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In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel
electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music,
noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each
channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band
signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant
scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions
are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with
noise and music classes, the proposed method has sensitivity values of 75.831% (p , 0.001) and 99.31% (p , 0.001), respectively. The
method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important
finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.
1. Introduction: Acoustic noise is increasing day-by-day due to the
excessive use of machinery. The perception of noise by a human
being is an important research area [1]. There is an increasing
concern for noise reduction with additional cost [2]. Noise-induced
stress in children has been studied [3]. Stress is related to brain activ-
ity and hence researchers study the stress using electroencephalogram
(EEG) under different listening conditions such as noise and music
[4]. Music is liked by a person and may reduce stress, whereas
noise is not liked and may induce stress. Multichannel EEG provides
the spatial and the temporal information about the brain electrical
activity and it is widely used for detection of Alzheimer disease
[5], epileptic seizures [6, 7], sleep apnea [8] and different types of
emotions [9, 10]. The EEG signal consists of the clinical patterns
such as d, u, a and b waves of different frequency ranges. The
frequency ranges of these patterns (d, u, a and b waves) are
[0.1–3.9 Hz], [4–7.9 Hz], [8–13.9 Hz] and [14–30 Hz], respectively
[11]. The d wave is present during dreamless sleep and it has the
highest amplitude. The u wave is associated with learning and
memory and it is present in dreaming sleep. Similarly, during
drowsy, relaxation and meditative stages, the a waves appear in
the EEG signal. The b wave is the high-frequency component of
the EEG signal and it is present during alertness, anxiety, fear and
stress [12]. The study on the effect of sound listening on human
EEG is limited, unlike noise. Different sounds have different
effects on the human brain as they have a different range of noise fre-
quency and power. Quantifying the changes in the EEG signal during
different listening conditions is a challenging problem.
In the literature, various methods have been proposed like

time–frequency analysis [13, 14], wavelet analysis [15], detrained
fluctuation analysis (DFA) [16], multifractal DFA [17] for quantify-
ing the physiological changes in the EEG signal during external
stimuli such as the noise, the listening of music and the induced
emotion [18]. Lin et al. [19] have used independent component
analysis to differentiate the gamma band synchrony between
Healthcare Technology Letters, 2018, Vol. 5, Iss. 3, pp. 101–106
doi: 10.1049/htl.2017.0016
musicians and non-musicians. Listening to music can change the
brain chemistry [20] and decrease the pain and anxiety in critically
ill patients by activating pleasure-seeking areas of the brain [21].
The state-of-art methods for the analysis of EEG signal using
music as a stimulus are shown in Table 1. The emotional excitation
of the EEG of different regions of the brain varies depending on
the types of music stimuli [22]. It has also been found that
the pink noise exposure can induce a stable sleep stage [4]. The
left frontal activity of the brain increases with positive emotion,
whereas the corresponding right frontal activity increases with
negative emotion in response to music [23]. The theta activation
in frontal-midline, T3, and Pz electrodes can vary with music-
induced emotions [24]. However, the effect of active noise
control (ANC) on brain electrical activity is entirely a new study
and paves the way for the future research.

ANC works on the principle of superposition where a secondary
noise of the same amplitude and opposite phase of the primary
noise at the appropriate spatial location is generated by the control-
ler to cancel the noise in the acoustic medium [28]. The ANC is
very effective in controlling the low-frequency noise generated
by the air-conditioning system, rotating fan, ventilators, incubators
and so on, which is more annoying to the ear than the broadband
noise of the same dB like speech and music. The beeping sound
of various medical equipment in the intensive care unit of hospitals
gives irritating experience to the patients. Continuous exposure
to tonal/beeping noise can adversely affect the auditory system,
increase stress, and induce physiological problems [1]. In this
Letter, we have investigated the effect of ANC mechanism on
EEG signal. The discrete wavelet transform (DWT) decomposes
the EEG signal into a vector of wavelet coefficients at different sub-
bands [29]. The wavelet coefficients of these scales capture the in-
formation about the d, u, a and b waves. It is expected that the
effect of ANC on the brain electrical activity can be effectively
studied using the features of EEG signal at different wavelet
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Table 1 State-of-art of methods for analysis of EEG signal with music as stimulus

Authors Signal processing techniques used Classes of EEG signals with music as stimulus

Hadjidimitriou and
Hadjileontiadis [14]

time–frequency analysis and KNN classifier like versus dislike to music stimulus

Hadjidimitriou and
Hadjileontiadis [13]

time–frequency analysis, and familiarity ratings like versus dislike to music stimulus

Sturm et al. [25] spatio-temporal regression filters and SVD naturalistic music stimulus
Bhoria et al. [26] bandpass filtering and power spectral density-based

analysis of EEG
no music, music with 60 dB sound level, music with 75 dB

sound level and music with 100 dB sound level
Georgescu et al. [27] statistical analysis of alpha, beta, delta and theta bands monotonous auditory stimulation
scales. In this work, the multiscale eigenspace analysis of multi-
channel EEG signal is performed. The singular value features
from the significant sub-band matrices of multichannel EEG
signal are extracted and these features are given to extreme learning
machine (ELM) model for classification of silent, noise, music,
ANC with noise and ANC with noise and music. The effect of
ANC on the features of multichannel EEG is verified through
the statistical analysis and the performance of ELM classifier.
The remainder of this letter is arranged as follows. In Section 2,
the method for investigating the effect of ANC to brain electrical
activity is described. The results and the discussion are presented
in Section 3 and in Section 4, the conclusion of this letter is drawn.

2. Proposed method: The block diagram of the proposed method
for investigating the effect of ANC mechanism on EEG signal is
shown in Fig. 1. It consists of six stages, such as multichannel
EEG database creation, preprocessing and multiscale analysis
of multichannel EEG, sub-band matrix formulation, eigenanalysis
of the sub-band matrices at significant scales using singular
value decomposition (SVD), eigenvalue feature selection and
classification. The details of each block are explained in the
following subsections.

2.1. EEG database creation: The recording of EEG signal is
done using a 24/32 channel EEG recorder (RMS Maximus
Electroencephalograph). The measurement electrodes (FZ, CZ,
PZ, FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5 and T6) and reference electrodes (A1 and A2) are placed at
the appropriate position of the individual subject with conductive
Fig. 1 Block diagram for analysis and classification of multichannel EEG
signals
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paste. The sampling rate of each channel EEG signal is 256 Hz.
Multichannel EEG signals are obtained from three subjects (mean
age 33, three males). All the subjects have undergone audiometry
test and reported normal hearing. Here, we have recorded the
EEG in five different conditions. First, the EEG is recorded for
7 min when the subject is in the relaxed but awake state with
eyes closed. At that time, there is low background sound. Then,
the subject is made to listen to music of his interest for 7 min and
the EEG signal is recorded. The subject is also exposed to a
recorded broadband noise for 7 min and the corresponding EEG
signal is recorded. Then, the subject wore an ANC headphone
(BOSE ANC headphone) and exposed to the same broadband
noise for another 7 min and the resulting multichannel EEG data
is collected. After that, the same condition is continued with
music played through the BOSE ANC headphone for another
7 min.

2.2. Preprocessing: The preprocessing includes the filtering of
noises from the multichannel EEG signal and the segmentation of
multichannel EEG data into frames. The filtering is done during
the recording of multichannel EEG data using RMS Maximus
Electroencephalograph. The low-pass filter (cut-off frequency as
75 Hz) is considered to eliminate the high-frequency artefacts
from each channel EEG signal [11]. Similarly, to filter out the
baseline wandering noise, a high-pass filter (cut-off frequency as
0.5 Hz) has been used [11]. After filtering, each channel EEG is
divided into frames of 512 samples. We have considered 3000
number of multichannel EEG frames with each of size 512× 19
for feature extraction. The rows and columns indicate samples
and channels of the EEG, respectively. The frame-based
processing of multichannel EEG data is considered to capture
both spatial and temporal correlations.

2.3. Multiscale eigenanalysis of multichannel EEG: The multiscale
analysis using DWT has the advantage to capture the clinical
patterns of the EEG signal in different scales [29]. The wavelet
coefficients of multichannel EEG at approximation and detail
scales are evaluated using the inner product of each channel EEG
data with scaling function and wavelet function [30]. The scaling
and the wavelet functions are computed based on the dilation
and the translation of the mother wavelet. In this Letter, we have
used ‘db4’ mother wavelet. The scaling and the wavelet functions
are given by fl,k (n) = 2−l/2f(2−ln− k) and cl,k (n) = 2−l/2c
(2−ln− k), respectively. The wavelet coefficients for the pth
channel EEG frame in approximation and detail sub-bands
are evaluated as cAp

L(k) = kxp(n), fL,k (n)l and cDp
l (k) = kxp(n),

cl,k (n)l, respectively, where L is the decomposition level and
l = 1, 2, . . . , L. The wavelet coefficients can be evaluated based
on the filter bank realisation where the scaling functions and the
wavelet functions are termed as low-pass and high-pass filters,
respectively [31]. The signal reconstructed using only one
sub-band wavelet coefficients is called as the sub-band signal.
The approximation and the detail sub-band signals for the pth
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channel are evaluated as xpAL = kcAp
L(k), f̃L,k (n)l and xpDl =

kcDp
l (k), c̃l,k (n)l, respectively [31], where f̃L,k (n) and c̃l,k (n) are

the reconstruction filters for low-pass and high-pass sections,
respectively. The approximation and the detail sub-band matrices
are formulated using the sub-band signal of the pth channel and
these are given as

XAL = [x1AL, x
2
AL, . . . , x

p
AL] (1)

XDl = [x1Dl , x
2
Dl , . . . , x

p
Dl] (2)

In this work, the number of decomposition levels is chosen as five
for each EEG channel. Six sub-band matrices are formulated for
each multichannel EEG frame. Out of these sub-band matrices,
XD5, XD4, XD3, XD2 and XD1 are the detail sub-band matrices
and XA5 is the approximation sub-band matrix. The sub-band matri-
ces of multichannel EEG are selected based on the frequency
content. The EEG signal for Fp1 channel and the sub-band
signals are shown in Figs. 2a–g, respectively. The spectra of the
cA5, cD5, cD4, cD3, cD2 and cD1 sub-band signals are shown in
Figs. 2i–n, respectively. The frequency ranges of cA5, cD5, cD4,
cD3, cD2 and cD1 sub-band signals are given as [0–4 Hz],
[4–8 Hz], [8–16 Hz], [16–32 Hz], [32–64 Hz] and [64–128 Hz],
respectively [32]. The bandwidth of EEG signal in this work is
considered as [0.5–75 Hz]. It is evident that, the d-wave information
is captured using cA5 sub-band signal, whereas the cD5 sub-band
signal contains the u-wave information. Similarly, the a-wave
Fig. 2 Multiresolution analysis of EEG Signal using DWT
a EEG signal of Fp1 channel
b cA5 sub-band signal
c cD5 sub-band signal
d cD4 sub-band signal
e cD3 sub-band signal
f cD2 sub-band signal
g cD1 sub-band signal
h Spectrum of EEG signal
i Spectrum of cA5 sub-band signal
j Spectrum of cD5 sub-band signal
k Spectrum of cD4 sub-band signal
l Spectrum of cD3 sub-band signal
m Spectrum of cD2 sub-band signal
n Spectrum of cD1 sub-band signal
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and b-wave information is captured using the cD4 and cD3
sub-band signals, respectively. These four sub-band signals of
each channel EEG frame are considered for eigenanalysis.

The sub-band matrices XA5, XD5, XD4 and XD3 capture the infor-
mation of multichannel EEG signal. The eigenanalysis of these four
matrices are performed using SVD [33]. The SVD of the approxi-
mation and the detail sub-band matrices are given as

XAL = UALLALV
T
AL (3)

XDl = UDlLDlV
T
Dl , l = 1, 2, 3, 4, 5 (4)

where UAL and VAL are the left eigenmatrix and the right eigen-
matrix for approximation sub-band matrix. Similarly, the left eigen-
matrix and the right eigenmatrix for the lth detail sub-band matrix
are UDl and VDl , respectively [33]. sAL1, sAL2, . . . , sALp =
diag(LAL) and s1Dl , s2Dl , . . . , s pDl = diag(LDl) are the singular
value matrices for approximation sub-band matrix and the lth
detail sub-band matrix, respectively. In this Letter, the singular
values of XA5, XD5, XD4 and XD3 sub-band matrices are used as
features for classification.

2.4. Feature selection and classification: In this work, the first eight
singular values from each sub-band matrix of multichannel EEG are
used. The first eight singular value features of XA5 sub-band matrix
are termed as the delta-band features, as it captures the information
of d wave. Similarly, the first eight singular values of XD5, XD4 and
XD3 matrices are called as the theta-band, the alpha-band and
the beta-band features. The singular value features of XA5, XD5,
XD4 and XD3 sub-band matrices are combined to formulate a
32-dimensional (32D) feature vector. The 32D feature vector,
8D delta-band feature vector, 8D theta-band feature vector, 8D
alpha-band feature vector and 8D beta-band feature vector are
used as input to the ELM classifier [34]. The feature matrix
(Z [ Rn×m) used in this work consists of a n number of instances
or multichannel EEG frames and m number of features. The
ELM classifies the feature vector of multichannel EEG into silent,
noise, music, ANC with noise and ANC with music and noise
classes. The class labels for silent, noise, music, ANC with noise
and ANC with music with noise classes are assigned as y1
(00001), y2 (00010), y3 (00100), y4 (01000) and y5 (10000),
respectively.

The sensitivity (SE) of the ith class (i = 1, 2, 3, 4, 5) is
evaluated as

SEi =
aii∑5
j=1 aij

× 100 (5)

Similarly, the overall accuracy (OA) of the ELM classifier is given
as, OA = ∑5

i=1 SEi/5
( )

.
In this Letter, we have used the 5-fold cross-validation approach

for selecting the training and test EEG feature instances of the ELM
classifier. The ELM is a single-layer feedforward neural network in
which the input feature vector is mapped to the hidden layer space
or ELM feature space [34]. The weights between the hidden layer
and the output layer in ELM are evaluated by solving the least
square regularisation problem and the hidden neurons are randomly
assigned [35]. For multiclass classification using ELM, the output
layer has a q number of neurons. Here, we have considered the
number of output neurons as q = 5 for ELM. The activation func-
tions such as ‘sigmoid’, ‘sine’ and radial basis function (‘radbas’)
are used [35]. The performance of ELM classifier on EEG features
is compared using these activation functions. The sensitivity and the
overall accuracy measures are considered to quantify the perform-
ance of ELM classifier and these measures are evaluated from the
confusion matrix [36]. The confusion matrix for the five class
ELM classifiers is given in Table 2.
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3. Results and discussion: In this section, the statistical analysis
of the proposed singular value features of sub-band matrices
of multichannel EEG and the performance of ELM classifier are
shown. The statistical analysis is performed based on the
Table 2 Confusion matrix for the proposed five class classification task

Predicted

A y1 y2 y3 y4 y5
C y1 a11 a12 a13 a14 a15
T y2 a21 a22 a23 a24 a25
U y3 a31 a32 a33 a34 a35
A y4 a41 a42 a43 a44 a45
L y5 a51 a52 a53 a54 a55

Fig. 3 Intra-class variations of first singular value feature of
a XA5 sub-band matrix
b XD5 sub-band matrix
c XD4 sub-band matrix
d XD3 sub-band matrix
e XA6 sub-band matrix
f XD5 sub-band matrix
g XD4 sub-band matrix
h XD3 sub-band matrix (classes: 1 – silent, 2 -noise, 3-music, 4-ANC with noise,

Table 3 Sensitivity values of each class and OA of ELM classifier with ‘sine’, ‘r

Feature selection Activation function Silent Noise

delta band singular values Sine 67.71 76.95
Sigmoid 67.29 73.75
Radbas 68.86 76.56

theta band singular values Sine 67.57 75.47
Sigmoid 67.71 74.84
Radbas 69.14 74.84

alpha band singular values Sine 68.43 75.94
Sigmoid 67.29 74.84
Radbas 70.29 76.56

beta band singular values Sine 66.00 75.16
Sigmoid 66.43 73.75
Radbas 68.86 76.72

total features Sine 67.00 76.56
Sigmoid 66.71 72.66
Radbas 68.57 77.03

104
This is an open access article published by the IET under the
Creative Commons Attribution License (http://creativecommons.
org/licenses/by/3.0/)
evaluation of the mean and the standard deviation values of each
class. The within-class variations of the first and the second
singular value features of XA5, XD5, XD4, XD3 sub-band matrices
are depicted as boxplot in Figs. 3a–h, respectively. It is evident
that the mean values and the standard deviations of the singular
value features are different for different EEG classes. The mean
values of the first singular value feature of XA5 sub-band matrix
(delta-band features) for silent, noise, music, ANC with noise and
ANC with music with noise classes are 4.492, 5.400, 4.234,
3.859 and 3.601, respectively. The mean values of the singular
value features of XD4 sub-band matrix (Alpha-band features) are
7.299, 8.783, 6.476, 4.996 and 5.072 for silent, noise, music,
ANC with noise and ANC with noise with music classes. Similar
variations are also observed in the singular value features of other
sub-band matrices. The alpha-band singular value features show
higher differences in the mean value between EEG classes. In
silent (with ambient noise), noise and music conditions the
5- ANC with music and noise)

adbas’ and ‘sigmoid’ as activation functions

Music ANC with noise ANC with noise and music OA,%

68.41 76.17 98.61 77.57
60.63 64.33 97.64 72.72
68.57 74.33 99.31 77.52
67.3 73.83 98.89 76.61
58.57 62.50 97.92 72.30
67.14 76.50 99.17 77.35
69.21 75.50 98.75 77.56
61.27 63.50 98.06 72.99
69.52 77.67 99.44 78.69
66.19 74.33 99.03 76.14
60.63 62.83 97.78 72.28
67.62 77.00 99.44 77.92
66.19 74.33 99.03 76.62
61.43 63.17 97.92 72.37
67.14 75.83 99.31 77.57
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subject is able to hear the sound and the situations are unusual. Due
to this, the levels of frequency band features (d, u, a and b) remain
at a higher level. However, using the ANC headset the noise is
reduced by about 20 dB at the ears. This becomes an unusual
state of listening and hence may be the features remain always at
a lower value. Similarly, when the ANC headset plays a music,
the subject listen to the music only without a background noise
interference. Therefore, the concentration throughout the listening
duration remains intact. This is clearly visible from the standard
deviation of the features during ANC with noise and music which
is a minimum of all the listening conditions. The d band
information is uncorrelated with u, a and b bands of the EEG
signals which proves that the subjects have not gone to the
sleeping stage in any type of listening condition during
experiments. The statistical significance of the proposed singular
value features of the sub-band matrices of multichannel EEG
is performed using the analysis of variance (ANOVA) test. It is
evident that all the singular value features from each sub-band
matrices have p-value <0.001 and these features can be used for
classification of the EEG signal.
The sensitivity and the OA values of ELM classifier with three

activation functions for five different feature combinations are
shown in Table 3. It is evident that, for theta band, alpha band,
beta band singular value features and total features cases, the OA
values of ELM classifier with ‘radbas’ activation function are
higher than other activation functions. The ANC with noise with
music class has higher accuracy value as compared to other four
classes such as silent, noise, music and ANC with noise. The pro-
posed method has the advantage to capture the d-wave, u-wave,
a-wave and b-wave information of multichannel EEG data
matrix in different sub-band matrices. The singular value features
of these sub-band matrices are effective for classification of multi-
channel EEG signals. In addition to this the overall accuracy
between music and ANC with noise and music becomes 83.22%.
In this case, the classifier uses total features and ‘radbas’ activation
function. ANC is a technique by which the external noise is reduced
so that quieter environment can be created or enhances the clarity of
music while listening [28]. From the EEG analysis, it is found that
classification sensitivity is higher when the ANC system is applied
compared to the without ANC system. The application that is
suggested is to use ANC headsets while making music to listen
during music therapy so that the music can be better perceived by
the brain. However, the work proposed in this Letter has future ap-
plication in music therapy. In music therapy [37], certain specific
music is made to listen to the patients to cure diseases. However,
due to external background noise, the person listens to music
with lesser clarity. Therefore, the effect of music therapy would
be suboptimal when there is background noise. However, if we
use ANC to reduce background noise, the clarity of music is
enhanced and it will have better impact on human brain and health.
4. Conclusion: In this Letter, we have investigated the effect of
ANC mechanism on multichannel EEG signal. The proposed
investigation is performed based on the analysis of multichannel
EEG features and classification. The singular value features of the
sub-band matrices of multichannel EEG are evaluated. These
features are classified using the ELM classifier into silent, noise,
music, ANC with noise and ANC with noise with music classes.
The ANC with noise with music class has higher sensitivity
value than other classes. The important observation from this
study is that the ANC reduces the background noise and has a
different effect on brain and hence multichannel EEG signals are
classified with higher sensitivity. Since the ANC reduces external
noise, the music is clearly audible and brain accepts it in a
different way. Therefore, for music therapy ANC handsets can be
used. In future, the effect of ANC during music therapy can be
studied through EEG signal processing.
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