) 254 (30.9%)

Location
Right Upper Lobe 949 (36.3%) 671 (37.5%) 278 (33.8%) p<0.0001

(Pearson c2)
Right Middle Lobe 198 (7.6%) 117 (6.5%) 81 (9.8%)

Right Lower Lobe 469 (17.9%) 289 (16.1%) 180 (21.9%)

Left Upper Lobe 670 (25.6%) 505 (28.2%) 165 (20.0%)

Left Lower Lobe 328 (12.5%) 209 (11.7%) 119 (14.5%)
Ju
aPGGN, Pure ground-glass nodules.
bPSN, Part solid nodules.
TABLE 3 | Performance of the observer reader study.

AUC Sensitivity Specificity

Radiologist1 0.815 80.8% 76.5%
Radiologist2 0.877 95.4% 66.7%
ly 2021 | Volume 11 | Article 700158
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DISCUSSION

Accurate diagnosis of malignancy and invasiveness of SSNs plays
an important role in clinical decision-making, especially for
Frontiers in Oncology | www.frontiersin.org 6
thoracic surgeons. In this study, we developed and validated a
novel deep-learning model based on preoperative CT images for
accurate classification of SSNs. Moreover, the deep-learning
model outperformed radiologists for malignancy prediction.

According to the Fleischner recommendations (3), follow-up
CTs are recommended when subsolid nodules are initially
detected to differentiate them between transient and persistent.
Then, if the nodules are persistent, the management would be
determined based on the patient's age, performance status,
nodule size, and solid portion size. However, as there exist no
national strategy for early-stage lung cancer screening in China,
patients with pulmonary nodules may come to the hospital for a
variety of reasons. Thus, for Chinese patients in clinical routine,
A B

FIGURE 3 | The calibration curve and decision curve of the CNN model for malignancy prediction. (A) The calibration curve of the CNN model (AdaDense_M) for
malignancy prediction. The diagonal dotted line represents a perfect prediction by an ideal model. (B) The decision curve of the CNN model (AdaDense_M) for
malignancy prediction. The gray solid line represents the assumption that all patients had malignant nodules. The black solid line represents the assumption that no
patients had malignant nodules. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true
positive, weighting by the relative harm of a false-positive and a false-negative result.
A B

FIGURE 4 | The ROC curve and calibration curve of the CNN model for invasiveness prediction. (A) The ROC curve of the CNN model (AdaDense_M) for
invasiveness prediction with an AUC of 0.908 in the testing dataset. (B) The calibration curve of the CNN model (AdaDense_M) for invasiveness prediction in the
testing dataset. The diagonal dotted line represents a perfect prediction by an ideal model.
TABLE 4 | Confusion matrix of the CNN model for invasiveness prediction.

CNN prediction

Ground Truth Pre-invasive Invasive Total

AAH/AIS 59 5 64
MIA 97 32 129
IA 22 153 175
July 2021 | Volume 11 | Article 700158
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the lesions are usually larger at the first visit, resulting in the risk
of diagnosis by dynamic follow-up. Therefore, it is necessary to
diagnosis SSNs based on preoperative CT images at a single
point. Furthermore, this diagnostic result greatly determines the
subsequent treatment strategies in clinical practice. For SSNs that
are basically diagnosed as benign, almost no intervention but
only follow-up is needed. While for SSNs highly suspicious of
malignancy, surgery or SBRT is usually adopted according to the
individual condition of patients. More specifically, sub-
lobectomy is more appropriate for pre-invasive SSNs, while
lobectomy with extended lymph node dissection is more
suitable for invasive SSNs. Currently, the inaccurate diagnosis
based on radiologists’ subjective judgment may cause
overtreatment or undertreatment, which is harmful for the
long-term survival of patients. Here, we established a
quantitative deep-learning model that can accurately identify
the malignancy and invasiveness of SSNs before the operation.
This will play an important guiding role in the decision-making
of the final surgical resection range, which can avoid unnecessary
surgical trauma, reduce the complications of patients, and
preserve the lung function to the greatest extent, and at the
same time, patients can get radical treatment opportunities.

Considering that CNN has great advantage in automatically
extracting deep representative image features, we decided to
establish a CNN model for malignancy and invasiveness
recognition of SSNs. Our established CNN model incorporated
with different window images and segmentation mask
(Adadense_M) finally achieved satisfying classification
performance. Besides that, we tried to developed a fusion
model by combining the CNN model’s prediction result and
the best radiologist’s score with logistic regression. The fusion
model finally achieved an AUC of 0.956 (95% CI: 0.938–0.975)
for malignancy prediction, which was significantly better than
the CNN model or radiologist alone. This result means that the
CNN model has great potential to help the radiologist make
better diagnosis of malignancy of SSNs.

Small sample size was the bottleneck to develop a high-
efficacy prediction model for previous studies to distinguish
pulmonary SSNs (28–32) (Table 5). Our study utilized the
largest sample size to date with detailed CT images and
pathologic information of SSNs. Compared with models built
with qualitative features and radiomics (28–30), our CNN model
can automatically learn deep representative features, which have
stronger predictive ability than the hand-crafted features. Thus,
our CNN model performs significantly better than other
radiomics models for malignancy prediction of SSNs.
Furthermore, in comparison with models developed with CNN
(31, 32), our AdaDense_M model creatively uses the prior
Frontiers in Oncology | www.frontiersin.org 7
segmentation mask and tumor cube in mediastinal window as
attention map, which can make the network focus on
information within the tumor and its solid components.
Results show that the CNN model we built achieved a high
AUC value for invasiveness prediction of SSNs among the
existing studies.

This study also has some limitations. First, we only included
patients with pathologically confirmed SSNs who had undergone
surgical resection, which results in a selection bias of more
malignant patients. If more benign samples can be included,
our model would be further improved. Second, there are 33.5%
patients who only conducted regular CT scans with the layer
thickness of 5 mm. Due to the small size and unique morphology
of SSNs, the regular CT scans of SSNs are too blurred to excavate
deep features for CNN. More thin-section CT scan data will be
collected in the future, and the model performance may be
further improved. Moreover, external dataset and prospective
cohort are also required to validate the generalization ability of
our model.

CONCLUSION

We constructed a deep learning–based model to identify the
malignancy and invasiveness of pulmonary SSNs based on CT
images. The model achieved a satisfactory performance and was
proven with potential to guide the selection of surgery candidates
and type of lung resection methods.
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