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Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and
environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic
or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle
interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system
has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared
receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level
can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide
an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions
involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-
immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the
neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other
autoimmune diseases.

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory autoim-
mune disease of the central nervous system (CNS). It
is characterized by inflammation, demyelination, axonal
degeneration, and gliosis. MS affects 1 out of 1000 people in
the Western world and leads to chronic disability in mostly
young adults (20–40 years).This neurodegenerative disease is
characterized by a heterogeneous clinical course with motor
sensory and sensible disturbances [1].Themajority of patients
(85%–90%) starts with relapses followed by remissions (i.e.,
relapsing-remitting (RR)-MS). Relapses are a defining feature
of MS and reflect focal inflammatory events. With time and
age, most patients switch to a progressive phase with gradual
deterioration of neurological functions due to progressive
axonal degeneration (i.e., secondary progressive (SP)-MS).
About 10%–15% of MS patients are diagnosed with primary

progressive MS (PP-MS). This progressive form is character-
ized by a gradual clinical decline in functions with no distinct
remissions.

Although MS is considered to be a predominantly
immune-mediated demyelinating disease, as demonstrated
by immune cell infiltration and accompanying inflammatory
processes leading to damage of myelin, the etiology of MS is
unknown. It is now generally accepted that MS is a complex
multifactorial disease involving genetic and environmental
factors affecting the autoreactive immune responses [2]. In
this respect, we will address here the role of the neuroen-
docrine system in MS. Several studies have addressed the
possible role of the neuroendocrine system in susceptibil-
ity and severity of autoimmune diseases. Moreover, it has
been shown that the neuroendocrine system has immune-
modulatory potential [3]. Ultimately, a better understanding
of the interactions between the neuroendocrine system and
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the immune system can open up new therapeutic approaches
for the treatment of autoimmune diseases, including MS.

2. The Neuroendocrine-Immune System

The neuroendocrine system is based on interactions between
the nervous and the endocrine system. Furthermore, the
neuroendocrine system can both directly and indirectly
influence the developmental and functional activity of the
immune system. In turn, the immune system can col-
laborate in the regulation of endocrine activity. The bidi-
rectional interactions between aforementioned systems are
known as the neuroendocrine-immune system. The inte-
gration between these two systems is essential in order to
maintain homeostasis and health. Neuroendocrine regula-
tion of immune responses is important for survival dur-
ing both physiological and mental stress. Systemically, this
regulation is accomplished by hormones, such as those
from the hypothalamic-pituitary-adrenal (HPA) axis and the
hypothalamic-pituitary-gonadal (HPG) axis. Regional regu-
lation is accomplished by innervations, including the auto-
nomic nervous system,while local regulation is accomplished
by neurotransmitters [4]. The immune system regulates the
CNS through immunemediators and cytokines that can cross
the blood-brain barrier (BBB), or signal indirectly through
the vagus nerve or second messengers. Furthermore, an
entire constellation of neurotransmitters andneuroendocrine
hormones is known to be endogenously produced by the
immune system, while the hypothalamus and/or anterior
pituitary have been shown to express interleukin (IL)-1, IL-
6, transforming growth factor (TGF)-𝛽, and other cytokines.
Additionally, immune, endocrine, and neural cells express
receptors for hormones, cytokines, and neurotransmitters.
Hence, these products act in an autocrine, paracrine, and
endocrine manner thereby further supporting the postulated
bidirectional interactions of the neuroendocrine-immune
system [5]. In summary, the neuroendocrine and immune
systems communicate bidirectionally via shared receptors
and shared messenger molecules, variously called hormones,
neurotransmitters, or cytokines.

3. Regulation of the Immune System
by the Neuroendocrine System and
Dysfunction in MS

In a healthy individual, the neuroendocrine and the immune
system provide a finely tuned regulatory system. Distur-
bances of these regulatory systems could potentially lead to
oversuppression of the immune system for example, resulting
in a higher susceptibility to cancer and infectious diseases,
or overactivation of the immune system which on its turn
may lead to a higher risk for inflammatory or autoimmune
diseases.

3.1. The Hypothalamic-Pituitary-Adrenal (HPA) Axis. In
order to survive, organisms maintain a complex dynamic
equilibriumor homeostasis which is constantly challenged by
intrinsic or extrinsic factors such as emotional, psychological,

traumatic, or inflammatory stress. For several decades, it has
been known that the hormonal stress response is mainly
coordinated by the HPA axis. The HPA axis is a regulatory
system, including the hypothalamus, pituitary, and adrenal
glands and regulatory neural inputs, which functions on both
a neuronal and an endocrine level through the release of
neural factors and hormones. It has central and peripheral
actions, mediates the coordination of circadian events such
as the sleep/wake cycle, and helps with coping, adaptation,
and recovery from stress.

During various physical and psychological stimuli,
the HPA axis is activated which results in secretion of
corticotrophin-releasing hormone (CRH) and arginine vaso-
pressin (AVP) from the paraventricular nucleus (PVN) of
the hypothalamus into the hypophyseal portal blood supply.
CRH acts on the anterior pituitary gland to stimulate the
release of adrenocorticotropic hormone (ACTH). Subse-
quently, ACTH circulates through the systemic circulation
towards the adrenal cortex where it induces the expression
and release of glucocorticoids (GC) in a diurnal pattern
(Figure 1). The secretion of CRH is upregulated by sero-
tonergic [6], cholinergic [7], and catecholaminergic systems
[8]. On the other hand, opiates and 𝛾-aminobutyric acid
(GABA) as well as hormones downstream of CRH, such as
GC and ACTH, can inhibit the secretion of CRH via negative
feedback [9].

It is known that GC, which are amongst the best-
characterized hormones, exert a wide variety of immuno-
modulatory effects, includingmodulation of cytokine expres-
sion, cell adhesion and migration, and production of inflam-
matory mediators [10, 11]. The immunomodulatory effects
of GC are regulated through intracellular glucocorticoid
receptors which have a widespread distribution throughout
various tissues.There are two different types of glucocorticoid
receptors including the high affinity type 1 mineralocorticoid
receptor (MR) which mediates non-stress-related circadian
fluctuations in GC and is primarily activational. In contrast,
the low affinity glucocorticoid receptor (GR) mediates stress
levels of GC and is inhibitory in some systems, while
being activational in others [12]. Although GC are gener-
ally immunosuppressive at pharmacological concentrations,
GC are immunomodulatory at physiological levels. Upon
ligation, the transcription of target genes is directly and/or
indirectly affected by binding of the GR to specific sequences
of DNA, known as GC-responsive elements (GRE). In this
perspective, GC specifically regulate the immune response
causing a shift from T helper type 1 (Th1) to Th2 immune
responses. Indeed, GC directly inhibit the production of
pro-inflammatory cytokines, such as IL-1, IL-6 and Th1-
related cytokines (IL-2, IL-12, and IFN-𝛾) as well as inflam-
matory mediators, such as prostaglandin and nitric oxide
[10], while GC increase the production of anti-inflammatory
Th2-related cytokines (IL-4 and IL-10). In doing so, GC
enhance immunoglobulin production [13, 14]. Besides, GC
have a direct inhibitory effect on the expression of adhesion
molecules such as intercellular adhesion molecule-1 (ICAM-
1) and E-selectin. These adhesion molecules play a key role
in the trafficking of inflammatory cells to sites of inflamma-
tion [15]. Furthermore, GC negatively affect dendritic cells
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Figure 1: The neuroendocrine-immune system. Via a complex system of common messenger molecules and receptors, the neuroendocrine
and the immune systems bidirectionally communicate and monitor each other’s activities. Integration of these signals is essential to maintain
homeostasis and health and may result in immunosuppression or immunostimulation. Discrepancies at any level can lead to changes in
susceptibility to and severity of several autoimmune and inflammatory diseases.

(DC), the most specialized antigen-presenting cells (APC),
by suppressing their maturation and by downregulating the
expression of the major histocompatibility complex (MHC)
molecules [16]. On the other hand, GC can indirectly
suppress immune responses through the inhibition of pro-
inflammatory transcription factors such as nuclear factor
kappa-light chain enhancer of activated B cells (NF-𝜅B) [17]
and activating protein-1 (AP-1) [18]. NF-𝜅B promotes the
expression of the genes coding for many cytokines, enzymes,
and adhesion molecules involved in inflammatory diseases
[19]. Hence, also the inhibition of the activation of NF-𝜅B
contributes to the anti-inflammatory actions of GC.

A well-known GC is cortisol, often referred to as the
stress hormone and a powerful natural immunosuppressor.
Following binding to glucocorticoid receptors, cortisol is
involved in several regulatory functions such as glucose
metabolism, regulation of blood pressure, insulin release for
blood sugar maintenance, immune function, and inflamma-
tory responses. For example, studies have shown that cortisol
can prevent T cell proliferation by downregulation of the IL-
2 receptor [20]. During the body’s fight or flight response to
stress, cortisol is secreted at higher levels and is responsible

for several stress-related changes in the body. Moreover,
this immunosuppressive hormone plays an important role in
the circadian rhythm as its plasma levels exhibit a diurnal
pattern with peak levels in the morning at approximately 9
am and a nadir at night [21]. Interestingly, some cytokine
concentrations also follow a diurnal rhythm. Proinflamma-
tory mediators in serum, such as IL-1, IL-6, and soluble IL-
2 receptors, peak at 1–4 am and are low throughout the day
with a nadir at 8–10 am when cortisol levels are the highest
[22–24]. Interestingly, circadian involvement has been noted
in various autoimmune and inflammatory diseases [25].
Indeed, Cutolo et al. have documented that clinical signs and
symptoms of patients with rheumatoid arthritis (RA) vary
within a day [25]. More severe symptoms are often presented
upon waking in the morning possibly associated with peak
levels of pro-inflammatory cytokines during the night. Mela-
tonin, which antagonizes the immunosuppressive effects of
cortisol, is secreted by the pineal gland in the brain.Melatonin
levels begin to rise in the midevening to late evening, peak
at approximately 3 am, and then drop in the early morning
hours. It has been demonstrated thatmelatonin production in
RA patients is increased in comparison with healthy controls
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at the beginning of the night and in the early morning and is
correlated with the typical peak of joint stiffness and pain.

Clinical and experimental studies have demonstrated that
abnormalities in the HPA axis in MS may contribute to
enhanced susceptibility to disease and to more severe disease
activity [26–28]. Although experimental data in experimental
autoimmune encephalomyelitis (EAE), the most commonly
used animalmodel ofMS, have suggested low reactivity of the
HPA axis as a predisposing factor for disease susceptibility
and severity [29, 30], it has been demonstrated that up to
50% ofMS patients are endowed with HPA axis hyperactivity
[31]. Basal plasma levels of cortisol and ACTH were found
to be elevated [32] and adrenal glands were demonstrated to
be enlarged in MS patients [33]. It was shown that after CRH
stimulation, the cortisol response varied according to the dis-
ease status of theMS patient and was lower in SP-MS patients
compared to patients with PP-MS and healthy controls, while
a higher 𝛽-endorphin/ACTH response was found in RR-
MS patients as compared to other groups [34]. Moreover,
higher cortisol levelswere oftendeterminedduring or in close
proximity to acute relapse, which is characterized by anMRI-
confirmed inflammatory state [26, 27, 34, 35] and correlated
with higher white blood cell counts in the cerebrospinal
fluid (CSF) [26]. In addition, histopathological findings of
the hypothalamus reveal perturbations in CRH regulation
as a result of MS lesions in this area. Indeed, an elevated
number and activity of CRH-immunoreactive neurons co-
expressing vasopressin (i.e., CRH/VP neurons) were found
in the hypothalamus of MS patients compared to controls in
postmortem studies [33, 36, 37]. Whereas these observations
were confirmed byHuitinga and colleagues, they additionally
reported an inverse correlation between activeMS lesions and
the number of hyperactive CRH/VP neurons and levels of
CRHmRNA [28]. Furthermore, they observed a more severe
disease course in MS patients with high active lesions in the
hypothalamus and the lowest CRH expression, suggesting
impaired cortisol secretion and reduced ability to control
inflammation. The authors hypothesized that this effect was
mediated by APC present in the active lesion suppressing
the CRH/VP neurons thereby contributing to a more severe
disease. Noteworthy, CRH mRNA levels return to normal
during remission [29].

Altogether, the HPA axis hyperactivity in MS has been
accompanied with progressive disease and global neurode-
generation [38]. Experimental studies suggest that stress
and excessive levels of GC may contribute to cellular and
molecular disturbances in the brain which may lead to
damage in several brain areas including the hippocampus.
Indeed, Gold et al. observed smaller hippocampal volumes
in MS patients as compared to healthy controls [39]. Given
the important role of the hippocampus in learning, mood
regulations, memory, and the HPA axis control, as well
as the notion that fatigue and depression are among the
most common symptoms of MS, significant associations
between HPA axis activity and depressive symptoms have
been observed in RR-MS during relapse [26]. Gold et al.
have detected normalmorning but increased evening cortisol
levels in MS patients with depressive symptoms compared
to non-depressed MS patients [40] as well as compared to

age- and gender-matched healthy controls [39]. Although
overall RR-MS patients expressed a significantly higher cor-
tisol awakening response compared to healthy controls, only
RR-MS patients with moderately elevated depression scores
showed significant differences in their cortisol release, while
RR-MS patients with low depression scores expressed similar
circadian patterns as healthy controls [41].

Besides the release of GC including cortisol, the HPA axis
also regulates the secretion of prolactin and growth hormone
(GH). Accordingly, these hormones exhibit immunoregu-
latory effects. Briefly, through stimulation by suckling and
stress, prolactin is released from the anterior pituitary gland
and stimulates mammary growth and differentiation. More-
over, it is documented that prolactin has immunostimulatory
effects such as increasing the production of IFN-𝛾 and IL-12
and the proliferation of T cells [42, 43]. On the other hand,
GH mediates its effect through insulin-like growth factor-
1 (IGF-1) [44]. Both GH and IGF-1 modulate the immune
system by inducing the survival and proliferation of lym-
phoid cells [45]. In addition to these well-described effects
on adaptive immunity, prolactin and GH also modulate
innate immunity. Indeed, both hormones enhance activation
of macrophages and induce subsequent release of reactive
oxygen species (ROS) [46, 47].

3.2. The Hypothalamic-Pituitary-Gonadal (HPG) Axis. In
addition to the HPA axis, other central hormonal systems,
such as the HPG axis, modulate the immune system [48].
To date, it is generally accepted that gender affects the
susceptibility and course of autoimmune diseases. Whereas
almost 8% of the world population develops an autoimmune
disease, approximately 78% of them are women. Also,MS has
a higher prevalence, but better prognosis in women than in
men [49].

The integrating center of this reproductive hormonal
axis is the hypothalamus. Gonadotropin-releasing hormone
(GnRH) is synthesized and released by the hypothalamus into
the hypophyseal-portal circulation. Upon transport to the
pituitary gland, GnRH stimulates the synthesis and secretion
of gonadotropic hormones including follicle-stimulating hor-
mone (FSH) and luteinizing hormone (LH) which following
systemic release circulate towards the reproductive organs
and subsequently stimulate the release of estrogen and pro-
gesterone.

Estrogen is a potent steroid with pleiotropic effects
and is present in high levels in females from adolescence
to menopause. There are 3 naturally occurring estrogens:
estrone (E1), estradiol (E2), and estriol (E3) which are the
predominant forms during menopause, in non-pregnant
females, and during late pregnancy, respectively. Estriol has
been accepted as the safest of the three and has been used
worldwide for the treatment of menopausal symptoms [50,
51]. Estrogen exerts its effect through binding to two forms
of nuclear estrogen receptors (ER), ER𝛼 and ER𝛽, which
exhibit distinct transcriptional properties. ER𝛼 is expressed
on the endometrium, ovarian stromal cells, breast, and
hypothalamus, whereas ER𝛽 is widely expressed in tissues
including brain, kidney, bone, heart, lungs, intestine, and
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endothelial cells [52]. In addition, expression of ER has been
demonstrated in a variety of immune cells including mono-
cytes, neutrophils, DC, T cells, and B cells, thereby providing
indirect evidence for its immunomodulatory properties [53,
54]. Following ligation, the ER interacts with the transcrip-
tion factor NF-𝜅B, thereby affecting secretion of cytokines,
chemokines, and matrix metalloproteinase (MMP)-9, as well
as antigen presentation and function of DC [55]. More
specifically, pretreatment with 17𝛽-estradiol blocked the abil-
ity of DC to present antigen to T cells resulting in an altered
pattern of cytokine production, as evidenced by an increase of
Th2 cytokines, such as IL-10 and IL-4, and a decrease of Th1
cytokines including TNF-𝛼 and IFN-𝛾. Furthermore, it was
shown that 17𝛽-estradiol treatment significantly decreased
the frequency of DC migrating towards the CNS at the onset
of EAE [56, 57]. Likewise, estriol decreased the secretion
of MMP-9 by immune cells thereby abrogating subsequent
migration of inflammatory cells towards the CNS [58]. This
effect may be indirectly mediated through downregulation
of TNF-𝛼 [59], which activates MMP-9 [60]. In addition
to their anti-inflammatory effects, estrogens also appear to
be neuroprotective in several CNS disorders such as MS,
Alzheimer’s disease, Parkinson’s disease, and spinal cord
injury [61–64], as evidenced by improvement of clinical
disease and reduction of neuropathology following estrogen
treatment. Reported neuroprotective effects are inhibition
of neuronal loss by decreasing glutamate-induced apoptosis
[65] and protection of oligodendrocytes from cytotoxicity
[66] as well as stimulation of oligodendrocyte function [67]
and upregulation of TGF-𝛽 production from astrocytes [68].

Furthermore, pregnancy, postpartum period, and
menopause as well as other physiological conditions have
been demonstrated to affect the clinical course of a variety of
autoimmune disorders. These clinical observations suggest
the importance of sex hormones in immune modulation.
Several studies have documented that, during pregnancy,
both clinical symptoms and relapse rate of MS are decreased,
whereas the postpartum period is associated with a higher
risk for exacerbation of the disease [69, 70]. This suggests
a role for the hormones fluctuating at this time, such as,
cortisol, progesterone, and estrogen, in the regulation of MS
activity [71]. It may be clear that pregnancy induces changes
in the maternal immune system in order to protect the
foetus. The increase of estrogen, progesterone, and cortisol,
during pregnancy is associated with increased production of
Th2 cytokines and decreased production of Th1 cytokines.
Hence, the improvement of MS symptoms during pregnancy
may be linked to a shift from the prevailing Th1 response
to a Th2 response, while postpartum worsening may be
associated with the return to the Th1 environment [72]. The
improvement of symptoms occurs predominantly during
the third trimester of pregnancy when circulating estrogen
and progesterone levels peak, while the postpartum period is
characterized by an abrupt drop in estrogen levels. It needs to
be noted that, consistent with these findings, hyperestrogenic
states are associated with disease flareup of systemic lupus
erythematosus (SLE) in which Th2-mediated humoral
response is an important pathogenic factor [73].

Sex differences have also been observed in EAE. Female
mice are more susceptible to EAE than males, albeit that
a genetic background may also influence the effects of sex
hormones on the immune system [74]. Interestingly, the
minimal effective estrogen dose that inhibits EAE varies
greatly between mouse strains [75] suggesting that estrogen
receptor sensitivity may influence MS risk. In addition, it
has been reported that ER𝛼 ligand treatment can ameliorate
EAE by decreasing pro-inflammatory cytokines, such as
TNF-𝛼 and IFN-𝛾, while enhancing the secretion of the
anti-inflammatory cytokine IL-5. Furthermore, reduced CNS
white matter inflammation, protection against axonal loss,
and demyelination in EAE were documented [76].

In summary, the numerous immunomodulatory and
neuroprotective effects of estrogens can attribute to their
protection in several neurodegenerative and autoimmune
diseases. Next to estrogens, other hormones released through
the HPG axis exert immunoregulatory effects. Briefly, high
levels of prolactin have been described in MS patients [77],
resulting in increased production of IFN-𝛾 and IL-2 by Th1
cells and autoantibody production through activation of Th2
cells [78]. In addition, testosterone inhibits both innate and
adaptive immunity. It has been reported that testosterone
can enhance production of IL-5 and IL-10 and decrease IFN-
𝛾 production by T cells in vitro thereby promoting a Th2
response [79]. Treatment with androgen significantly delayed
onset and progression of EAE [80–82]. The protective effects
of androgens were accompanied with decreased production
of Th1 cytokines [82] and increased production of anti-
inflammatory IL-10 [80] as well as inhibition of T cell
infiltration into the spinal cord [83]. The protective effects of
androgens were further confirmed by the observation that, in
human male MS patients, low testosterone levels but higher
estradiol levels are associated with a higher degree of brain
tissue damage [84]. On the other hand, progesterone exerts
anti-inflammatory effects by inhibitingNF-𝜅Band enhancing
IL-4 production [85, 86]. In EAE, progesterone treatment
results in a decreased production of inflammatory IL-2 and
IL-17 and an increased production of IL-10 resulting in
attenuated disease severity [87]. Furthermore, progesterone
enhanced axonal density and reduced axonal damage in EAE
[88].

3.3. Neuronal Pathways

3.3.1. Regional Regulation by Innervations. Regional regula-
tion of the immune system through the autonomic nervous
system ismediated by innervations of primary and secondary
lymphoid organs. Furthermore, T cells, B cells, and DC
are located adjacent to nerve terminals. Depending on the
pathological conditions, innervation of lymphoid organs can
change. For example, the number of innervations in lym-
phoid organs increases under psychosocial stress in primates,
whereas it decreases following viral infection [89].

(1) Sympathetic Nervous System. The catecholamines,
adrenalin and noradrenalin, are released from sympathetic
nerve terminals upon stimulation. Stress situations, such
as a physical threat, excitement, a loud noise, or a bright
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light, are the major physiological triggers of the release of
catecholamines. These stimuli are processed by the CNS
through release of ACTH. Subsequently, ACTH stimulates
the synthesis of adrenalin and noradrenalin both directly as
well as indirectly via cortisol production.Through the release
of catecholamines in lymphoid organs, the sympathetic
nervous system (SNS) has been demonstrated to exert a
direct role in immunomodulation. Whereas most studies
have demonstrated that activation of the SNS inhibits
the immune system, some studies show opposite effects
including induction of chemokines [90]. This possible
paradigm can be explained by various actions of adrenalin
and noradrenalin through ligation of different receptors.
Indeed, the stimulation of 𝛼-adrenoreceptors (𝛼1AR) is
predominantly associated with immunostimulatory effects
on immune cells, for example, IL-1𝛽 secretion by human
monocytes and macrophages [91], which attributes to
many chronic inflammatory disease states [92]. In contrast,
stimulation of 𝛽-adrenoreceptors has suppressive actions.
Stimulation of 𝛽2-adrenergic receptors (𝛽2AR) on DC and
macrophages upregulates cyclic AMP (cAMP), activates
protein kinase A, and inhibits the transcription factor
NF-𝜅B, thereby affecting cytokine production. For example,
production of pro-inflammatory cytokines, such as TNF-𝛼,
IL-1, IL-6, and IL-12, is downregulated, while production of
the anti-inflammatory cytokine IL-10 is upregulated [93, 94].
These events result in the suppression of Th1 responses.
In addition, adrenalin and noradrenalin influence other
innate immune cells, such as NK cells, by reducing NK cell
activity directly as well as indirectly through the inhibition
of IL-12 and IFN-𝛾. Moreover, adrenalin and noradrenalin
suppress the migration, phagocytosis, and degranulation of
neutrophils [95].

Several studies have indicated the involvement of cate-
cholamines in the pathogenesis of MS, as demonstrated by
increased 𝛽-adrenergic receptor density on peripheral blood
mononuclear cells (PBMC) from RR-MS patients [96] and
discrepant noradrenalin and adrenalin levels in the PBMC
from MS patients [97]. In addition, experimental studies in
EAE have shown that selective depletion of noradrenalin
levels in the CNS resulted in exacerbated clinical scores.
Selective increase of CNS noradrenalin levels reduced astro-
cyte activation in the molecular layer of the cerebellum
without affecting splenic Th1 or Th17 immune responses,
thereby possibly providing benefit in EAE without affecting
peripheral immunity.

Dopamine, another catecholaminergic neurotransmitter,
also has important functions in the peripheral nervous
system, as indicated by its release from peripheral nerve
endings innervating lymphoid organs aswell as from immune
cells. Dopamine receptors are classified into two subgroups,
dopamine-1 (D1)-like receptors (D1R and D5R) and D2-like
receptors (D2R, D3R and D4R) [98]. In general, D1- and D2-
like receptors are coupled to stimulation and inhibition of
intracellular cAMP production, respectively [99]. In doing
so, D1-like receptor-mediated increase of intracellular cAMP
impairs the function of cytotoxic T lymphocytes (CTL)
and regulatory T cells (Treg) [100, 101]. In contrast, it was
reported that stimulation of D1-like receptors is involved

in the polarization of näıve CD4+ T cells towards Th17
cells [102]. D2-like receptor-mediated modulation of T cell
function is demonstrated by IL-10-dependent induction of
Treg [103], secretion of TNF-𝛼 from T cells indicative of a
Th1 effector phenotype [103], and the differentiation of näıve
CD8+ T cells into CTL [103] as well as the modulation of the
homing of T cells [104].

Similar to noradrenalin, dopamine levels are decreased
in autoimmunity [105], suggestive of a protective role in
the regulation of MS. Indeed, administration of a D2-like
receptor agonist attenuates both the acute and the late phase
of EAE [106], while administration of D2-like receptor antag-
onists worsened EAE pathology [102]. On the other hand,
administration of D1-like receptor antagonists ameliorated
EAE, which was associated with reduced IL-17 and increased
IFN-𝛾 levels. This finding was supported by previous results
suggesting that dopamine signaling via D1-like receptors
aggravatesTh17-mediated diseases, such asMS, by promoting
the IL-6/Th17 axis in conjunction with the suppression of
Treg. Altogether, it is likely that D1-like receptors expressed
onT cells are involved in the interface between autoimmunity
and health. Indeed, decreased levels of D5R mRNA and
protein have been found in PBMC from MS patients as
compared to controls [107]. Noteworthy, dopamine reduced
MMP-9mRNA in controls and in IFN-𝛽-treatedMS patients,
but not in untreated MS patients [107].

(2) Parasympathetic Nervous System. Acetylcholine (ACh) is
the primary neurotransmitter of the parasympathetic ner-
vous system (PNS). The PNS modulates immune responses
through the efferent and afferent fibers of the vagus nerve.
Twomechanisms demonstrating the inhibitory activity of the
PNS on innate immune cells have been described [108].

First, direct stimulation of paraganglia cells by inflam-
matory cytokines, such as IL-1, results in signaling through
afferent fibers. This leads to activation of parasympathetic
brainstem regions to release ACh from efferent vagus nerves,
thereby controlling inflammation through negative feedback.
Subsequent binding of ACh to nicotinic receptors blocks the
NF-𝜅B signaling pathway. For example, stimulation of the
𝛼7-nAChR on macrophages, lymphocytes, and neutrophils
inhibits NF-𝜅B transcriptional activity and the produc-
tion of inflammatory cytokines [109]. In addition, 𝛼4𝛽2-
nAChR activation modulates endocytosis and phagocyto-
sis by macrophages [110]. Alternatively, ACh binds to the
muscarinic ACh receptors (mAChaR). The M3 mAChR is
expressed on T cells and has a role in the regulation of adap-
tive immune responses. Upon T cell receptor (TCR) stimu-
lation, T cells release ACh, which stimulates M3 mAChR in
an autocrine manner, thereby potentiating T cell activation
and favoring differentiation towards a Th1 phenotype [111].
Hence, it can be summarized that the immunosuppressive or
immunostimulatory consequences of ACh are dependent on
the receptor type involved.

The second mechanism is indirect. When the periph-
eral cytokine-mediated inflammatory reaction stimulates the
afferent sensory vagal route, a reflex response through the
HPA axis that releases ACTH and GC is activated, which in
turn reduces the production of pro-inflammatory cytokines.



Clinical and Developmental Immunology 7

A major region of cholinergic input, which plays an
important role in learning and memory function, consists
in the basal forebrain in the hippocampus [112]. Since the
hippocampus is severely affected in MS patients as afore-
mentioned [39], a selective imbalance in the hippocampal
cholinergic neurotransmission exists in MS patients [113].
Accordingly, reduced synthesis of ACh is observed, possibly
contributing to memory complaints as experienced by a
significant proportion of MS patients [114].

3.3.2. Local Regulation by Neurotransmitters. Local regula-
tion of the immune system is mediated by neurotransmitters
which are synthesized in neurons and act on the postsynaptic
neurons and other organs. Neurotransmitters are released
from both the CNS and the peripheral nervous system as well
as from immune cells including T cells, B cells, macrophages,
DC, and granulocytes [4] thereby underscoring their possible
contribution to the modulation of immune responses.

(1) Glutamate.Glutamate is a primary excitatory neurotrans-
mitter in the CNS and has direct impact on neuronal activity
[115]. Glutamate binds to ionotropic glutamate receptors
(iGluR) or to metabotropic glutamate receptors (mGluR).
Some G protein-coupledmGluR were recently reported to be
involved in immune responses. For example, the expression
of mGlu1R is induced after T cell activation and its ligation
enhances the secretion of IL-2, IL-6, IL-10, TNF-𝛼, and IFN-
𝛾. In contrast, stimulation of mGlu5R, which is constitutively
expressed on T cells, inhibits T cell proliferation through sup-
pression of IL-6 production [116]. Hence, mGlu1R signaling
counteracts the mGlu5R-mediated inhibitory effect on T cell
proliferation.

Recent studies have identified glutamate as an important
determinant of neurodegenerative damage in the course of
MS [117]. It was shown that MS patients have increased
glutamate levels in the brain [118] and in the CSF [119]. Fur-
thermore, expression of iGluR and transporters is disturbed
in MS [120] and in EAE [121]. Loss of glutamate transporters
in cortical lesions correlates with microglial activation and
synaptic damage [122]. In addition, overactivation of iGluR
causes MS-like lesions [123], whereas iGluR antagonists
exert beneficial effects in MS [124] and EAE by limiting
oligodendrocyte and neuronal damage [125]. This increase
in glutaminergic transmission observed in MS patients leads
to excitotoxicity and neurodegeneration, resulting in cogni-
tive impairments during the early phase of MS pathogen-
esis before the appearance of severe motor impairments.
However, these actions may also be a consequence of a
simultaneous dysfunction of GABA transmission, causing
an imbalance between synaptic excitation and inhibition.
Indeed, increased glutamate-mediated transmission and loss
of GABAergic inputs were observed in EAE [126].

Besides, mGluR are also likely to contribute to glutamate
transmission changes in MS and EAE. Indeed, it has been
reported that mGlu1R expression in the cerebellum of MS
patients and of mice with EAE is lower in comparison with
controls, while the expression of mGlu5R is increased [127].
However, active MS lesions are characterized by increased

expression of both receptors as well as the expression of
mGlu2, -3, -4, and -8 [120]. Paradoxically, experimental stud-
ies in EAE have shown protective effects of these receptors.
Indeed, treatment with a mGlu1R-selective enhancer resulted
in ameliorated motor performance in EAE [127]. In addition,
mGlu4R-deficient mice were more prone to develop EAE,
which was associated with higher Th1/Th17 responses and
increased production of inflammatory cytokines, such as
IL-6, IL-12, and IL-23 [127]. Moreover, administration of a
mGlu4R-selective enhancer increased resistance to EAE by
inducing Treg, supporting the immunosuppressive effect of
mGlu4R-mediated signaling [128].

(2) Tachykinins. Substance P and neurokinin A are closely
related neurotransmitters and are both encoded by the same
Tac1 gene. Substance P is produced by the CNS and the
peripheral nervous system, as well as by immune cells
including monocytes, DC, and lymphocytes. It is a pro-
inflammatory modulator of the immune response acting in
either autocrine or paracrine fashion via the neurokinin
(NK)-1 receptor, which is the primary receptor for sub-
stance P. Via activation of NF-𝜅B in monocytes, substance P
mediates increased production of pro-inflammatory media-
tors, such as IL-1𝛽, IL-6, TNF-𝛼, macrophage inflammatory
protein (MIP)-1𝛽, and IFN-𝛾 [129]. In doing so, T cell
proliferation as well as the generation of Th1 and Th17 cells
is induced [130]. It was also shown that substance P regulates
antigen presentation of DC [131], increases NK cell activity,
and induces the release of CXCL8 and CCL2 from leukocytes
as well as of vasoactive mediators, such as serotonin and
histamine, from mast cells [132]. In MS plaques, substance P
production has been demonstrated in activated macrophages
[133] and astrocytes [134]. Although this may indicate a
possible role for substance P inMS, no difference in substance
P levels in the CSF from MS patients could be demonstrated
as compared to healthy controls [135]. Whereas substance
P directly acts on endothelial cells, resulting in increased
vascular permeability [134] and subsequent enhanced per-
meability of the BBB, no interference with the induction of
EAE in NK-1−/− mice could be observed [136]. Conversely,
less severe clinical symptoms and reduced inflammation in
the receptor-deficientmicewere apparentwhichmay indicate
that substance P contributes to the maintenance of CNS
inflammation during the chronic phase of EAE [136].

The NK-2 receptor exhibits the highest affinity for neu-
rokinin A. Neurokinin A is known to control various vital
responses in humans, such as airway contraction, vasodi-
latation, and vascular permeability [137]. The function of
neurokinin A in the immune system is less well defined
compared with the role of substance P. One study reported
that neurokinin A stimulation induced mRNA expression
of type I interferons, upregulated expression of MHC class
II molecules, and antigen presentation by DC, thereby
enhancing DC function [138] and subsequently inducing
CD4+ and CD8+ T cell responses. Although this suggests
involvement of NK-2 receptor-mediated signaling in chronic
inflammation by excessive Th1-mediated immunity [138], no
data describing a contributing factor of neurokinin A to the
development or sustainment of MS have been reported.
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(3) Serotonin. The neurotransmitter serotonin, also known
as 5-hydroxytryptamine (5-HT), is produced by the CNS
and regulates cognitive and endocrine functions, stress reac-
tivity, circadian rhythm, and sleep [139]. Outside the CNS,
serotonin is present in platelets, lymphocytes, monocytes,
macrophages, mast cells, pulmonary neuroendocrine cells,
enterochromaffin cells of the gut, and in some other cell
types. Currently, at least 14 genetically, pharmacologically,
and functionally distinct serotonin receptors have been
identified. Among these, the serotonin-1A and serotonin-2A
subtypes are of particular interest since they play a crucial
role in the regulation of serotonergic neurotransmission
and emotional and behavioral processes as well as the
pathophysiology of various neuropsychiatric disorders [140].
These receptors are also expressed on immune cells and
receptor activation appears to be both immunostimulatory
and suppressive [141]. For example, through binding of the
serotonin-1A receptor on monocytes, serotonin abrogates
the monocyte-mediated suppression of NK cell functions
[142], such as NK cell cytotoxicity, IFN-𝛾 production by NK
cells, NK cell proliferation, and expression of the CD16/56
NK cell antigen [142]. In contrast, serotonin decreases
cAMP levels via the serotonin-1A receptor, which leads
to stimulation of T cell proliferation [143], while ligation
of the serotonin-2A receptor resulted in reduced lympho-
cyte proliferation [144] as well as decreased numbers of
CTL [145].

Initial evidence for involvement of serotonin in autoim-
munity comes from the experimental autoimmune neuritis
(EAN) model. It was shown that blockade of the sero-
tonin transporter by a selective serotonin reuptake inhibitor,
thereby increasing the extracellular levels of serotonin, sup-
pressed EAN [146]. Similarly, blockade of serotonin receptors
also suppressed the development of EAE [147]. Furthermore,
mice deficient for the serotonin transporter showed a milder
disease course of EAE as compared to wild-type controls
[148]. This was possibly mediated by a serotonin-dependent
reduction of the inflammatory infiltrate in the CNS and
by a reduction of the neuroantigen-specific production of
IFN-𝛾 by splenocytes. In addition, during the early para-
lytic stages of EAE, damage to the bulbospinal serotonergic
neurons occurs, whereas neurologic recovery is associated
with reestablishment of spinal serotonergic transmission.
Damage to the bulbospinal serotonergic fibers also occurs
in MS patients. This is reflected by reduced levels of 5-
hydroxyindoleacetic acid (5-HIAA), a metabolite of sero-
tonin, in the CSF. Therefore, it is conceivable that degener-
ation of bulbospinal serotonin axons contributes to various
neurologic manifestations of MS including autonomic and
sensory symptoms [149].

(4) Histamine. Histamine is produced by histaminergic neu-
rons located in the hypothalamus or released by mast cells,
basophils, platelets, and enterochromaffin-like cells. Its major
effects are related to sleeping, locomotor activity, exploratory
behavior, food intake, awakening, and aggressive behavior
[150]. Histamine can either inhibit or stimulate inflammatory
reactions, depending on the type of receptor stimulated [151].

Upon histamine 1 receptor (H1R) ligation, histamine
induces an increment of the secretion of the pro-
inflammatory cytokines IL-1𝛽, IL-6, and IL-8 and the
chemokine CCL5 by peripheral macrophages [152]. Similarly,
stimulation of H4R expressed on hematopoietic and
immunocompetent cells involved in inflammatory responses
also results in increased secretion of pro-inflammatory
cytokines [153]. In addition, in vitro experiments indicated
that histamine promotes Th1 responses through H1R and
downregulates both Th1 and Th2 responses through H2R
[154]. H1R and H4R ligation on CD4+ T cells induces
chemotaxis in vitro, whereas H1R and H2R modulate
cytokine production. Another study indicated that binding
of histamine to the H2R expressed on monocytes reduced
the release of the pro-inflammatory cytokines IL-12 and
TNF-𝛼, while production of the anti-inflammatory cytokine
IL-10 and Th2-like activity was increased [155]. Interestingly,
expression of different histamine receptors is differentially
regulated, depending on the stage of differentiation and
of activation of target cells thereby potentially explaining
variation in experimental data from diverse studies [156].

Already in 1983, it was noted that histamine may be
involved in MS, as evidenced by 60% higher histamine levels
observed in MS patients as compared to healthy controls
[157]. Since then, several experimental studies confirmed the
role of histamine in MS. Upregulated expression of H1R
was shown in MS lesions [158], whereas epidemiological
studies demonstrated a protective effect of H1R antagonists
capable to cross the BBB in MS [159]. Further evidence
was provided by a study showing the requirement for Hrh1
gene expression for susceptibility to EAE [160]. Indeed, H1R-
deficient mice exhibit a significant delay in the onset of EAE
and a reduction in the severity of clinical signs compared
with wild-type mice [160]. In addition to H1R, H2R also
seems to partially regulate encephalitogenic Th1 responses
and EAE susceptibility. Indeed, H2R−/− mice develop less
severe disease than wild-type mice during the acute and early
phase [161], possibly mediated by H2R-dependent abrogation
of pro-inflammatory cytokine production.

Although H1R and H2R have a clear pro-inflammatory
role and disease-promoting effect, H1R and H2R activation
may also play an important role in limiting autoimmune
responses [162]. It was shown that histamine ligation of
H1R and H2R inhibits the proliferation of murine CD3+
T cells directed against myelin-derived antigens in vitro,
as well as their adhesiveness to the inflamed endothelium
[163]. Accordingly, treatment with an H2R agonist reduces
the clinical signs in EAE [164]. Furthermore, H4R−/− mice
develop more severe EAE, accompanied by increased neu-
roinflammatory signs and increased BBB permeability, with
a higher proportion of infiltrating Th17 cells than Treg, as
compared to wild-type mice [165].

(5) Gamma-Aminobutyric Acid. 𝛾-Aminobutyric acid
(GABA) is the most prominent inhibitory neurotransmitter
in the CNS [166]. In the immune system, GABA receptors are
expressed on lymphocytes [167] and peripheral macrophages
[168]. GABA has similar anti-inflammatory actions as GC.
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Indeed, GABA negatively modulates the levels of pro-
inflammatory cytokines produced by macrophages [169] as
well as cell proliferation [170] and migration [171].

Loss of GABAergic innervations is a physiologic hallmark
of MS and EAE. Additionally, it was shown that GABA
is decreased in the serum and CSF of MS patients and
in EAE [172, 173]. Reduced GABA-related gene transcripts
and density of inhibitory interneuron processes in motor
cortex samples from MS patients were also reported [174]
as well as irreversible alterations of GABA transmission in
the striatum of EAE mice. Increasing GABA concentration
in the CNS delayed EAE onset and reduced severity of
symptoms following EAE induction. Inmice with established
EAE, it reversed paralysis and decreased the number of
relapses [175]. Moreover, the chronic persistence of pro-
inflammatory cytokines in EAE induced profound alterations
in the electrophysiological network properties in cultured
cortical neurons, which were reverted by GABA adminis-
tration [176]. This was further supported by demonstrating
inhibition of GABA transmission in mouse brain slices
upon administration of CSF from MS patients with MRI-
confirmed active brain lesions. The investigators concluded
that focal inflammation in MS perturbs the cytokine milieu
within the CSF, resulting in diffuse GABAergic alteration in
neurons [177].

4. Regulation of the Neuroendocrine
System by the Immune System and
Dysfunction in MS

Given the bidirectional interactions of the neuroendocrine
and the immune systems, the immune system also regu-
lates the neuroendocrine system through the secretion of
cytokines. Cytokines are immune mediators produced in
response to antigens and toxins or after stimulation by
other cytokines. Cytokines and their receptors are expressed
in the neuroendocrine system and exert their effects both
centrally and peripherally [178, 179]. Inflammation in the
CNS contributes to the onset and progress of neurodegener-
ative diseases, includingMS [180]. Indeed, pro-inflammatory
cytokines, such as IL-1, IL-6, and TNF-𝛼 play an important
role during the pathophysiological processes involved in the
disease pathogenesis and course of MS. Through several
mechanisms, including humoral, neural, and cellular path-
ways, cytokines are able to reach the brain. On the one
hand, they can enter the brain through the areas with a
poorly developed BBB or via active transport across the
BBB. On the other hand, these cytokines can be expressed
and released from resident cells in the CNS, including glial
cells, neurons, endothelial cells, or invading immune cells
[181]. Moreover, cytokines that are produced in the periphery
activate primary afferent nerves, such as the vagus nerves. In
doing so, cytokines stimulate neurons to modulate the social
interaction [182], the stressful HPA axis responses [183], and
the activities of the autonomic nervous system [184].

Excessive pro-inflammatory cytokine production is phys-
iologically joined to a simultaneous increment of the synthe-

sis of anti-inflammatory cytokines, inhibitory neurotransmit-
ters, and GC.The resulting equilibrium is called homeostasis.
However, prolonged increased HPA axis activity results in
a prompt loss of the anti-inflammatory mediators with an
increase of pro-inflammatory mediators [185], thereby ulti-
mately contributing to a state of disease. An altered cytokine
balance has been observed in MS patients, as evidenced by
increased pro-inflammatory cytokine levels in the periphery
and in the CNS. Indeed, elevated mRNA and protein levels of
IL-1𝛽, IL-6, and TNF-𝛼 have been reported in CNS lesions,
CSF, and peripheral blood monocytes of MS patients [186,
187] as well as in EAE [188]. Additionally, activated astrocytes
and microglial cells express a large number of cytokines and
chemokines which subsequently contribute to neuroinflam-
mation in MS. These brain-derived cytokines also act to
protect from or enhance neuronal cell death. In doing so,
cytokine-mediated neuronal cell death is considered to be
important in several neurodegenerative diseases, such as MS.

4.1. Cytokine-Mediated Regulation of Hormones. Whereas
interferons were the first cytokines shown to exert neu-
roendocrine effects as demonstrated by increased steroid
production upon interferon treatment, it is now clear that
several cytokines have functions in the neuroendocrine sys-
tem. Indeed, IL-1, IL-2, IL-6, IL-10, IFN-𝛽, IFN-𝛾, leukaemia
inhibitory factor (LIF), TNF-𝛼, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) can stimulate the HPA
axis to release GC. In particular, these cytokines have been
reported to elevate plasma GC levels in both humans and
animal models [189–193] via stimulation of CRH and ACTH
production in hypothalamic and pituitary tissues, respec-
tively. In addition, melatonin release by the pineal gland is
stimulated by IFN-𝛾, granulocyte colony-stimulating factor
(G-CSF), andGM-CSF [194, 195]. In contrast to theHPA axis,
inflammatory cytokines have negative effects on the HPG
axis, resulting in reduced gonadal functions [196].

4.2. Cytokine-Mediated Regulation of Neurotransmitters.
Activation of innate immune responses, by pathogens as
well as by damage-associated molecules, leads to the release
of inflammatory cytokines that signal the CNS via the
subdiaphragmatic vagus nerve, thereby resulting in changes
that are associated with sickness behavior, such as fever
[197]. Pro-inflammatory cytokines, such as IL-1, IL-2, IL-6,
IFN-𝛽, IFN-𝛾, LIF, and TNF-𝛼, stimulate the SNS to release
noradrenalin. Furthermore, IL-1𝛽 enhances the inhibitory
effects of GABA. Given the inhibitory effect of these
neurotransmitters on inflammation, this negative feedback
loop will stop inflammation. In addition, IL-1𝛽 administered
systemically or in the brain resulted in subsequent increased
extracellular levels of serotonin in the anterior hypothalamus
and in the hippocampus [198].

Several cytokines are also involved in the regulation of
sleep and wakefulness [199], including IL-1𝛽, IL-1 receptor
antagonist, IL-2, IL-2 receptor, IL-4, IL-6, IL-9, IL-10, IL-
13, IL-18, TGF-𝛽, IFN-𝛼, IFN-𝛾, TNF-𝛼, and TNF-𝛼 recep-
tors p55 and p75 [200–203]. Pro-inflammatory cytokines
are more likely to induce sleep, whereas anti-inflammatory
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cytokines show antisomnogenic effects or do not influence
sleep-wake regulation.

Chemokines, a large group of proteins from the cytokine
family that are pivotal in leukocyte migration, were found
to play a role in signaling functions in the CNS [204].
Macrophages, glial cells, and also neurons are able to
constitutively express chemokines and multiple chemokine
receptors, which may function as neuromodulators in the
homeostatic brain. In neurons, chemokines are located in
central nerve endings in small clear and dense core vesicles
[205], where they colocalize with traditional neurotransmit-
ters and are released following membrane depolarization
[206]. CXCL12 and its receptor CXCR4 [207, 208] as well
as CCL2 and its receptor CCR2 are constitutively expressed
by mesencephalic dopaminergic neurons [209]. Therefore,
both chemokines can modulate the electrical activity of
dopaminergic neurons. Furthermore, CCL2 can be upregu-
lated by cells surrounding the sites of brain injury and can
attract progenitor cells for healing purposes [210].

The aforementioned hormones, neurotransmitters, and
cytokineswith their immunomodulatory activity are summa-
rized in Table 1. A comprehensive overview of the interaction
between the neuroendocrine system and the immune system
is depicted in Figure 1.

5. Intervening with the Neuroendocrine
Immune System for Treatment of MS

To date, none of the available therapies for MS are curative.
Their primary aims are inducing remission after relapse,
reducing the number of new relapses, and preventing or
slowing the progression of disability. During acute relapse,
patients may be hospitalized and symptomatically treated
with high doses of corticosteroids. Additionally, a number
of disease-modifying treatments have been approved, albeit
mostly only for RR-MS. These include IFN-𝛽, glatiramer
acetate, natalizumab and fingolimod. Whereas their relative
success in RR-MS patients supports the role of the immune
system in demyelination and axonal loss, these drugs are not
sufficient to stop accumulation of disability. Management of
these deficits is therefore also important [211]. Here, we will
focus on treatment modalities that primarily intervene at the
level of the neuroendocrine system.

5.1. Management of Relapse Using Glucocorticoids. Since
the 1950s, GC are widely used for the suppression of
inflammation in chronic inflammatory diseases such as
asthma, RA, MS, and other autoimmune diseases. Despite
the introduction of disease-modifying therapies, GC therapy
remains the first-line treatment upon relapse for induc-
ing remission in MS sooner and with fewer deficits for
the patient. Methylprednisolone is among the most com-
monly used corticosteroids in MS and reduces the number
of gadolinium-enhancing lesions during MS exacerbations
[212]. This effect is mediated by dampening the inflam-
matory cascade, inhibiting the activation of T cells, and
decreasing migration of immune cells into the CNS [213].
The optimal dose, frequency and duration of treatment, and

route of administration of methylprednisolone are constantly
being investigated for improvement of patient care. One
study reported that high doses of methylprednisolone were
more effective for treatment of relapses, whereas low doses
of methylprednisolone correlated with disease reactivation
[214]. Studies suggest that GC administered orally are equally
effective at treating MS symptoms as intravenous treatment
[215, 216]. To date, little is known about the effect of long-
term treatment on disease progression in patients with MS
[217]. Nevertheless,ThenBergh et al. have reported reduction
of inflammatory disease activity and T2 lesion volume in RR-
MS by a singlemonthlymethylprednisolone infusionwithout
clinically relevant side effects [218]. Furthermore, different
combination treatment regimens are under evaluation in
order to achieve synergism and improve MS management
[219–221].

Although the majority of patients with MS benefits from
GC treatment, a small set of patients fails to adequately
respond, suggesting differences in sensitivity to GC, a phe-
nomenon recognized as GC resistance [222]. Given the
important role of endogenous GC in controlling the immune
system, GC resistance may be associated with the disease
course or the susceptibility of MS. However, conflicting
results are reported by studies investigating in vitro GC
resistance in MS. Whereas some have demonstrated reduced
sensitivity of patients’ white blood cells to GC treatment in
order to suppress lymphocyte function [223], others have
found no differences [224] as compared to healthy controls.
Observations of reduced GC sensitivity have been made
in other autoimmune diseases or inflammatory diseases,
including RA and asthma [225, 226], and several factors
have been identified contributing to GC resistance, such as
reduced GR expression [227]. Although the mechanisms for
GC resistance in MS remain to be further explored, these
resultsmay suggest implications for treatment efficacy, at least
in a subgroup of MS patients.

Because of the aforementioned effects of circadian
rhythms on the symptoms of autoimmune and inflammatory
diseases, there is a growing interest in the efficacy of timed
treatment or so-called chronotherapy.Although the impact of
chronotherapeutics on treatment success remains to be fully
elucidated, beneficial effects of chronotherapeutics have been
identified in the management of MS and RA [228, 229] as
evidenced by significantly improved clinical recovery upon
nighttime treatment with GC [230].

5.2. Lifestyle Interventions and Physical Rehabilitation. Differ-
ent lifestyle interventions can influence the neuroendocrine-
immune system, including physical exercise. Physical exer-
cise triggers a systematic series of neuroendocrine and
immune events directed at accommodating the human body
to the increase in physiological demands. Furthermore,
the neuroendocrine-immune system can adapt to chronic
overload or exercise training. Because of the vital role of the
neuroendocrine system at maintaining homeostatic control
during exercise, one exercise bout results in an increase of
hormonal levels, including growth hormone, testosterone,
cortisol, ACTH, adrenalin, noradrenalin, and estradiol [243].
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Table 1: Neuroendocrine factors and their immunomodulatory effects.

Substance Receptor Effect on immune response Reference

Acetylcholine
Muscarinic acetylcholine receptor
(mAChR) Differentiating towards a Th1 phenotype [111]

Nicotinic acetylcholine receptor (nAChR) Inhibits IL-1𝛽, IL-6, IL-18, and TNF-𝛼 production [109]

ACTH ACTH receptor Inhibits IFN-𝛾 production and Ig production and
blocks macrophage activation by IFN-𝛾 [231]

Adrenalin/
noradrenalin

𝛼-Adrenergic receptors Upregulation of cAMP; inhibits IL-1, IL-6, IL-12, and
TNF-𝛼 production; enhances IL-10 production [91]

𝛽-Adrenergic receptors Downregulation of cAMP [93, 94]

Cortisol Glucocorticoid receptor (GR)

Inhibits IFN-𝛾, IL-2, IL-6, and TNF-𝛼
Enhances IL-4 and TGF-𝛽 production
Enhances immune cell expression of IL-1, IL-2, IL-6,
and IFN-𝛾 receptors

[10, 232, 233]

CRH Corticotropin-releasing hormone
receptor

Activates macrophages
Inhibits IL-1 and IL-6 production [231]

Dopamine D1-like receptors Upregulation of cAMP [99]
D2-like receptors Downregulation of cAMP [99]

GABA GABA receptors
Reduces the proliferative response of activated CD8+ T
cells
Reduces IL-6 release

[169, 170]

Glutamate mGluR1 Enhances IL-2, IL-6, IL-10, TNF-𝛼, and IFN-𝛾
production [116]

mGluR5 Inhibits IL-6 production [116]
Growth
hormone Growth hormone receptor Activates macrophages and enhances H2O2 production [234]

Gonadotropin-
releasing
hormone

Gonadotropin-releasing hormone
receptor

Increases IL2R expression, T- and B-cell proliferation,
and serum Ig [235, 236]

Histamine
Histamine 1 receptor, histamine 4
receptor

Enhances IL-1𝛽, IL-6, IL-8, and RANTES production
Induce chemotaxis of CD4+ T cells [152–154]

Histamine 2 receptor Inhibits IL-12, IFN-𝛾 and TNF-𝛼, and enhances IL-10
production [155]

Luteinizing
hormone

Luteinizing
hormone/choriogonadotropin receptor Enhances IL-2 stimulated T-cell proliferation [237]

Melatonin Melatonin receptor Enhances IL-1, IL-2, IL-6, and IFN-𝛾 production [238, 239]

Neurokinin A Neurokinin 2 receptor (NK2-receptor) Enhances mRNA expression of IFN-𝛼 and IFN-𝛽
Enhances DC function [138]

Estrogen Estrogen receptor Enhances T-cell proliferation and activity IFN-𝛾 gene
promotor [240]

Progesterone Progesterone receptor Enhances IL-4 production and CD30 expression [85, 86]

Prolactin Prolactin receptor Enhances T cell proliferation, IFN-𝛾, IL-2 receptor
expression, and macrophage function [42, 43]

Serotonin
Serotonin-1a receptor

Enhances NK cell cytotoxicity
Downregulation of cAMP
Stimulation of T-cell proliferation

[142, 143]

Serotonin-2a receptor Inhibits lymphocyte proliferation [144]

Substance P Neurokinin 1 receptor (NK1-receptor)

Enhances IL-1𝛽, IL-6, TNF-𝛼, MIP-1𝛽, and IFN-𝛾
production
Enhances T-cell proliferation
Enhances NK cell cytotoxicity

[129, 130, 132]

Vasopressin Vasopressin receptor Enhances IFN-𝛾 production [241]

VIP Vasoactive intestinal peptide receptor Inhibits T-cell proliferation and IL-12
Enhances IL-5 and cAMP production [242]



12 Clinical and Developmental Immunology

On the other hand, the immune system is also important in
maintaining homeostatic control during and after physical
exercise. Changes that occur following an exercise bout
include altered counts of peripheral blood leukocytes [244] as
demonstrated by increased concentrations of neutrophils and
lymphocytes [245] as well as increased serum concentrations
of pro- and anti-inflammatory cytokines and acute phase
proteins [246]. Furthermore, long-term exercise training has
been shown to reduce basal cytokine levels and low-grade
inflammation [247]. However, this could not be reproduced
by others who reported no effect of long-term exercise on
basal cytokine levels, albeit that a decrease of C-reactive
protein (CRP) levels was observed [248].

Aforementioned observations triggered the interest to
use physical exercise in MS patients in order to manage
disease-related impairments. It was shown that physical exer-
cise beneficially affects quality of life, symptoms including
depression, fatigue, and possibly cognitive functions in MS
patients [249]. Since it is becoming increasingly clear that
these neuropsychiatric symptoms of MS are, at least in part,
mediated by biological processes such as inflammation, neu-
roendocrine dysfunction, or regional brain damage, physical
exercise may successfully affect the underlying biology and
slow down the disease process [250]. Besides, several studies
evaluated the effect of physical exercise on disease progres-
sion in MS patients using the expanded disability status
scale (EDSS) score. In general, these studies did not found
any change after either endurance training [251–253], resis-
tance training [254–256], or combined training interventions
[257, 258]. In contrast, one study reported an improvement
in EDSS score upon a combined training program [259].
Alternatively, a protective effect of cardiorespiratory fitness
on brain function and structure in MS patients has been
demonstrated using MRI [260, 261].

To date, the mechanisms linking physical exercise and
disease status in MS patients remain, however, to be eluci-
dated [262]. It is possible that physical exercise counteracts
imbalances between pro-inflammatory Th1 cytokines and
anti-inflammatory Th2 cytokines [263]. A few studies have
addressed the effect of physical exercise on cytokine levels
in MS patients, although conflicting results were reported.
On the one hand, IL-4, IL-10, CRP, and IFN-𝛾 levels were
reduced in MS patients after 8 weeks of biweekly resistance
training [264]. Similarly, it was shown that IL-17 and IFN-𝛾
levels were reduced inMS patients after 8 weeks of combined
endurance and resistance training [259]. In contrast, elevated
IFN-𝛾 and TNF-𝛼 levels in MS patients after 8 weeks of
endurance training were demonstrated, whereas no changes
were observed in healthy controls [265]. These effects of
physical training on the immune system may indirectly be
mediated via modulation of the neuroendocrine system.
Indeed, White et al. showed increased 𝛽1 and 𝛽2 adrenergic
receptor expression in MS patients upon a moderate exercise
bout as compared to controls [266].

5.3. Clinical Testing of New Treatment Modalities

5.3.1. Estrogen. Several studies in EAE have shown the
inhibitory effects of estrogens on disease pathogenesis [191,

267, 268]. Indeed, estrogen treatment before induction of
EAE delays onset of disease and reduces disease activity.
Protective mechanisms of estrogen treatment in EAE involve
anti-inflammatory processes including decreased production
of pro-inflammatory cytokines, such as TNF-𝛼, and induc-
tion of Treg. Furthermore, decreased expression of MMP-9
by T cells was reported, resulting in reduced infiltration of
T cells into the CNS [58]. Based on these findings, several
clinical trials investigating estrogen administration inMS are
underway [269, 270].

In a first pilot crossover trial, 6 female RR-MS patients
were treated with 8mg estriol per day during 6 months,
followed by a 6-month posttreatment period and a
subsequent retreatment period during 4 months. The
investigators reported reduced number and volume of
gadolinium-enhancing lesions upon estriol treatment
[269]. A multicenter randomized double-blind placebo-
controlled phase II trial was recently started at the University
of California in order to investigate the therapeutic
effect of oral estriol treatment in combination with
glatiramer acetate treatment in female RR-MS patients
(http://www.clinicaltrials.gov/ct2/show/NCT00451204). The
European POPART’MUS study, an ongoing double-blind
placebo-controlled phase III trial, designed for women
with MS in their postpartum period, aims at the reduction
of postpartum relapses by administration of estradiol and
progestin. High doses of progestin in combination with
endometrial-protective doses of estradiol will be given
immediately after delivery and continuously during the
first three months postpartum [270]. Although the first
results of therapeutic use of estrogen in MS are encouraging,
more research is warranted in order to understand the
estrogen-mediated underlying mechanisms. The outcomes
of the currently ongoing MS trials may help to clarify
therapeutic use of estrogen in combination with first-line
immunomodulatory drugs.

For completeness, also the effect of testosterone was
evaluated in a first pilot study including 10 men with RR-
MS. A daily treatment with 10 g of a 100mg testosterone-
containing gel for 12 months resulted in improvement of
cognitive performance and delayed progression of brain
atrophy.These findings suggest that testosterone treatment is
safe and well-tolerated and may have neuroprotective effects
in men with RR-MS [271].

5.3.2. Neurotransmitters

(1)Catecholamines.By increasing noradrenalin levels through
administration of tri- and tetracyclic antidepressants and
L-dopa, the course of MS was ameliorated [272]. Indeed,
after 1-2 months of treatment approximately 75% of patients
experienced substantial improvements in sensory, motor,
and autonomic symptoms. Moreover, these patients regained
functions that were lost for several years. Interestingly, also
treatment with IFN-𝛽, which is a widely used and approved
immunomodulatory therapy for MS, was shown to substan-
tially elevate the catecholamine levels in PBMCofMSpatients

http://www.clinicaltrials.gov/ct2/show/NCT00451204
http://www.clinicaltrials.gov/ct2/show/NCT00451204
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[273].This suggests that the improvement inMS during IFN-
𝛽 treatment is, at least in part, mediated by increased levels of
catecholamines.

(2) Acetylcholine. Based on experimental evidence that ACh
promotes production of anti-inflammatory cytokines [109], it
was demonstrated that a cholinesterase inhibitor can alleviate
neuroinflammatory responses in the EAE model thereby
reducing clinical and pathologic severity of EAE [274].
In several phase I/II clinical studies using cholinesterase
inhibitor therapy, beneficial effects on cognitive deficits in
MS were observed [275, 276]. Indeed, following treatment
with rivastigmine, a widely used ACh esterase inhibitor for
the treatment of Alzheimer’s disease, Shaygannejad et al.
reported a modest, but significant improvement of memory
in MS patients with Wechsler Memory Scales (WMS) con-
firmed mild verbal memory impairment [276]. Neverthe-
less, similar improvements were observed in placebo-treated
MS patients. Additionally, treatment of MS patients with
donepezil, an alternative ACh esterase inhibitor, showed
significant improvement in memory performance on the
selective reminding test, a test of verbal learning andmemory,
as compared to placebo-treated MS patients. Moreover,
cognitive improvement was reported by clinicians in twice as
many donepezil versus placebo-treated MS patients. In addi-
tion, the donepezil-treated MS patients themselves reported
more often memory improvement than placebo-treated MS
patients [275].

(3) Glutamate. Since extracellular accumulation of gluta-
mate contributes to excitotoxic injury of neurons and glial
cells, inhibition of glutamate might be beneficial in MS
patients. For this, Killestein et al. examined the effect of one
year riluzole treatment in MS patients [277]. Riluzole is a
neuroprotective agent that inhibits the release of glutamate
from nerve terminals. Moreover, it modulates iGluR and
inhibits excitotoxic injury in several experimental models of
neurodegenerative disease [278]. The investigators reported
a reduction in the rate of brain and cervical cord atrophy as
well as in the development of T1 hypointense lesions on MRI
in primary progressive MS.

(4) Serotonin. Experimental evidence from animal studies
has shown an immunosuppressive role of serotonin in
autoimmunity. Sijens et al. evaluated the impact of elevated
extracellular levels of serotonin mediated by fluoxetine, a
selective serotonin reuptake inhibitor used as antidepressant,
in MS patients [279]. By using diffusion tensor imaging
(DTI) and 1H magnetic resonance spectroscopy (MRS), the
investigators reported partial normalization in diffusion and
metabolic properties of brain tissue upon 2-week treatment
with fluoxetine, thereby providing evidence for a possible
neuroprotective effect of fluoxetine in MS.

(5) Histamine. Ligation of the histamine receptor, H1R,
on immune cells induces secretion of pro-inflammatory
cytokines, such as IL-1𝛽, IL-6, IL-8, and the chemokine
CCL5 [152].Therefore, treatmentwithH1R antagonists would
reduce the secretion of pro-inflammatory cytokines. Indeed,

treatment of MS patients with hydroxyzine, a well-known
H1R antagonist, stabilized or improved the neurological
status of 75% of treatedMS patients, as assessed by Kurtzkes’s
EDSS [280].

5.3.3. Cytokines. In 1993, interferon (IFN)-𝛽 was the first
product to be approved by the FDA as disease-modifying
treatment for MS. To date, these include three different
commercial formulations which have been demonstrated to
reduce the inflammatory process in MS by decreasing the
secretion of pro-inflammatory cytokines, increasing anti-
inflammatory cytokine levels, and reducing the number of
immune cells migrating towards the CNS. In doing so, IFN-
𝛽 decreases relapse rate, increases time between relapses,
and decreases the severity of relapses, while decreasing the
amount of accumulated lesions seen on MRI.

In addition, targeting cytokine production has been
intensively investigated as a potential treatment strategy
in autoimmunity [281]. One of the greatest successes in
immunology is the treatment of RA with anti-TNF-𝛼
therapy. Unfortunately, TNF neutralization in MS patients
exacerbated disease symptoms [282]. Similarly, treatment
with tocilizumab and anakinra, humanized monoclonal
antibodies competing for receptor binding with IL-6 and IL-
1𝛽, respectively, has been approved in RA.However, the safety
and efficacy of anakinra, tocilizumab, or administration of
other IL-1- and IL-6-targeting compounds have not yet been
evaluated in MS patients [283]. Furthermore, also IL-12
and IL-23, interleukins sharing p40 as a common subunit,
have a clear role in the pathogenesis of MS because of
their respective function in Th1 and Th17 differentiation.
Ustekinumab, amonoclonal antibody that neutralizes the p40
subunit, is effective in patients with psoriasis or psoriatic
arthritis, and in patients with Crohn’s disease. Unfortunately,
ustekinumab failed to show any efficacy in RR-MS patients
[284]. In summary, although targeting cytokines as therapy
for MS is a feasible approach, careful consideration must be
given to the highly pleiotrophic character of the cytokine as
well as the stage of the disease process being targeted.

6. Conclusion

Although knowledge of the immunopathogenesis as well as
genetic predisposition of MS has greatly increased over the
last decades, potential environmental triggers such as stress
and pregnancy may not be underestimated in order to better
understand how these factors modulate disease. In this per-
spective, it is clear that the neuroendocrine-immune system
has an important role in the pathogenesis of autoimmune
diseases, includingMS.Herewe have provided an overviewof
the complex system of crosstalk between the neuroendocrine
and immune system, whereby they share an extensive range
of commonmessenger molecules and receptors and whereby
they can monitor each other’s activities. Discrepancies at any
level can lead to changes in susceptibility to and to severity
of several autoimmune and inflammatory diseases. These
principles are now being used to test novel therapies for MS
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based on addressing and correcting the dysregulation of these
neural and neuroendocrine pathways.

However, the key question that remains unanswered is
whether these alterations in neuroendocrine pathways and
receptors are involved in the pathogenesis of MS as a predis-
posing factor or whether they are a result of the inflammatory
status of the disease. Based on preliminary evidence that
hormonal changes may appear before the symptomatic phase
of the disease [285, 286], it is tempting to speculate that a pro-
inflammatory hormone favors the rupture of tolerance, which
is a key feature of autoimmunity.

In conclusion, dysfunction of the neuroendocrine-
immune system in patients with autoimmune diseases,
including MS, seems to be important in the pathogenesis
of these diseases. Increasing the knowledge of the
neuroendocrine-immune system in MS can help to elucidate
the underlying mechanisms of the inflammatory responses
in MS and mutatis mutandis in other autoimmune diseases.
Furthermore, intensive research on the modulatory function
of the neuroendocrine-immune system may provide new
therapeutic approaches for the treatment of MS in the near
future.
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Sandoval, and E. Murillo-Rodŕıguez, “Biochemical modulation
of the sleep-wake cycle: endogenous sleep-inducing factors,”
Journal of Neuroscience Research, vol. 89, no. 8, pp. 1143–1149,
2011.

[200] H. Chen, I. Cheng, Y. Pan et al., “Cognitive-behavioral therapy
for sleep disturbance decreases inflammatory cytokines and
oxidative stress in hemodialysis patients,” Kidney International,
vol. 80, no. 4, pp. 415–422, 2011.

[201] K. Nas, R. Cevik, S. Batum, A. J. Sarac, S. Acar, and S.
Kalkanli, “Immunologic and psychosocial status in chronic
fatigue syndrome,” BratislavaMedical Journal, vol. 112, no. 4, pp.
208–212, 2011.

[202] H. Ormstad, H. C. D. Aass, K. Amthor, N. Lund-Sørensen, and
L. Sandvik, “Serum cytokine and glucose levels as predictors of
poststroke fatigue in acute ischemic stroke patients,” Journal of
Neurology, vol. 258, no. 4, pp. 670–676, 2011.

[203] H. Himmerich, P. A. Beitinger, S. Fulda et al., “Plasma levels
of tumor necrosis factor 𝛼 and soluble tumor necrosis factor
receptors in patients with narcolepsy,” Archives of Internal
Medicine, vol. 166, no. 16, pp. 1739–1743, 2006.

[204] W. Rostène, P. Kitabgi, and S. M. Parsadaniantz, “Chemokines:
a new class of neuromodulator?” Nature Reviews Neuroscience,
vol. 8, no. 11, pp. 895–904, 2007.

[205] J. van Steenwinckel, A. R. Goazigo, B. Pommier et al., “CCL2
released from neuronal synaptic vesicles in the spinal cord is a
major mediator of local inflammation and pain after peripheral



Clinical and Developmental Immunology 21

nerve injury,” Journal of Neuroscience, vol. 31, no. 15, pp. 5865–
5875, 2011.

[206] M. Dansereau, R. Gosselin, M. Pohl et al., “Spinal CCL2
pronociceptive action is no longer effective in CCR2 receptor
antagonist-treated rats,” Journal of Neurochemistry, vol. 106, no.
2, pp. 757–769, 2008.

[207] G. Banisadr, D. Skrzydelski, P. Kitabgi,W. Rostène, and S.Mélik
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