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Abstract: Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infec-
tious diseases affecting the members of Suidae family, which causes a severe impact on the global
economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic
outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this
disease represents. The negative aspects related with the application of mass stamping out policies,
including elevated costs and ethical issues, point out vaccination as the main control measure against
future outbreaks. Hence, it is imperative for the scientific community to continue with the active
investigations for more effective vaccines against CSFV. The current review pursues to gather all
the available information about the vaccines in use or under developing stages against CSFV. From
the perspective concerning the evolutionary viral process, this review also discusses the current
problematic in CSF-endemic countries.
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1. Introduction

Classical swine fever (CSF) is one of the most devasting viral infectious diseases
affecting the members of Suidae family [1,2]. The causative agent is a highly contagious,
small, enveloped, single-stranded RNA virus known as CSF virus (CSFV), which together
with other 11 viral species comprise the Pestivirus genus of the family Flaviviridae [3]. Since
CSF-outbreaks have negative social and economic implications, including serious restric-
tions on international trade of pigs and their products, high financial burden due to direct
or indirect loses in the pig industry, and the ethical aspects linked to the removal of herds in
affected farms, it is considered a notifiable pathogen by the World Organization for Animal
Health (OIE) [4]. Although some countries, such as the United States, Canada, Australia,
and New Zealand, have successfully eradicated the disease, CSF remains endemic in most
countries in Asia, Eastern Europe as well as South and Central America, and the Caribbean.
In the European Union, despite the status-of-freedom for CSF, there is a constant threat,
since the virus remains endemic in wild boar populations, causing sporadic outbreaks by
its re-introduction into domestic herds in some Member States with large swine popula-
tions [5,6]. Similarly, the reemergence of CSFV in several countries in America, including
Ecuador [7], Brazil [8], and Colombia [9], as well as in Asia, such as Japan [10] and South
Korea [11], sheds light about the serious concern that a potential global reemergence of this
disease represents.
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It is relevant to denote that in the past, most of the countries that achieved the free-status
of CSF used stamping-out policies, for instance, Australia in 1961 combined stamping-out
policies with movement restrictions [12]; Canada in 1963 reached the eradication of CSF
by combining vaccination/stamping-out policies; the United States used stamping-out
policy in 1976 after suspending the vaccination in 1962 [13]; and the EU, after 10 years of
pursuing the ambitious plan of eradication under the EU Council Directive 80/217/ECC,
reached the status of Free-CSF with its last Member State, Italy, in 1990 [14]. This policy
of massive number of animals subject to welfare slaughter may be impractical for the
existing pig farms in the current days because of the elevated cost and unethical aspects
behind this method [6]. The negative aspects about the application of mass stamping
out policies gain strength if it is also considered that several countries have also achieved
the status of CSF-free using vaccination as main control measure, including Uruguay in
1991 [15], Chile in 1998 [15], and Argentina in 2005, sustaining the fact that the massive
slaughtering of swine herds (mainly those neighboring unaffected herds) are policies
from the past and incoherent with the current status of the science, regulatory laws, and
rationality of the societies. Nonetheless, it is also worthy to clarify that the vaccination
process executed under poor control measures, without a proper vaccine dose or failing
to establish a sterilizing immunity in pig herds, could lead to disastrous consequences
like the emergence of escaping variants of CSFV strains [16] and reemergence of the
diseases [10], among others [17]. It is also important to highlight the role played by
the different diagnostic methods in the eradication process of CSF. In fact, the proper
detection of infected animals is a key factor for the accurate segregation of the animal
and the control of the disease [18,19]. In this regard, a successful eradication program
must include, among other factors, the creation of diagnostic laboratories with the capacity
to properly perform molecular diagnostic techniques as part of the routine methods of
diagnostic for the accurate and reliable detection of CSF [19]. Likewise, the inclusion of
detailed studies about the phylogenetic links between the circulating viral strains with
the subsequent characterization of the pathogenesis has been suggested as essential steps
to guarantee efficient intervention strategies for the control of CSFV [16,20]. However,
all these aspects require the intervention of governmental policies to ensure the proper
funding, organization and execution of the control programs, but a relevant starting point
is the use of an efficient vaccine.

Hence, it is imperative for the scientific community to continue with the active inves-
tigations for more effective vaccines against CSFV. There is an urgent need for effective
products (novel vaccines) that in conjunction with additional control measures can be
applied in a rational way to control or mitigate the losses caused by outbreaks of CSFV.
Therefore, the current review pursues to gather all the available information about the
vaccines in use or in developing stages against CSFV (see Table 1). We also focused on the
current problems (from an evolutionary viral process point of view) faced by CSF-endemic
countries. Thus, the main aim of the current review is to provide summarized information
that can be used by research groups to acquire a clear understanding about the status quo
regarding the vaccination against CSFV with emphasis in its repercussion on endemic
areas.

2. Live Attenuated Vaccines

Historically, massive vaccination using live attenuated vaccines have been imple-
mented in several countries as a mandatory control program for more than 50 years [6,21,22],
which together with additional biosafety measures has successfully conducted to the erad-
ication of CSF [21,22]. These vaccines contain as main immunogen strains of CSFV [23],
which have been attenuated by adaptive mutations obtained through serial passages in
either rabbits or cell culture. Among the most commonly used strains are the Lapinized
Philippines Coronel (LPC) strain, the C-Strain or so-called “Chinese hog cholera lap-
inized virus” (HCLV), Russian vaccine strain LK-VNIVViM, the low-temperature adapted
Japanese guinea-pig exaltation-negative (GPE-) strain, the French cell culture adapted
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Thiverval strain, and Mexican PAV strains [24–26]. This type of vaccine presents several
properties that facilitate its use, highlighting their low cost and its straightforward manu-
facturing. The CSFV live attenuated vaccines have shown to be safe to the target animals
including the two principal categories: young pigs and pregnant sows [22], which is the
main characteristic of these type of vaccine. In addition, several studies have shown the
capacity of the life attenuated vaccines to provide early protection against virulent strains
even at 1 day post-vaccination and the administration of a single dose. [27–30]. Another
claimed advantage of this type of vaccine relies in its capacity to elicit both cellular and hu-
moral immune responses, providing sterilizing protection in pigs. Results that support the
previous statement have proven, in fact, the production of CSF virus-specific gamma inter-
feron as early as 6 days post vaccination (dpv), which has been linked as a key component
of the cellular immune response [27,31–33]. The immunity provided by the life attenuated
vaccines can last from 10 months, if administered orally [34], to lifelong CSF immunity
with a single intramuscular inoculation [24,35]. In addition to horizontal protection, this
type of vaccine induces vertical protection in pregnant sows as early as 5 dpv, preventing
the viral transplacental transmission [21,22]. Nevertheless, for some years, there has been a
strong controversy about the advisability of using this type of vaccine. In the EU, where
prophylactic vaccination is banned, emergency vaccination can be implemented in cases of
severe outbreaks in domestic pigs [36]. However, current live attenuated vaccines against
CSF elicit the full spectrum of antibodies, and vaccinated pigs cannot be distinguished
from infected pigs by serological methods. Therefore, the use of live vaccine is followed by
severe trade restrictions [37]. The availability of safe and effective DIVA (Differentiating
Infected from Vaccinated Animals) vaccines and a corresponding laboratory diagnostic test
could solve this dilemma if DIVA vaccination becomes an internationally accepted method
for emergency vaccination without disruption of trade.

The abovementioned attenuated vaccines have been used for control and eradication
of CSF in several regions of the world [38]. These vaccines have common characteristics in
terms of genetic stability, protective immune response, but also have certain differences.
These differences are mainly based on their capacity to replicate into the vaccinated animals,
the timeframe of the viremia, the route, and capacity of excretion of the viral vaccine strains,
among others.

2.1. LOM Vaccine

The LOM strain was initially derived from a low virulence strain of Miyagi isolate from
Japan in 1956 and further attenuated through continuous propagation in bovine kidney cell
culture [39,40]. LOM strain was first tested as a vaccine candidate from 1968 to 1969 in the
field by the Institute of Veterinary Research (IVR) in South Korea [41]. Subsequently, this
live attenuated vaccine came to be widely used throughout the country to eradicate CSFV
since 1974. The fact that LOM vaccine has been used in South Korea during so many years,
indicated that this vaccine is presumably safe with a high immunogenic response in pigs
for many decades, however, sporadic outbreaks of CSF have occurred continuously [42–44].
In addition, it is important to denote that the LOM strain has been kept through several
passages in bovine/porcine kidney cells for many years, and despite this strain has been
considered genetically stable, there have been hints of a potential reversion to a virulent
strain [45]. Indeed, after the unintentional vaccination of the LOM vaccine strain in 2014,
CSFV reemerged in Jeju Island, South Korea, which had been a CSF-free region with a
non-vaccination policy for a decade [46]. Since the reemergence, endemic outbreaks of
CSFV have occurred in the island, causing enormous damage to pig farms [47,48].

2.2. C-Strain Lapinized Vaccine

The C-strain vaccine has been regarded as one of the most effective CSF vaccines used
worldwide for the control of CSF in domestic pigs. The origin of this strain is unclear [49]
but it has been reported that the C-strain was developed by the Chinese Institute of
Veterinary Drugs Control and the Harbin Veterinary Research Institute in 1956 [38,50].
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Several vaccines have been developed from C-strain of CSFV in different countries, such
as Pestiffa in France, SUVAC in Hungary, Cellpest in Poland, Suiferin C in former East
Germany, VADIMUN in USA, Duvaxin and Riems in Germany, Norden and Porcivac in
Mexico, PS Poreo in Brazil, Tipest in Slovakia, TVM-1 in Czech Republic, and Russian LK
in Russia [25,37].

Lapinized vaccines are widely acclaimed as highly safe and effective against the dis-
ease, which also can elicit protective immune response against all CSFV
genotypes [24,28,39,51,52]. However, a recent study warned about the lack of capac-
ity of the lapinized vaccines to protect against all genotypes reporting the emergence of
neutralization-escape mutants from the genotype 2 of CSFV strains in China [43] Although
the authors claimed a reduced neutralization efficiency for anti-C-strain polyclonal anti-
bodies and suggested the need to develop a new CSFV vaccine based on genotype 2 to
prevent this vaccine-escaping mutants [43], an additional report [53] pointed out the lack
of evidences to support the claims made by Yoo et al. [43]. Rios and Perez [53] evidenced
that Yoo et al. [43] failed to conduct specific experiments using monoclonal or polyclonal
antibodies, which would have provided the necessary information to claim that these
mutants were indeed neutralization escape mutants [53], among others aspects deeply
analyzed in [53]. Therefore, based on the current evidences, it is still widely considered
that the lapinized vaccines have broad protection against all CSFV-genotypes.

An essential feature of the C-strain vaccines is their capacity to induce protection even
a few days after immunization and prior to seroconversion [27]. This early protection has
been shown to rely upon the induction of cell-mediated immunity [31]. In fact, CSFV-
specific gamma interferon (IFNγ) secreting cells has been detected in pigs vaccinated with
C-strain, as early as 6 dpv [32,34,54]. On the other hand, the onset of protection following C-
strain vaccination relies on the administration method [22]. The establishment of complete
clinical protection against the virulent strains after oral immunization at 10 dpv has been
shown by a previous study [34]. A recent study also revealed that the vaccination using
C-strain stimulates the proliferation of T-helper cells (Th-cells) [55]. It is well known that
the subpopulation of Th2 cells secrete IL-4, IL-5, IL-6, IL-8, IL-10, and IL-13, which play
a relevant role in the direction of the immune response stimulating B cell proliferation,
inducing B cell differentiation that end up to antibody class switching, as well as improving
the neutralizing antibody production [55]. These authors also exposed that the vaccination
using C-strain vaccine was not linked to an increase in the expression levels for TNF-a or
IL-1 and suggested, by this mean, that the vaccination using this type of strains can not
cause any damage as a result of inflammatory response. Additionally, it was also revealed
that the IL-6 levels started to increase at 7 dpv, with a maximum level of expression at 16
dpv with a 1000-fold upregulation, and decreasing thereafter, which suggests an important
role in immune regulation after vaccination with the C-strain vaccine [55]. An additional
advantage of the C-strain vaccines is their slow and limited replication (to small viral
titers) in tissues, this aspect could favor the temporary escape from the recognition of
Toll-like receptors (TLRs) avoiding the early overexpression of IFNs and pro-inflammatory
cytokines protecting the tissues and organs indirectly [55].

Furthermore, the immunity conferred by C-strains has been widely accepted as long-
lasting, persisting for a lapse of time from 6 to 11 months or even lifelong [22,36,37,56].
Vaccination using C-strains has proved to confer full clinical protection (vaccinated animals
do not show clinical signs compatible with CSF) and sterile protection (lack of viremia,
absence of viral shedding, and not viral particles or genome detectable) [57]. Besides the
remarkable efficacy, C-strain vaccines have shown to be highly safe in both, target and
non-target species [51] with the major advantage that the transplacental infection by the
virulent viral strains is prevented [52]. Moreover, several studies have shown that the
lapinized vaccines or C-strain vaccine do not reverse their virulence, even after 30 passages
in pigs [23]. Hence, this type of vaccine is still one the most suitable vaccines to use
for control purposes mainly in underdeveloped countries since besides the high level of
efficacy and safety, the production of these vaccines is technologically easy to perform,
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cost-effective, and do not require adjuvants and they are suitable for oral vaccination of
wild boar populations [58].

2.3. GPE-Strain

The Japanese guinea-pig exaltation-negative strain (GPE-) vaccine was developed in
1969 by the Department of Exotic Diseases at the National Institute of Animal Health in
Tokyo, Japan. This attenuated vaccine strain was derived from the wild-type ALD strain
through multiple passages and biological cloning in swine testicle cells, bovine testicle
cells, and primary guinea pig kidney cells [54]. Pigs inoculated with the GPE- vaccine
did not develop such clinical symptoms as anorexia and pyrexia, the GPE- strain rarely
produced viremia in the inoculated animals and did not show evidences of shedding in
excretions [56]. Moreover, the vaccination based on GPE- strain has shown to be safe in
pregnant sows, newborns, and adult pigs. Likewise, this live attenuated vaccine confer
protective immunity against the development of the clinical signs compatible with CSF as
well the viral replication and dissemination [54]. Initial reports observed the protection
capacity of GPE- vaccine as early as 3 dpv [59]. The humoral response characterized by the
presence of neutralizing antibodies in vaccinated pigs has shown to start between 10 and
14 dpv lasting for at least 2 years without a reduction in antibody titers observed [54]. A
recent study warned the scientific community about the capacity of the viral strain GPE-
to revert to the virulence after 11 serial passages in pigs [60]. The reversion to a virulent
strain of GPE- was linked to the substitutions of three amino acids, T830A in the E2 protein
and V2475A and A2563V in the NS4B protein, [60]. Nonetheless it is important to denote
that despite the risk that this novel discovery arise the vaccines based on the Japanese GPE-
strain have been used in Asian and Pacific countries for decades [37].

2.4. Thiverval Strain

The Thiverval vaccine strain was derived from virulent CSFV strain Alfort through
more than 170 serial passages in cells at 29–30 ◦C. This vaccine was patented in France
approximately in 1971, had shown genetic stability and high degree of safety even when
was applied on immunosuppressed animals [61]. In addition, Thiverval vaccine strain did
not show a residual virulence or reversion to virulence factors [62]. During many decades
of collected evidences Thiverval vaccine has shown high level of efficacy, safety as well
as the capacity to prevent vertical transmission of CSFV when used in pregnant sows.
Likewise, the vaccination using Thiverval strain did not have effect on the development of
gestation or on newborn fetuses [61].

2.5. PAV-250

The PAV-250 strain was obtained from CSFV strain A attenuated by 250 sequential
passes in the PK15 cell line. This live attenuated vaccine has been successfully used in
the program for the control and eradication of CSF in Mexico since 1979 [63]. PAV-250
has been widely tested on pigs, conferring both clinical and antiviral protection, with an
immunological response started between 3 and 5 dpv. Like other live attenuated vaccines
PAV-250 has been shown to be safe in pregnant sows as well in other categories. In addition
to the antigenic capacity of PAV-250 to elicit a strong immunogenic response, this vaccine
has shown a high genetic stability, a lack of transmissibility, and the capacity to protect
against different virulent strains of CSFV [64,65]. PAV-250 vaccine has also shown no signs
of reversion to virulence and have the capacity to persists in the tonsils up to 28 dpv with a
short time of viremia up to 7 dpv, determined by RT-PCR technique [64].

In general, live attenuated vaccines against CSFV have several advantages, including
safety, broad range of protection but a major disadvantage of this type of vaccines is that
they are unable to discriminate between infected and vaccinated animals based on their
serological profiles. Therefore, this vaccination strategy do not exempt of imposing severe
trade restrictions to those countries that apply live attenuated vaccines to control CSF
under an emergency vaccination scenario [6]. Hence, in order to sort out this issue, several
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research groups around the world are in the unflagging search of novel vaccines candidates
against CSFV with promising results in this area.

3. Marker Vaccines

The concept of marker vaccines arises from the need to differentiate infected animals
from those vaccinated ones. Associated with the DIVA concept explained above, each
marker vaccine must be coupled with a discriminatory test, which must be able to selec-
tively determine which vaccinated herds are or not free to circulating field strains [25,66]. In
addition to the main purpose for which this type of vaccines emerged, they are considered
relevant tool in fundamental investigations to uncover the mechanisms involved in the
induction and control of immune response. In this regard, several investigations have been
recently conducted to elucidate the mechanisms involved in the induction and control of the
humoral and cellular immunity with the subsequent characterization of T and B epitopes
in conjunction with the genomic analysis and the emergence of the immunoinformatic as a
scientific discipline [16,32,67–71]. In general, the development and manufacturing of the
marker vaccines have covered, so far, four main strategies, including, subunit vaccines,
viral vectors (chimera vaccines and replicons), immunogenic CSFV peptides, and DNA
vaccines [39,72,73].

3.1. E2 Subunit Vaccine

A popularized option of marker vaccines emerged using the E2-protein, which is con-
sidered the most immunogenic viral protein of CSFV in non-replicating systems [24]. This
first generation of genetically engineered vaccines is recognized in the scientific literature
as E2-subunit vaccine anti CSFV [72,74–77]. Analyzing in detail, E2-protein is the major
virus structural glycoprotein, is considered an essential component of the viral envelope
and play a relevant role during the viral infection since it is responsible together with
E1-protein in the viral attachment to the cellular receptor [78]. E2 is highly immunogenic
and it is linked to the induction of neutralizing antibodies, which have a protective role
against the viral infection [73]. These elements pointed out that the glycoprotein E2 is an
ideal candidate for the development of different strategies of recombinant vaccines against
CSFV [75,77,79–84].

Based on the described characteristics of E2, the whole protein or regions from the
main epitopes of E2, have been used coupled with different expression systems to gener-
ate several commercial vaccine candidates. The first commercial subunit vaccines were
launched after several investigation using the system of baculovirus-expressed E2 protein
in insect cell line [72,74,75,77,83]. One of the major advantages claimed by baculovirus-
expression system was the capacity to resemble the natural glycosylation pattern of E2,
which is a critical factor for activation of the immune system [85]. Indeed, the E2-expressed
protein into baculovirus-system with a subsequent adjuvant using a water–oil–water emul-
sion, showed to be able to induce protection against CSFV virulent strains [86]. Thus, two
E2-subunit vaccines were authorized by the European Medicines Agency (EMEA). One
from Bayer, Leverkusen, Germany, Bayovac® CSF Marker (Bayer, Leverkusen, Germany),
and the other one from Intervet, Boxmeer, The Netherlands Porcilis® pesti (Intervet In-
ternational BV, Boxmeer, The Netherlands). However, further investigations performed
downstream, showed numerous issues with these licensed vaccines. In fact, after numer-
ous conducted vaccination-challenge experiments, the high level of safety was verified
regarding these types of vaccines [87–93], however, issues related with the late onset of
immunity and the protection conferred with subunit vaccines were pointed out, revealing
their limited capacity.

A major concern was raised after the revelation of the incapacity of these vaccines
to induce vertical protection and, the high risk of establishment of persistently infected
pigs prompted by the incapacity to prevent the transplacental transmission of CSFV in
pregnant sows [22,25,91,92,94,95]. As an additional problem, it was revealed that in order
to provide a sterilizing protection, to prevent the horizontal transmission of CSFV, this type
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of vaccines requires two vaccinations doses via interparental [22,86,96]. Despite the needed
two doses the licensed E2 marker vaccines induced a shorter immunity compared to the
live attenuated vaccine lasting approximately only from 6 to 13 months [88,90,91,97]. As
major disadvantage was also pointed out the fact that since these vaccines do not replicate
into the host, they were ineligible for oral administration making them unsuitable for
the oral vaccination programs, targeting the endemically infected wild boar populations
of relevant importance during emergency vaccination campaigns [2,97]. Based on the
mentioned inconvenience in the current days, only Porcilis®Pesti (Bayer, Leverkusen,
Germany) (containing the E2 glycoprotein of CSFV strain Alfort-T) is available in the
market [37].

Thus, to overcome these drawbacks, several research groups have focused on the
development of novel candidates to fulfil either general requirements including safety,
effective clinical protection, prevention of horizontal and vertical transmission or in par-
ticular requirements such as the induction of a specific antibody response [21,98]. In this
regard, a more recent vaccine candidate based on baculovirus-expressed E2-system has
shown an sterilizing protection after a single vaccination dose [83]. A subsequent study
from this same group of research got deep insight into the minimal requirements of the E2
antigen concentration to confer rapid and long-lasting clinical protection against CSFV as a
key element of this novel candidate called “KNB-E2” [94].

This same year, in 2018, a third E2-subunit vaccine candidate called “Tian Wen Jing,
TWJ-E2®” was officially licensed in China, with its further commercialization. This vaccine
also was implemented based on the well-known baculovirus-expressed E2 system with
a moderated modification using as antigen the E2 glycoprotein of a subgenotype 1.1 C-
strain [84]. The TWJ-E2 vaccine has shown to provide full protection against a challenge
using the highly virulent genotype 1.1 reference strain Shimen after two doses. Likewise,
vaccinated pigs with TWJ-E2 showed elevated titers of neutralizing antibodies against E2
and were fully protected against a lethal challenge by CSFV field strains from two different
genotypes 1 and 2 [84]. However, a subsequent study revealed that the stimulation of
the cellular immunity was still insufficient, which seems to be linked to the fact that the
onset for a solid immunity against CSFV depends upon two-doses of the vaccine, and it
is achieved at 14 dpv [81]. This issue denotes that this novel TWJ-E2 vaccine does not
have a clear advantage with the previous commercialized candidates. Moreover, it remains
unclear whether this new licensed TWJ-E2 vaccine has the capacity to provide sterilizing
immunity against field CSFV-strains in pregnant sows, therefore, its role of protection
against the vertical transmission of CSFV is still a concerning question.

Taking into consideration fundamental knowledge emerged from molecular immunol-
ogy, recent strategies have been focused on increasing the capacity of the subunit vaccines,
targeting the cellular immune response and boosting the humoral immune response at
the same time [37]. Thus, different research groups are looking for novel molecular adju-
vants, which can induce a broader cytokines response with the subsequent stimulation of
particular subpopulations involved in the activation of the cellular response [76,99,100].
Examples regarding this novel strategy seems to provide promissory results, for instance,
a new CSF subunit marker vaccine based on the combination of the E2 protein in fusion
with the extracellular domains of porcine CD154 has been recently developed [95,96].
The CD154 molecule is a member of glycoproteins that integrate the tumor necrosis fac-
tor (TNF) superfamily, and it has been defined as the most important co-stimulator of
activating antigen-presenting cells [101,102]. In addition, the CD154 receptor (CD40) be-
longs to the same TNF superfamily located at the surface of B cells, dendritic cells (DCs),
macrophages, Langerhans cells, epithelial cells, endothelial cells, and fibroblasts [103]. Dur-
ing the activation of the humoral immune response, CD154-CD40 signaling plays crucial
roles during the proliferation and differentiation of antigen-responding B cells, antibody
isotype switching as well as affinity maturation. All these processes are essential for the
generation of memory B cells and long-lived plasma cells [99,104]. Furthermore, CD40
signaling is critical for the expansion and differentiation of antigen-specific T cells and
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can influence T cell-mediated effector functions [103]. In fact, it has been demonstrated
that the disruption of the CD40/CD154 pathway results in poor CD4+ T helper cell pro-
liferation in response to antigen exposure, inhibition of IL-4, and IFNγ production and
failure to generate antigen-specific T cell responses [100,104]. Considering the capacity of
CD154 to activate subpopulations linked to elicit humoral and cellular immune responses,
this immunomodulator have been suggested as a key adjuvant that could improve the
deficiencies previously found in the subunit vaccines [105]. Experiences accumulated
from other vaccine candidates against other viral species such as influenza A virus also
supported the previous statement [99,105]. The studies conducted on the novel candidate
E2-CD154 subunit vaccine have revealed the ability of this candidate to fully protect pigs
from very virulent strains of CSFV as earlier as 7 dpv after a single vaccine dose, which
resulted in a significant advance compared with previous candidates or licensed E2-subunit
vaccines [96]. This novel candidate has shown the capacity to elicit full protection against
the challenge of very virulent strains of CSFV in the absence of protective neutralizing
antibodies, which seems to be indicative of an increased number of CSFV-specific IFNγ pro-
ducing cells in animals vaccinated with E2-CD154 vaccine [96,106]. Based upon the results
obtained from the controlled experiments, there are evidences that this novel candidate
could confer an early protection against CSFV like the one provided by the live attenuated
vaccines. Furthermore, the E2-CD154 subunit vaccine candidate showed to prevent against
the vertical transmission of the very virulent CSFV strain in pregnant sows representing a
major advantage for this type of candidates, and so far, is the only subunit vaccine showing
this feature as a significant remark. [95]. Additional results from the evaluation regarding
the stability of the E2-CD154 subunit vaccine showed that this novel candidate was able
to keep its biological properties including potency at least during 24 months after being
storage at room temperature [107]. This is a remarkable aspect to consider, taking into
account the fact that CSF is endemic mainly in tropical areas specially in underdeveloped
countries, where ensuring the mandatory cold-chain to preserve the potency of the live
attenuate vaccines is a significant concern [6].

Engaging with the fundamental principle, “from the laboratory to the field” the
E2-CD154 vaccine has been already tested on different pig farms under CSF-endemic
conditions, using Cuban swine herds as scenario for this purpose [16,20]. Thus, under
these uncontrolled conditions, elevated titers of neutralizing antibodies against CSFV were
detected, which lasted for at least 9 months, however, it is important to highlight that in
these cases, two doses at 3 weeks after the first vaccination was conducted [107]. Con-
sidering the promising results presented by this candidate, this research group continues
to conduct additional studies to fulfill all the requirements established by the OIE for
candidate vaccines, including safety and efficacy.

On the other hand, it is well known that the use of cytokines could be an attractive
choice to develop subunit vaccine formulations with the aim to induce an early protection
against CSFV. During the last decade, Toledo et al. [108] proposed the use of alpha interferon
(IFNα) to increase the immunogenicity of a vaccine candidate based on the E2-CSFV
antigen produced in goat milk (INFα-E2-CSFV) [108]. The IFNs type I are components
from the innate immunity, which modulate a number of molecular pathways to activate
the acquired immunity by synergic mechanisms that are critical for the activation of the
antigen-specific immunity also known as adaptive immune response [109]. For instance,
during the development of the humoral immune response, type I INFs enhance the primary
antibody response against soluble proteins, stimulating all IgG subclasses as well as the
subpopulations involved in the response of the immunological memory [110]. In addition,
Type I IFNs play a role in the maturation of dendritic cells and act as survival factor for
activated T cells [110]. In the study presented by Toledo et al. [108], the authors evidenced
that INFα used as adjuvant in the formulation together with E2-CSFV antigen boosted a
specific response of anti-CSFV-neutralizing antibodies, showing higher antibodies titer than
in immunized animals with E2-CSFV alone. Besides, CSFV-specific neutralizing antibodies
were not detected in any of the pigs of the group immunized with E2-CSFV/hαIFN co-
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formulation as early as 7 dpv, however, at this time, these animals were protected against
clinical signs and sign of viremia [108]. This fact demonstrates that the protection conferred
by this co-formulation is independent of the humoral immune response. Thus, during this
early stage, protection seems to be determined by the antiviral activity of IFN and probably
by a cellular immune response, also enhanced by the IFN. Moreover, the induction of an
early, and long-lasting protection against the challenge with CSFV virulent strain after
a single dose of this vaccine was also observed by this research group [111]. Based on
this approach of using IFNs as immunoadjuvant, Zhang et al. proposed a new subunit
vaccine co-expressing the E2-protein of CSFV together with porcine IFNγ in a baculovirus
expression system [112]. It is important to denote that IFNγ is the only member of the type
II IFN family, it is mainly produced by activated T cells, and it is linked to the differentiation
from Th0 to Th1 population, the activation of natural killer cells and macrophages, enabling
the protection against CSFV [113]. In fact, in the study presented this research groupthe
novel candidate did not enhance the CSFV-specific antibody and neutralizing antibody
titers compared with the E2 subunit vaccine alone but significantly enhanced the CSFV-
specific IFNγ expression with a subsequent increase in the cellular immune response
specific against CSFV. This novel candidate also conferred complete protection against
CSFV, hence, it has been proposed by this research group as a promising marker vaccine
candidate for the control and eradication of CSF [112].

One of the major attempts of the current review is to standardize the advantages and
disadvantages of the different vaccination strategies, whereas this is possible across differ-
ent vaccine types, the comparison among subunit vaccines, in specific, is difficult since they
are quite diverse in formulations, have different inoculation routes, etc. Nevertheless, from
a general point of view, subunit vaccines have several aspects in common. In brief, subunit
vaccines have a major advantage over live attenuated vaccines regarding safety, since this
type of vaccine are non-replicating viral particles, there is little possibility of reversion to
virulence. Furthermore, this type of vaccine has shown greater thermal stability than live
attenuated vaccines favoring its use in underdeveloped countries. A clear weakness shown
by most of the candidates published by different research groups has been their poor or
lack of induction of cellular immune response and shorter duration of immunity than the
live attenuated vaccines. As a direct consequence of this last characteristic, the subunit
vaccines may require intermittent immunization or two doses to increase antibody titers in
order to maintain active immunity to the chosen antigen. Besides, multiple doses, using a
considerable concentration of antigen will definitely increase the vaccination costs, causing
extra economic burden to the pig production [114].

Although marker E2 sub-unit vaccines have the potential for differentiation, they lack
some critical properties offered by live vaccines, such as rapid and complete protection
after a single application, prevention of transplacental infection, and suitability for oral use.
With the purpose of developing DIVA vaccines, which at the same time evoke both cellular
and humoral immunity, other different approaches have been pursued in the last years.

3.2. Live Marker Vaccine

With the advent of the reverse genetic technology, new strategies have emerged to
support the rational design of novel vaccines against CSFV, which could gather both major
advantages of the vaccination strategies discussed above, the ability to induce the cellular
immune response observed from the live attenuated vaccines [27] and the DIVA principle
from the subunit vaccines [25]. In this direction, a novel generation of engineered vaccines
has emerged with a promising perspective and recognized in the scientific community as
live marker vaccines [37]. Within this group, the construction of chimeric pestivirus and
replicons have been already tested and accumulated results for most than 10 years.
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4. Chimeric Pestiviruses

Chimeric pestivirus is a new concept based on the close relationship between pes-
tivirus, which provides new options for designing improved CSF marker vaccine candi-
dates. These genetics constructions are considered the most promising second-generation
candidates to develop CSFV DIVA vaccines with the potential to combine the efficacy
of live attenuated vaccines with marker properties [39,73,115,116]. Recently, CP_E2alf
vaccine, was licensed as the first live marker vaccine against CSF, produced under the name
“Suvaxyn® CSF Marker” by Zoetis and approved by EU for emergency vaccination within
restricted control [117]. The implementation of an emergency vaccination program using a
marker vaccine is aimed to avoid the ethically, questionable, and expensive “stamping-out”
strategy, which increases the public acceptance of the eradication policy and is cost effective.

The chimeric pestivirus marker vaccine CP7_E2alf was developed using the CP7
bovine viral diarrhea viral strain (BVDV) backbone that expresses the E1 and E2 glyco-
proteins of the CSFV strain Alfort/187 [118–120]. Several studies about this genetically
engineered virus proved the efficacy and safety of this DIVA vaccine candidate after in-
tramuscular vaccination of domestic pigs and wild boar populations with the additional
feature that enables its use for oral administration in [115,116,118,121–125]. The results
obtained using Suvaxyn has demonstrated either clinical and virologic protection after
the challenge against virulent and moderate CSFV strain [126–128]. This product has also
sorted out the effect that the presence of maternal-derived antibodies could have in the
development of an immune response to the vaccination [124,129]. In addition, it has been
extensively documented that the use of Suvaxyn confers complete protections against the
virulent strains of CSFV after a week of applying a single intramuscular dose, and the
immune protection can last for at least 6 months [126]. Initial results focused on to eluci-
date the protection capacity of CP7_E2alf vaccine against the vertical transmission was not
undoubtedly shown, especially with early and harsh challenge infection [90]. However, a
recent study showed that pregnant sows and their fetuses were fully protected after a single
dose of this DIVA vaccine, but it is important to denote that in the mentioned study, the
challenge was conducted using a CSFV strain of moderate virulence [130]. Therefore, it is
still unclear what will be the outcome of using this product in region where highly virulent
CSFV strain or CSFV with different degrees of virulence circulates. As additional features,
the CP7_E2alf vaccine is not transmitted or shed through urine, feces, or semen [131] and
the chimeric virus is genetically stable as has been revealed by both in vitro and in vivo
studies [118,122,132].

The strategy of exchanging specific antigenic epitopes among different pestivirus
species is another promising tool for the development of new CSFV marker vaccines.
Thus, chimeric CSFV Riems variants expressing E2 genes with antigenic epitopes that
were replaced with the respective epitopes from BDV Gifhorn were constructed [133]. The
exchange of all three domains, A, B and C, resulted in a chimeric virus (vRiemsABC-Gif)
that was able to induce protection against a virulent CSFV challenge, and the serological
response of vaccinated pigs could be differentiated from that of infected pigs with com-
mercially available E2 ELISAs. This candidate showed promising results as a potential live
marker vaccine for oral and intramuscular immunization considering its effectiveness and
its innocuousness [133].

Another chimeric pestivirus called CP7_E2gif has been reported as a noteworthy
candidate, mainly if it is considered that it does not contain any gene from CSFV genome.
Like the CP7_E2alf vaccine, CP7_E2gif contains the backbone from the strain CP7 of BVDV
but the BVDV envelope protein E2 has been replaced by E2 from strain “Gifhorn” of border
disease virus (BDV) [127]. The initial studies evidenced that the CP7_E2gif induced a
strong immune response as soon as 10 days after vaccination with comparable levels to the
vaccination using C-strain. An outstanding result was obtained when pigs vaccinated with
CP7_E2gif developed protective immunity against challenge infection with CSFV Eystrup
strain [134]. However, the fact that the specificity of CP7_E2gif induced antibodies will
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be directed against BVDV Erns and BDV E2, respectively, without a specific anti-CSFV
capacity limits its use as vaccine.

On the other hand, Flc-LOM-BErns, another chimeric CSF live vaccine, was recently
licensed by five Korean animal veterinary vaccine companies in 2016. This vaccine was
developed by taking the infectious clone Flc-LOM, which is based on an attenuated live CSF
vaccine virus (LOM strain), and removing the full-length classical swine fever virus (CSFV)
Erns sequences and the 3′ end (52 base pairs) of the CSFV capsid. These regions were
substituted with the full-length bovine viral diarrhea virus (BVDV) Erns gene sequence
and the 3′ end (52 base pairs) of the BVDV capsid gene, yielding the Flc-LOM-BErns

vaccine [128]. According to recent studies, this novel chimeric vaccine has shown to
provide complete protection in pregnant sows [128,135]. The use of Flc-LOM-BErns in
domestic pigs and bait vaccination of wild boar in South Korea has just started, hence
the strength of the DIVA principle and the safety of this marker vaccine candidate is
still unclear.

We have discussed, so far, numerous CSF marker vaccine candidates, which have
been designed based on sequences of closely related pestiviruses to CSFV [125,136–138].
However, the use of pestiviruses genetically and antigenically distant to CSFV has emerged
as an attractive option, taking into consideration mainly the DIVA concept. Thus, three
recent chimeric viruses have been developed by replacing the Erns of CSFV strain Alfort-
Tübingen with the homologue gene of largely distant pestiviruses members [139]. The
engineered chimeric viruses “Ra,” “Pro,” and “RaPro” contained Erns sequences from
Norway rat and Pronghorn pestiviruses or a combination of both, respectively [139]. In
this first study, all vaccine candidates conferred complete protection against clinical signs
of CSF at 28 dpv. However, further evaluations of these candidates are required, in terms
of effectiveness and safety and potential reversion to the virulence among others.

The identification of genetic determinants of virulence for CSFV have been an essential
element allowing the scientific community with the use of a rational approach to design
CSF live marker vaccines. The introduction of genetic mutations looking to attenuate one
or more of these determinants into the CSFV genome using infectious clone can lead to
the creation of safer and more efficient vaccines with DIVA properties. In this regard,
Holinka et al. [140] reported the development of a live attenuated CSFV strain with two
antigenic markers, called FlagT4v. A promising vaccine candidate marker was produced
by introducing two separate genetic modifications into the backbone of CSFV Brescia
strain [73,141]. The first is a synthetic epitope, Flag® into the E1 gene, (Sigma, St. Louis,
MO, USA) with the function of acting as a positive antigenic marker, and the second one
is the mutation T4 (TSFNMDTLR) into the linear epitope TAVSPTTLR in E2 gene; this
mutation disrupts the recognition of the epitope by the widely used monoclonal antibody
WH303 [142], therefore, T4 acts as a negative antigenic marker [140]. During the vaccine
assessment process, this new vaccine candidate was able to induce a full protection in
swine since day 2 or 3 dpv depending on the route of administration (intramuscularly or
intranasally, respectively). However, FlagT4v showed reversion to a virulent phenotype
of wild-type CSFV [136] as evidences of genetic instability. In subsequent studies, the
sequence analysis revealed deletions and substitutions almost exclusively in the areas
of E1 and E2 where Flag and T4 were inserted [140]. To improve the genetic stability
of FlagT4v, changes in the codon usage of these regions were introduced. The newly
developed FlagT4Gv, showed to be stably attenuated when assessed in a reversion to
virulence experiment was conducted, and conferred early effective protection against
challenge with the virulent CSFV strain [136]. This promising vaccine has shown sterile
immunity against challenge with the virulent parental virus beginning at 3 dpv, as well
as increased levels of IFN-α in vaccinated animals [143]. The FlagT4Gv is, so far, one of
the most promising vaccine candidates for emergency to use during an outbreak of CSF,
however, DIVA tests relying on the positive and negative antigenic markers of this vaccine
candidate are not available yet.
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Just recently a new CSFV marker vaccine candidate called rHCLV-E2P122A has been
reported [137] characterized by the presence of a single amino acid mutation into the 122PxA
site of the epitope recognized by mAb HQ06,which was introduced using reverse genetic
manipulation of the CSFV C-strain vaccine [137]. This new candidate vaccine was able to
induce anti-CSFV neutralizing antibodies but not antibodies against the HQ06-recognized
epitope in both rabbits and pigs, which can be differentiated from the antibodies induced
by C-strain. However, is still unclear if the animals vaccinated with this engineered virus
will be protected against the challenge with a wild viral CSFV-strain.

5. Viral Vector and Replicon Vaccines against CSF

An additional approach pursued, since some years ago, has been the construction
of trans-complemented CSFV deletion mutants, also known as CSFV-replicons [138,144].
Self-replicating RNAs (replicons) of positive strand RNA viruses are becoming powerful
tools for gene expression in mammalian cells and for the development of novel antiviral
and vaccines. Replicons are usually defined as replicative-competent viral genomes unable
to generate infectious viral progeny due to a functional defect, caused by a partial or
complete deletion of at least one structural gene [138,145]. Replicons can be packaged
into the viral envelope to generate virus replicon particles (VRP) using a complementing
cell line, which expresses the missing structural protein (trans-complementation) [138].
Notoriously, VRP can infect cells with the same efficiency as the parental virus, since
their virion shell is indistinguishable from the envelope of the original virus. Thus, VRP
fulfill one of the requirements for a safe vaccine, since they are non-transmissible either
horizontally or vertically; based upon this, VRP do not produce an infectious progeny
decreasing also the chances for the emergence of virulent virus from the vaccine. In
addition, VRP have the advantage of prolonged antigen production to induce cytotoxic
T-cell responses [145]. Furthermore, VRP do not require adjuvants as the replicative
nature of the replicon generates RNA molecules that, through the Toll-receptors, trigger
innate immune defenses providing the necessary signal to elicit the adaptive immune
responses [144]. In addition, this type of vaccine allow differentiation of VRP-vaccinated
from infected animals based on the absence of antibodies against the deleted protein(s) or
epitope(s) in the VRP [24].

In the past, different CSF-VRP were developed with deletions of Erns, E2, or partial E2
sequences of C strain [146,147]. In all the cases, these CSFV replicons induced a protective
response in pigs and were compatible with a DIVA approach to serology. However,
differences in the level of protection of pigs against virulent CSFV were obtained depending
of the replicon-type and the route of administration, for instance, the E2-deleted VRPs
induced full protection after simultaneous intradermal, intramuscular, and intranasal
injection [146], whereas the Erns-deleted VRP only showed protection after a parenteral
immunization but not when the intranasal route was used [147].

Another CSF-VRP, deficient of Erns gene as a non-transmissible marker vaccine, were
evaluated by Frey et al. [148]. In this regard, a cDNA clone of CSFV strain Alfort/187 was
used. The vaccinated pigs with a single intradermal inoculation of VRP A187Erns- elicited
anti-E2 neutralizing antibodies, and a cellular immune response was determined by an
increase in IFN-γ producing cells. Nevertheless, oral immunization resulted only in a
partial protection, and the results obtained with the intradermal inoculation regarding the
humoral and the cellular responses were not replicated [148].

As a general aspect, the CSF-VRP represent a robust and versatile system for gene
expression and generation of vaccine to be used in pigs. However, it has been reported
that the use of this type of vaccine is limited depending on the administration route.
Nevertheless, a novel approach using adenovirus-delivery systems represent a promising
alternative as it has been shown by the development of the candidate, Semliki Forest
virus replicon-vectored marker vaccine “rAdV-SFV-E2.” rAdV-SFV-E2 is based on the
replication-defective Ad5 vector that delivers a Semliki Forest virus replicon expressing
the E2 gene of CSFV. rAdV-SFV-E2 has shown that it can elicit strong cellular and humoral
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responses in pigs, providing sterile immunity and complete protection against lethal
challenge using virulent CSFV-strain comparable with the C-strain [149,150]. However,
it is important to highlight that complete protection is achieved only after two doses of
the vaccine [149]. Although further steps have been already taken in order to improve
the immunogenicity of this candidate by a Salmonella enteritis bacterial ghost adjuvant,
which can potentially improve the immune response of the host to the vaccine [151]. As
an additional remark of this candidate, it was already observed that the efficacy of this
vaccine was not interfered by the presence of non-related anti-CSFV antibodies and anti-
BVDV antibodies or coadministration with live attenuated vaccines against other swine
diseases [149,150]. Similarly, it was recently shown that maternally derived antibodies
derived from the inoculation with rAdV-SFV-E2 were sufficient to provide some protection
to piglets against lethal CSF challenge [152].

Table 1. Summary of the vaccine and vaccine candidates against classical swine fever virus (CSFV) discussed in the
current work.

Vaccine and Vaccine Candidates Type of Vaccine Essentials Characteristics References

LOM vaccine Live attenuated vaccine Potential reversion to a virulent
strain. [39–41]

C-strain Live attenuated vaccine

Safe and effective against the
disease. Protective immune
response against all CSFV

genotypes.
Early protection in the absence of

neutralizing antibodies.

[24,36,153,154]

GPE-strain Live attenuated vaccine

Safe in pregnant sows, newborns,
and adult pigs.

Early protective immunity.
Potential reversion to a virulent

strain.

[63,65,66]

Thiverval strain Live attenuated vaccine Safe and genetically stable.
Prevent vertical transmission. [62]

PAV-250 Live attenuated vaccine

Safe in pregnant sows and genetic
stable.

Elicit a strong immunogenic
response.

Protect against different virulent
strains of CSFV.

[63–65]

INFα-E2-CSFV Subunit
vaccine

Recombinant human alpha
interferon has an

immune-stimulatory effect. Clinical
protection 7 days after single

vaccination.
Double vaccination with a 3-week
interval/challenge six weeks after

booster vaccination with highly
virulent CSFV.

Duration of immunity is of at least 9
months after double vaccination.

[117,120,155,156]

KNB-E2 Subunit
vaccine

Sterilizing protection after a single
vaccination dose.

Protection against CSFV strain two
weeks after double vaccination with

3-week interval.
Protection against challenge is 32
weeks after double vaccination.

[83,94]
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Table 1. Cont.

Vaccine and Vaccine Candidates Type of Vaccine Essentials Characteristics References

TWJ-E2® Subunit
vaccine

Full protection against a challenge
using the CSFV highly virulent

strain after two doses.
[81,84]

E2-CD154 Subunit
vaccine

CD154 as a molecular adjuvant
enhancing the immune response.

Full protection against the challenge
of virulent strains of CSFV as earlier
as 7 dpv after a single vaccine dose

and in the absence of protective
neutralizing antibodies.

Prevent against the vertical
transmission of the very virulent

CSFV strain in pregnant sows.
Stable for at least 24 months at

room temperature.

[105,106,113]

Suvaxyn® CSF Marker
Live marker

vaccine
(chimeric)

Clinical and virological protection
after the challenge against virulent

and moderate CSFV strain.
Complete protections after a week
of applying a single intramuscular
dose, and the immune protection

for at least 6 months.
Genetically stable.

Prevent against the vertical
transmission of the moderate

virulent CSFV strain in pregnant
sows.

[125,128,129,131,140]

vRiemsABC-Gif
Live marker

vaccine
(chimeric)

Protection against a virulent CSFV
challenge after intramuscular

vaccination, partial protection after
oral immunization.

[133]

CP7_E2gif
Live marker

vaccine
(chimeric)

Induced partial protection with no
transmission after challenge with
CSFV virulent strain 28 days post

vaccination.
Safety and marker properties

[127,134]

Flc-LOM-BErns
Live marker

vaccine
(chimeric)

Provide complete protection in
pregnant sows. [128,135]

FlagT4Gv Live marker vaccine
(two antigenic markers)

Full protection in swine since day 2
or 3 dpv depending on the route of
administration (intramuscularly or

intranasally, respectively).
Provide sterile immunity against

challenge with the virulent parental
virus beginning at 3 dpv, as well as

increased levels of IFN-α in
vaccinated animals

[115,148,149]

“Ra,” “Pro,” and “RaPro”
Live marker

vaccine
(chimeric)

Vaccine candidates conferred
complete protection against clinical

signs of CSF at 28 dpv.

rHCLV-E2P122A Live marker
vaccine Marker properties [137]
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Table 1. Cont.

Vaccine and Vaccine Candidates Type of Vaccine Essentials Characteristics References

VRP A187delE(rns) Replicon
vaccine

Protection at 23 days post
vaccination against challenge with a

single intradermal inoculation
elicited anti-E2 neutralizing

antibodies and cellular immune
responses determined by an

increase in IFN-γ producing cells.

[148]

rAdV-SFV-E2 Replicon
vaccine

Elicit strong cellular and humoral
responses in pigs.

Providing sterile immunity and
complete protection against lethal

challenge using virulent CSFV
strain 7 weeks after double

vaccination.
Protection through maternally

derived antibodies.
Enhancement through Salmonella

ghost adjuvant.

[149–152]

6. Discriminatory Tool for DIVA Vaccine

The success of a control program based on the application of a marker vaccine against
CSFV relies upon an accurate discriminatory diagnostic test, which facilitates the differenti-
ation between infected and vaccinated animals. The serological DIVA tests are focused on
the discrimination between antibodies induced by natural infection of CSFV strains and the
vaccine-derived antibodies [157]. This differentiation is based on the fact that during the
development of the marker vaccines, antigens or epitopes were modified. One of the most
commonly used companion diagnostic test of marker vaccines has been the strategy based
on the detection of antibodies anti-Erns using an ELISA tool since the presence of antibodies
anti-Erns are indicative of CSFV infection in pigs [86,89]. However, since specific antibodies
against Erns are developed after 3–6 weeks post-infection, there is “blind-window” in the
detection of infected animal mainly during the early stages of infection [158]. Likewise,
the strategy of genetically engineered chimeric pestivirus has emerged as a promising
option to generate efficient live marker vaccines, but the chimerization of closely related
viruses keeps the problematic in terms of induction of cross-reactive antibodies [98]. For
instance, the serological discriminatory test for the vaccine CP7_E2alf system is based on
the detection of CSFV-specific Erns antibodies (for the presence of infected animals), since
animals vaccinated will develop antibodies against CSFV-E2 but not against CSFV-Erns,
while infected animals will develop antibodies against this last protein [117]. However,
two major obstacles have been observed in the practical examples applied in the field,
first, antibodies raised against BVDV Erns can cross-react with CSFV Erns, leading to
false-positive results in animal vaccinated using CP7_E2alf, and as a second problem pigs
infected with ruminant pestiviruses can also yield positive results when the discriminatory
test is applied due to cross-reactivity or poor specificity of the test [159].

Currently, there are two CSFV Erns ELISAs commercially available, which have been
evaluated as companion DIVA diagnostic tools for E2 subunit vaccines, such as CP7_E2alf,
or similar chimeric vaccines. Thus, it can be found as PrioCHECK CSFV Erns commer-
cialized by Thermo Fisher scientific (Thermo Fisher Scientific (former Prionics), Waltham,
MA, USA), and as the pigtype CSFV Marker kit commercialized by QIAGEN Leipzig
GmbH (Germany) [117]. The former have shown problems with the sensitivity of the test
as well as cross-reactivity with other CSFV-related pestiviruses, including BVDV and BDV,
which have limited its use [157]. It is important to highlight that several efforts have been
made in order to optimize the performance of this assay [160–162]. However, PrioCHECK
CSFV Erns (Thermo Fisher Scientific (former Prionics), USA) still exhibited deficiencies
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in terms of sensitivity and specificity, as well as robustness and reproducibility [115,117].
Meanwhile, the Erns-specific double-antigen ELISA (pigtype CSFV Erns Ab, QIAGEN
Leipzig GmbH (Leipzig, Germany) has shown higher sensitivity and specificity parameters
in combination with CP7_E2alf chimeric vaccine than PrioCHECK CSFV Erns (Thermo
Fisher Scientific (former Prionics), USA). However, the effect of cross-reactivity with an-
tibodies against ruminant pestiviruses was still observed [159]. Furthermore, a reduced
specificity in both DIVA ELISA tests was observed when these discriminatory assays were
applied on animals with maternal antibodies [163]. Hence, this aspect further complicates
serological surveillance. In addition, recent studies have pointed out that the effect of
multiple vaccination or the poor quality of the sample actually reduced the specificity of
these ELISA tests leading to the conclusion that interpretation based on the application
of these test can be only addressed under herd-based screening since the single sample
interpretation is difficult to establish [37,164].

Interestingly, a novel companion DIVA ELISA for the marker vaccine rAdV-SFV-E2
has been developed using an enhanced expression system for the Erns protein [165]. Thus,
Luo et al. [165] ropose a new indirect enzyme-linked immunosorbent assay (iELISA) based
on the yeast-expressed Erns (yErns) using the methyltropic yeast Pichia pastoris. The results
obtained from evaluating the new iELISA in a panel of swine sera revealed that the new
assay had comparable sensitivity (94.6%) and specificity (97.1%) and showed consistence
rates with the virus neutralization test. In addition, the iELISA showed higher sensitivity
(90.4%) compared with PrioCHECK CSFV Erns (59.6%). Therefore, Luo et al. (2015)
concluded that the yErns-based iELISA represents a promising DIVA test for E2-based
marker vaccines against CSF [165].

It is evident that the future of the development of marker vaccine candidates will
depend upon the successful development and implementation of a tailored DIVA assay.
There is subsequent need to establish a formal link between the licensing of a new marker
vaccine and the availability of a suitable DIVA assay to fulfil both requirements (protection
and detection). In general, the development a DIVA assay to be used in combination with
a marker vaccine faces two major challenges. The test must detect antibodies to CSFV
with certainty and must not produce cross-reactivity with antibodies induced by ruminant
pestiviruses. Therefore, the DIVA test based on the nucleic acid detection is the most
promising strategies for an accurate and reliable differentiation of field virus infected from
vaccinated domestic pigs and wild boars. In this regard, the strategy behind a genetic DIVA
is based on the identification of genetic differences between vaccine strains and wild-type
CSFVs. This approach is closer to be achieved if the exponential growing of the genetic
databases is considered mainly if it is also taken into consideration that those animals
under a chronic or persistent infection can excrete infectious viral particles for a lifetime
period [166,167]. Thus, the use of highly sensitive molecular techniques has, nowadays,
given rise to an increase in vaccine virus detections and differentiation [153,154,168]. In
previous years, several research groups have developed some molecular biology-based
CSF genetic DIVA systems. Real-time RT-PCR assay was developed by Leifer et al. (2009a)
to specifically detect the C-strain for use as a genetic DIVA test in circumstances where
this vaccine might be used. In the mentioned study, the differentiation between the strains
was conducted by the detection of two nucleotide differences in the Erns encoding region
of the viral genome at the 3’ end of each primer [155,156]. A one-step RT-PCR using Taq-
Man minor-groove-binding probes was also developed to distinguish between attenuated
Korean LOM and wild-type strains of CSFV in Korea [169]. Another differential assay
has been developed that can distinguish the genetically similar Riems C-strain and HCLV
and LPC vaccine strains from most field strain genotypes except some of the genotype
3 strains [170]. In addition, a differential real-time RT-PCR assays specifically designed
to detect the individual challenge strains were developed [160]. On the other hand, the
current emergence of isothermal amplification assays including loop-mediated isother-
mal amplification system (LAMP), which have been already applied for the diagnostic of
CSFV [19], or recombinase polymerase amplification (RPA) have opened new opportunities
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to the development of DIVA assays. This type of diagnostic tool has several advantages in
comparison with the thermal amplification systems, including they can be applied nearest
at the point of care, have higher level of sensitivity and specificity, are cost effective, and are
less impacted by the sample degradation-effect process [171]. These approaches combined
with the novel detection methods using cas13a [161] and cas12 [162] represent the future of
the DIVA assays.

7. Emergence of New CSFV Subgenotype in Endemic Regions under
Vaccination Programs

After the second half of the last century, countless efforts have been addressed by
many government authorities to control and eradicate CSF from national pig populations,
however, the disease remains as a significant challenge for the scientific community and
one of the most important diseases for animal health [16] During several decades, live
attenuated vaccines, mainly C-strain vaccines, have been used in the implementation of
those control programs against CSF in endemic countries [22,39,72]. Reasons that support
the extensive use of this type of vaccine are mainly based on their high efficacy, safety as
well as they are considered cost-effective products [21,27]. Several studies accomplished
by different research groups have revealed that the efficacy of live attenuated vaccines can
be impaired by multiple factors, including the presence of maternal antibody [22,29,51],
low viral loads in the inoculum [21], breaks into the cold-chain (storage or transportation),
route of vaccination, and age of the animal [22] as well as the co-infection with immunosup-
pressive pathogens [28,31,172–174]. These issues can indeed lead to vaccination failures
contributing to sporadic outbreaks and reemergence of CSF in vaccinated herds, which
in the practice have shown to be a real concern since several strains with the capacity to
escape to the immune response of the host can emerge [16,17,175,176].

The previous statement gains significance if it is considered that the genetic variabil-
ity of CSFV is relatively high [177,178] compared with other RNA viruses for instance
infectious bursal disease virus [179,180]. However, unlike other RNA viruses, the genetic
diversity of CSFV is not driven either by mechanisms of reassortment or by homologous
recombination. In this last aspect, only one strain has been found as a recombinant (CSFV
GenBank Ass. No. AF407339) [181], but other research groups have been unable to replicate
this result [176,182,183], suggesting that the mechanisms of recombination likely do not
influence the genetic diversity in CSFV. These elements evidence that the accumulation of
point mutations seems to play the main role as a genetic mechanism driving the variability
of CSFV. However, accumulated evidences from different environments including endemic
regions with zones without vaccination [184], where the competence effect take place, or
countries under inefficient vaccination programs, where positive selective pressure are
in place [17,175,185], revealed that those variable can also impact the viral fitness differ-
ently. Indeed, contrary at what it is expected that in endemic region without a vaccination
policy where all potential variant can be expressed results indicated a genetic stability in
the viral population [184,186], whereas changes in the genetic composition, virulence and
pathogenicity have been found in circulating strains from endemic regions under inefficient
vaccination programs [16]. These results obtained from molecular epidemiology studies
support the idea that bottleneck effects generated by the lack of sterilizing immunity by
conventional vaccines has contributed to emergence of new CSFV-strains [17,175,176,187].
Thus, these variants that escaped to the immunity induced by the vaccine can favor the
viral persistence in the swine population with changes in the clinical manifestation of the
disease toward the generation of chronic and persistent forms of CSF [16,17,20,46,176,188].
Therefore, as a major aim of the current review, it is relevant to critically illustrate those
examples where changes in the genetic composition, antigenic composition, or virulence of
the circulating CSFV-strain have taken place caused by a long-lasting inefficient vaccina-
tion program.
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7.1. Cuba

The first records of CSF in Cuba date from the 1940s due to the importation of infected
pigs from the United States [189]. In 1965, the lapinized C strain was imported into the
country and a national production of a vaccine started by a commercial entity (LABIOFAM,
S.A.), which was considered a critical step to the control program of the CS. Indeed,
CSF-outbreak was not reported in Cuba since mid-1970s suggesting a status of CSF-free.
However, in 1993, despite the vaccination program implemented, CSF reemerged in the
country [190]. A subsequent study based on molecular epidemiology approaches indicated
that the CSF-reemergence was caused by the reintroduction to the field of a highly virulent
strain, “Margarita,” isolated in 1958 and used as a challenge strain in the vaccine potency
tests since 1965 [191]. Due to the continuous occurrence of outbreaks, in 2002, CSF was
declared endemic [192]. Here, after 10 years of reemergence, a tendency towards milder
forms of the disease, characteristic of the chronic disease presentations in the infected
animals, was observed [190]. In fact, Diaz de Arce et al. (2005) reported the presence of
high rate of non-synonymous mutations in the CSFV partial E2 gene suggesting that the
evolution of the virus in the country could be linked to the trend towards mild disease
presentations [189]. Likewise, Pérez et al. [17] reported about the inability of the vaccine
in use to confer a sterile immunity causing a “bottleneck” effect and acting as a positive
selection pressure that facilitates the emergence of a viral subpopulation with changes
in virulence and pathogenicity of the strains, which emerged as escaping mutants to the
neutralizing antibodies induced by the vaccine [17]. A recent study also confirmed that the
action of the positive selection pressure induces a decrease in virulence, with alterations in
pathogenicity and antigenicity without causing major genetic variability [16]. It was also
suggested by a study performed in parallel that the circulation of these new viral escaping
variants under condition of partial immunity induced by the vaccine favored the viral
persistence in the swine population with presence of either prenatal or postnatal infections
in piggles as a result of a failure in the response to the vaccination in sows [20].

Epidemiological approaches recently performed shed lights about the occurrence of
CSF in the Cuba, suggesting that in this country, a slight trend to increase the incidence of
the disease over the years as a results of the endemism conditions together with the lack of
a successful implementation of a control policy has enabled the viral circulation [193].

Indeed, the CSF endemic conditions in Cuba have been linked to the broad circu-
lation of positively selected strains in the field, characterized by moderate and low vir-
ulence [20,192], which have favored the presentation of subacute and chronic forms of
the disease leading to the persistence of viruses in the pig populations. An additional
concern to this complex epidemiological situation is the fact that the primary diagnosis
of CSFV in Cuba is based on immunohistochemistry [19]. This method is prone to false
negative since those samples containing low viral low are mainly tested negative, hence
this aspect also contributes to the current underreport of CSF in this country facilitating
the circulation of the virus in the pig herds. Due to the lack of success in the previous
control program, the Cuban Veterinarian authorities are currently implementing additional
control measures to improve the current situation regarding CSF. These measures include,
the introduction of a new eradication plan implemented by zones [194], with the use of
novel in-house developed vaccine (Porvac vaccine). This new policy is being assessed in the
country with promising results.

7.2. Ecuador

CSF was firstly reported in Ecuador in the 1940s [7]. In 1978, the government started
recording the occurrence of the disease as part of the epidemiological surveillance system,
which was coordinated by the national animal health program [7]. However, the presence of
CSF in Ecuador was officially registered in the OIE records from 2006, when three outbreaks
were reported, and the disease has been present in the country thereafter (OIE, 2013). Since
2011, the National Program for the CSF Control and Eradication was implemented in
Ecuador using a CSFV attenuated C-strain vaccines [195]. In the past, through molecular
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epidemiology studies, it was revealed that Ecuadorian strains were located into the CSFV
subgenotype 1.1 clade [175]. However, recently, the emergence of the new subgenotype
1.7 in Ecuador was reported [177]. Despite the causes that originated this event have not
been disclosed yet, studies to uncover if these novel strains emerged as consequence of the
positive selection pressure caused by the escape to the vaccine are in progress.

7.3. Brazil

In Brazil, the first report of CSF was as early as 1888, in the states of Minas Gerais
and São Paulo [176], but it was until 1992 that an eradication program was implemented
in this country [182]. Since Brazil has such a vast territory, the eradication of the CSF in
the whole federation in a single step was considered neither technically nor economically
feasible, hence, the program was designed to achieve the status of CSF-free in a progressive
way, starting on those areas where the swine production was more intensive [196]. After
6 years of efforts based on the implemented program, a non-vaccination regimen was
introduced into the biggest pig production regions, while it was kept on other regions of
the country [197]. The national recognition of the first free zone took place in 2001 [196] and
currently, Brazil has an status of CSF-free zones that comprises approximately 82% of the
national pig herds, and a non-free zone, located on the North and Northeast regions of the
country, with approximately 18% of the national pig herd. However, many CSF outbreaks
still occurred in the CSF non-free zones despite the adoption of health measures addressed
to eliminate the occurrence of the diseases. In fact, the disease has been causing significant
social and economic impacts and concerns about the possible reintroduction of CSFV in
the Brazilian free-zone during the last few years [198]. Examples of these concerns resulted
indeed in the emergency of two new subgenotypes [8] suggesting that the evolution of the
virus in the field is leading to a broad genetic diversity in this country. Therefore, in 2019, a
new plan entitled, Brazilian CSF-Free Strategic Plan, was created with the aim to eradicate
the infection from the CSF non-free zone, accompanied by strict sanitary guidelines [198].

7.4. China

The first report of CSF in China was in 1925 [183]. Since the HCLV strain vaccine was
developed in 1954, the vaccination with this vaccine strain has been implemented for more
than 50 years as part of the control program [199]. However, sporadic CSF-outbreaks still
occur and the sows with persistent CSFV infection has been identified as the main source
for the viral transmission to suckling and weaned piglets [185]. Moreover, several reports
denoted a change in the virulence of the CSFV strains with presentations of the diseases
from the acute form to a subacute and chronic manifestations [187,188,200–203]. Thus,
several studies also concurred that the prolonged vaccination program, without a successful
implementation in the field, could have caused those changes in the pathogenicity and
antigenicity of the new emerging strains [175,187,204] favoring the high prevalence of
chronic cases of CSF in this country. Hence, a complex situation is currently present in
China in regards to CSF where the disease is considered endemic [185,187].

Since 1990s four different CSFV-subgenotypes have been circulating in China (1.1, 2.1,
2.2, and 2.3), with the subgenotypes 2.1 and 2.2 considered the predominant ones [183,205].
However, in recent decades, there has been a swift and the subgenotypes 2.3 and 2.2 became
silent, while subgenotype 2.1 has emerged with a predominant role in the outbreaks all
across the country [206]. Previous studies have shown that this specific subgenotype (2.1)
rapidly evolves generating a considerable high genetic diversity with 10 clades denoted
as subgenotypes (2.1a-2.1j) [203,207]. However, a detailed analysis accomplished in Rios
et al. (2017) showed that neither the genetic divergence showed by the lineages nor the
statistical values in the topology resolved were enough to support the classification of
these lineages as new subgenotypes [178]. Nonetheless, it is important to highlight that
these same authors proposed to define the new CSFV Subgenotypes 2.4 and 2.5, previously
defined as Subgenotypes 2.1d and 2.1c by Gong et al. 2016 [177], as an indicative that
the genetic diversity of CSFV circulating in China has increased in the recent years. An
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interesting evidence, which highlights the high level of genetic diversity of CSFV circulating
in China, is the case of the Chinese strain S171 isolated from commercial fetal bovine serum
batches [208]. This CSFV-strain is genetically distant from the previously reported CSFV
genotypes, which has been found circulating in cattle, and it has been recently suggested as
a new outgroup into the CSFV specie [209]. Likewise, other CSFV isolates have been found
circulating in cattle in this country as evidence of spillover from pigs [210]. However, if all
these new emergent strains are a direct consequence of the inefficient vaccination, it needs
to be addressed in future studies.

7.5. India

The first case of CSF in India was reported in 1944, localized at the Northern parts with
the subsequent expansion to other regions of the country [211,212]. Since then, CSF has been
considered endemic in India and the disease has been under a control program based on an
approach of massive vaccination [213]. Since 1964 a lapinized vaccine containing the CSFV-
Weybridge strain included into the subgenotype 1.1 has been used as part of this control
program. Despite the control program, a high prevalence of CSF has been reported in most
of the states of the country [214] with the circulation of several subgenotypes including
1.1, 2.1, and 2.2 across the country. Similar to other CSF-endemic regions discussed in this
current work, India is experiencing a switch from the previous dominant subgenotype 1.1
to more recent genotypes such as 2.1 and 2.2 [215–217]. However, a recent study defined as
new subgenotype 2.4 to CSFV strains that circulated in India during 2012–2013 previously
located in genotype 2.1 [177], but so far, the subgenotype 2.2 has been determined as the
current dominant [217].

In order to improve their current control program, the Indian Veterinary Research
Institute have incorporated a new safe, live attenuated CSFV vaccine using local strain.
This vaccine has been claimed as the best choice for use in the CSF Control Program in the
country [218]. Notoriously, like the findings reported in China, studies based on molecular
epidemiology revealed the presence of the CSF genome in cattle serum samples. The
sequencing of the full length E2 revealed the similarity to the CSFV 2.1 genotype. As
a remarkable feature was described by this authors that the bovine samples that tested
positive were mostly from farms that were in close proximity to pig farms, suggesting
spillover from pigs [219], which represent a more complex situation for the control of the
disease in India.

7.6. Vietnam

CSF is endemic disease in Vietnam and live attenuated CSFV vaccine (HCLV) have
been used as a national program to control and prevent the spread of CSFV [204,220].
Similar to other regions under vaccination programs, some outbreaks of CSFV frequently
occur in Vietnam, where three different CSFV-genotypes have been identified [221]. In 1991,
a CSFV strain belonging to subgenotype 1.1 (VN91) was isolated in Hung Yen province,
which is similar to the genotype strain commonly used as CSF vaccine in Vietnam [204].
However, the CSFV strains circulating in Vietnam during the 2014 outbreak, with moderate
virulence [222], were reported as subgenotype 2.1 [223], evidencing the emergence of a new
subgenotype in the country despite the control program implemented. However, a recent
study proposed a new CSFV classification, consisting of five main genotypes (1–5), with
seven subgenotypes in each of genotype 1 and 2 [177]. In this new scheme for genotyping
CSFV, the Vietnamese CSFV strains classified as 2.1 were reclassified as subgenotype 2.5
and 2.6 [177]. Recently, subunit vaccine “VN91-E2” have been developed in Vietnam, for
CSF prevention and control in the endemic area and emergency outbreaks of CSF in this
country [221].

7.7. Russia

In Russia, CSF is considered an endemic disease. The control program for CSF is based
on extensive vaccination with the CSFV LK VNIIVVIM live vaccine carried out for more
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than 50 years [224]. However, cases in wild boar and outbreaks in domestic pigs have been
often reported. All Russian CSFV strains from the late 1990s clustered within subgenotype
1.1 [224]. Interestingly, in a recent study, the outbreaks among 2007–2014 predominantly
genotypes 2.1 and 2.3 have been reported [225]. The recent genotype 2.3 isolates from
Russia are phylogenetically closely related to the isolates from Latvia and isolates that
had caused CSF outbreaks in Central Europe [5]. Within the CSFV genotype 2.1, virus
isolates from Russia phylogenetically group together with isolates from China and other
Asian countries [225]. Despite the wide application of the vaccine and the implementation
of sanitary measures, the disease is far from being controlled, but an increase in genetic
diversity of the virus with different clinical manifestation has raised instead.

7.8. South Korea

The first report of a CSF outbreak in South Korea dates back to 1908 [226]. Since
then, sporadic outbreaks have been reported throughout the nation and CSF has been
recognized as one of the most devastating diseases that continuously cause great economic
losses to the swine industry [44]. Live attenuated LOM vaccine have been widely used
across the country to eradicate CSFV in the field since 1974, and it has been proven
to be safe and highly immunogenic in pigs for many decades [42]. The South Korean
government established a plan for CSF eradication in June 1996 [42]. As result of this
eradication program, Jeju Island became a CSFV–free area, and vaccination efforts ceased
there in 1999. Meanwhile, a no-vaccination policy in the mainland of South Korea in
2001 was implemented. However, the disease reemerged in 2002 in the mainland of
South Korea with many outbreaks and the vaccination was started again [44]. Despite
the mandatory vaccination policy ruled for several years, sporadic CSF outbreaks have
occurred in mainland South Korea [42–44] suggesting either an evolutionary process of
circulating strains toward an escaping lineage of CSFV or a potential reversion to virulence
by the vaccine strain. In addition, it has been informed that since 2002, CSF in Korea has
undergone an antigenic shift from genotype 3 to genotype 2 [227]. In 2014, CSF reemerged
in naïve pig herds on Jeju Island, South Korea, caused by the reversion to the virulence by
the LOM vaccine strain [46]. The LOM virus has spread in the herd population and caused
clinical signs in young pigs and pregnant sows. At this time, this region considered as
CSF-free during decades has become endemic to CSFV [47,48]. Very recently, vaccination
with the new Flc-LOM-BErns started in South Korea, as part of the CSF control program.

7.9. Japan

In Japan, the first outbreak of CSF was reported in 1888, since then, many outbreaks
occurred repeatedly for over 100 years [182]. In 1969, a CSF attenuated live vaccine (GPE-
vaccine) was developed in Japan and was applied nation-wide in the field in the same year.
Since then, the outbreaks of CSF drastically decreased, with the last outbreak occurring in
1992. The eradication program was started in 1996 and in 2007, Japan was given CSF-free
status from World Organization for Animal Health. In September 2018, CSF reemerged
in Gifu Prefecture, Japan, for the first time in 26 years, affecting domestic pigs and wild
boars [228]. The causative virus is closely related to isolates in East Asia and is classified
under subgenotype 2.1 [229]. Due to the fact that many, new notifications of CSF cases
in both wild boar and domestic pigs were being reported continually, the government
decided to apply the routine administration of a bait vaccine to wild boars in March 2019
and the preventive vaccination in domestic pigs in the affected prefectures in October 2019
to constrain further CSF spread [76]. However, despite strenuous control efforts, almost
2 year after the initial CSF notification, the lack of success in controlling the outbreak is
concerning. The continuous notification of CSF in the area might have been attributed to
wide spread of the virus within wild boar populations favored by free animal movements,
as well as to the emergence of epidemiologically related domestic pig farms [76,230].
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8. Future Remarks

The status quo regarding CSF in several countries with the aggravated condition
linked to the emergence of new CSFV genotypes in endemic regions caused by systematic
inefficient vaccination [20,121,222], it is a clear indicative that there is an urgent need to
improve the control programs currently in place. There is also a need of more efficient
vaccines against CSFV with the ability to confer sterilizing immunity, hence, this aspect
deserves high priority for the research community.

Currently, the immunoinformatic, as an emerging scientific discipline, has had an
improvement in scientific research in the prediction and characterization of epitopes with
high precision [231]. The evaluation in silico of CTL epitopes provides the possibility to
design vaccines with more and wider protection in comparison with conventional vaccines.
Thus, the use of this tool could provide a better information about a possible escape from
emerging strains of CSFV to vaccines used to control the disease, mainly in endemic
areas [232]. To prevent many diseases in the future, the epitope-based vaccines have shown
to be an excellent candidate strategy. In comparison with traditional vaccines, epitope-
based vaccines have many unparalleled advantages including low cost, multivalence,
no genetic component, efficient antigen presentation, ease of application as well as the
absence of infectious potential. Indeed, multi-epitopes vaccines have been successfully
developed against other viruses of wide genetic variability such as dengue virus [233],
Ebola virus [234], chikungunya virus [235], and hepatitis C virus [236]. Nevertheless,
those candidates have not been applied in the practice yet. Recently, ours research group
conducted for the first time, the characterization of epitopes of B-cell and CTL-cell of CSFV
strain with the combination of immunoinformatic and classical techniques to analyze metric
distances of antigens between ancestral and emerging CSFV strains. This type of study
facilitates the understanding on how new emerging CSFV strains could escape to both
cellular and humoral responses induced by the vaccine used to control the disease, mainly
in endemic areas [16]. This combination of immunoinformatic with classical immunology,
can facilitate the development of antigenic maps for CSFV and contribute to the application
of successful control measures, mainly for emerging strains of this viral agent. In this
regard, it is undeniable that the advantages that the characterizations of epitopes can
provide to establish a platform for the development and application of multi-epitope
vaccines against CSFV. This type of vaccines will allow to cover a broad range of variability
of epitopes from different strains, including those that could escape to the current vaccines
in use or to other vaccines in the future. Therefore, this is an area that will require from
different research groups time, effort, and resource for further investigations.
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