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Abstract: In this work, two different typologies of hazelnuts shell powders (HSPs) having different
granulometric distributions were melt-compounded into poly(lactic acid) (PLA) matrix. Different
HSPs concentration (from 20 up to 40 wt.%) were investigated with the aim to obtain final biocom-
posites with a high filler quantity, acceptable mechanical properties, and good melt fluidity in order
to be processable. For the best composition, the scale-up in a semi-industrial extruder was then
explored. Good results were achieved for the scaled-up composites; in fact, thanks to the extruder
venting system, the residual moisture is efficiently removed, guaranteeing to the final composites
improved mechanical and melt fluidity properties, when compared to the lab-scaled composites.
Analytical models were also adopted to predict the trend of mechanical properties (in particular,
tensile strength), also considering the effect of HSPs sizes and the role of the interfacial adhesion
between the fillers and the matrix.

Keywords: biocomposites; natural fibers; poly(lactic acid) (PLA); extrusion compounding

1. Introduction

Due to their complex end-of life management, petroleum-based plastics have caused
a serious environmental problem, mainly related to their disposal. It was observed that
from 1950 to 2015, less than 10% of the total plastic produced amount was recycled [1]. A
possible solution to the waste management problem caused by non-degradable plastics
can be obtained by replacing these materials with biodegradable polymers obtained from
renewable resources compounded with agro-food waste. In this context, biobased and
biodegradable polymers are an interesting solution to preserve petroleum resources and to
decrease CO2 emissions [2].

Agro-industry generates large biomass amounts that are not sufficiently and ade-
quately exploited. For example, in the European Union alone, about 700 million tons
of agriculture waste is annually produced [3]. The use of plant waste materials as raw
materials in the production of biocomposites materials represents an exceptional opportu-
nity for sustainable technological development. In fact, fruit shells and other agricultural
waste are potentially important sources for the production of sustainable and competi-
tive biocomposites. These plant by-products are produced in high quantities and crop
wastes are rich in different nutritional components that can be valorized. Recently, the
utilization of by-products has been increased by food and pharmaceutical manufacturers
to produce valuable compounds from such inexpensive resources. In particular, nuts are
one of the most important agricultural products due to their different uses within the food
industry [4].

Walnut and hazelnut shells have great potential due to their large scale production;
considering that about 67% of the total product weight consists of the shell, 646,818 tons
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of walnut shells, and 353,807 tons of hazelnut shells are produced each year [5]. After
the separation of the kernel from the external parts of the fruit, large quantities of peel
and shell are generated. These materials are the main part (over 60%) of the nut fruit
and are discarded or burned as fuel without any useful application. Unfortunately, this
waste material is typically burned directly in situ for heating purposes, while it could
potentially be used for the production of both high added-value chemicals and biocompos-
ites. Hazelnut shells are cost-effective byproducts [6] and their exploitation represents a
stimulating challenge [7]. To better exploit their potentialities, it is necessary to find other
better uses for hazelnut shells [8,9]. Hazelnut shells’ composition is very similar to that
of other wood-based biomass because cellulose, hemicellulose, and lignin are the main
components. Shell grinding allows to produce hazelnut shell powder (HSP) of different
sizes and morphologies. HSPs consist of lignin (40–50% by weight), cellulose (25–28%), and
hemicellulose (22–30%), but they also contain a fraction of polyphenols (flavonoids and
tannins), which can be recovered by hydroalcoholic extraction [10–12]. The shell extracts
can be used as natural antioxidants in polymeric matrices as they can act as thermal and
photo oxidative stabilizers for different types of polymers, including biopolymers like
poly(lactic) acid (PLA) [13,14]. Moreover, the HSP addition enables light biocomposites
to be obtained that, in some cases, possess improved mechanical and thermal properties
and have enhanced biodegradability, when compared to the pure matrices [15–19]. Fur-
thermore, the incorporation of HSPs into a biopolymeric matrix contributes to reducing
the overall biocomposite cost [20]. However, some drawbacks must be mentioned in
using agricultural waste for the production of lignocellulosic composites: unstable fiber
availability over the year, absence of industrialized processing, and the need for big storage
facilities and different necessary pre-treatments [21–24]. For this purpose, in order to take a
step forward, the extrusion and injection molding processes considering the biocomposites
scaling-up ability were investigated in this paper.

The polymeric matrix chosen for this study was poly(lactic acid) (PLA). In fact, among
the biopolymeric matrices commercially available in the market, poly(lactic) acid (PLA)
is one of the most attractive and its use in the production of green composites is gaining
great importance [25]. PLA can be considered the front runner of the bioplastic market
with an annual consumption of about 140,000 tons [26]. What has pushed up the increasing
PLA demand are its excellent starting mechanical properties (≈3 GPa of Young’s modulus,
≈60 MPa of tensile strength, ≈3% of elongation at break and an impact strength close to
2.5 kJ/m2) that are comparable to those of polystyrene (PS) [27].

Song et al. investigated the addition of walnut shell powder into PLA; they noticed
during the biocomposites processing that an increase in the melt fluidity was correlated
to the fiber powder addition [28]. This melt fluidity increment can lead to problems
during the processing, making impossible or very difficult, for example, the extrusion
compounding, the injection molding, the casting extrusion, etc. The evaluation of the
fiber/matrix adhesion plays an important role and must be considered. From the processing
point of view, fiber-matrix adhesion improvement can be done by chemical fiber pre-
treatments or in-situ reactive blending. The last option is very interesting for the scaling-up
point of view and involves the use, during the extrusion compounding, of coupling
agents that are able to modify the polarity and surface tension of the fibers, enhancing
the fiber-matrix adhesion [29,30]. The main coupling agents added to improve the fiber-
matrix adhesion are maleic anhydride (MA), silane, isocyanate, and peroxide [29,31,32].
Commercial chain extender represents another way to improve the fiber-matrix adhesion,
thanks to their easy processability during the extrusion compounding; however, they are
not bio based and not biodegradable and even if they are introduced in very few amounts,
they compromise the totally full bio-based origin of the final biocomposites.

The addition of HSPs into a PLA matrix must be deeply investigated and little work
has been done regarding the scaling-up of these biocomposites into semi-industrial extru-
sion compounding process. For this reason, in this work, firstly the effect of the addition of
different amounts (from 20 up to 40 wt.%) of two HSPs with different values of granulome-
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try was investigated. The effect on melt fluidity, and thermal and mechanical properties
was investigated on a lab-scale. Analytical models were also adopted to evaluate the
powder size effect and adhesion between HSPs and PLA matrix. Then, the best selected
compositions were extruded into a semi-industrial twin screw extruder, evaluating scale-
up feasibility, focusing on the change of melt fluidity and mechanical properties of the
scaled-up composites.

2. Materials and Methods
2.1. Materials

The materials used in this work are:

• PLA3251D from Natureworks is a PLA designed for injection-molding applications.
This polymer grade is very stable in the molten state and can be processed on con-
ventional injection molding equipment [density: 1.24 g/cm3; MFR (210 ◦C, 2.16 kg):
80 g/10 min].

• Two different KERN hazelnut shell powders (HSPs) with different granulometry were
provided by Arianna Fibers. Empty hazelnut shells were grounded by an impact mill.
HSP with coarser grain size are named H0210, while those with finer grain size are
named HM200 [ρ = 0.954 to 1.08 g/cm3 with HR 5 to 30%].

2.2. Hazelnut Shell Powders (HSPs) Characterization

In order to quantify the humidity present in the HSPs, about 0.5 g of HSP for each
sample were put in a Petri dish (previously weighed) and they were weighed before and
after the drying process in a ventilated oven at 60 ◦C for 16 h. For each fiber typology, at
least 3 measurements were carried out.

To investigate the possible degradation of the fillers during the extrusion compound-
ing and to evaluate differences in chemical compositions between H0210 and HM200 HSPs,
thermogravimetric (TGA) and FT-IR analysis were carried out.

TGA was performed on a TA Q-500 instrument (TA Instruments, Waters LLC,
New Castle, DE, USA). Few milligrams were heated at 10 ◦C/min from room temper-
ature up to 700 ◦C at 10 ◦C/min in nitrogen atmosphere.

FT-IR analysis was carried out on a Nicolet T380 FT-IR (Thermo Scientific, Madison,
WI, USA) spectrometer equipped with an ATR Smart iTX accessory. Infrared spectrum of
HSP was recorded in the 550–4000 cm−1 range, collecting 256 scans at 4 cm−1 resolutions.

The powders morphology was investigated by scanning electron microscopy (SEM)
analysis using a FEI Quanta 450 FEG (Thermo Fisher Scientific, Waltham, MA, USA). The
samples were prior sputtered with platinum to enhance their conductivity and generate the
images, thanks to the secondary electrons. For each fiber typology, different images were
acquired in order to obtain the filler distributions. The HSPs distributions were obtained,
according to literature [33,34], measuring the dimensions of at least 200 filler particles by
using Image-J software.

2.3. Lab-Scale and Semi-Industrial Scale-Up Extrusion Compounding and Injection Molding

PLA based composites containing different HSP amounts (from 20 up to 40 wt.%)
were extruded at laboratory scale with a Haake Minilab II (HAAKE, Vreden, Germany)
twin-screw mini-compounder. Before the extrusion, all materials were dried in a Piovan
DP 604–615 dryers (Piova S.p.A., Verona, Italy) at 60 ◦C for 16 h. The extrusion temperature
was set at 190 ◦C with a mixing residence time inside the extrusion chamber of 40 s and a
screw speed of 60 rpm. The strand coming out from the mini extruder was then cooled and
pelletized to obtain granules. The composites name and their compositions are reported
in Table 1.
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Table 1. Blends name and compositions.

Blend Name PLA wt.% HSP wt.%

PLA 100 0
PLA_20_H0210 80 20
PLA_30_H0210 70 30
PLA_40_H0210 60 40
PLA_20_HM200 80 20
PLA_30_HM200 70 30
PLA_40_HM200 60 40

PLA * 100 0
PLA_30_H0210 * 70 30
PLA_30_HM200 * 70 30

* Blends extruded with a semi-industrial COMAC twin-screw extruder (up-scaled).

To the best composition of both HSP typologies, the extrusion compounding was
scale-upped on a semi-industrial Comac EBC 25HT (L/D = 44) (Comac, Cerro Maggiore,
Italy), twin screw extruder. Also, in this case, the materials were dried following the same
procedure adopted for the mini-compounding. PLA pellets were introduced into the main
feeder while HSPs were fed with a specific lateral feeder that allows, once that the weight
concentration was set, a constant feeding rate during the extrusion. A schematization
of the extrusion feeder configurations, as well as the temperature profile adopted in the
11 extruder zones, is reported in Figure 1.
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Figure 1. Schematization of the semi-industrial Comac twin screw extruder. In the figure are highlighted the feeder position,
the screw configuration and the profile temperature along the 11 extruder zones.

The strands coming out from the extruder were cooled in a water bath and then
pelletized by an automatic cutter. After the extrusion (both in lab-scale and in scale-
up process), the pellets (dried in the before mentioned Piovan dryer at 60 ◦C for 16 h)
were injection molded with a Megatech H10/18 injection molding machine (TECNICA
DUEBI s.r.l., Fabriano, Italy) to obtain ISO 527-1A dog-bone specimens (width 10 mm,
thickness 4 mm, useful length 80 mm) and ISO 179 Charpy impact specimens (width
10 mm, thickness 4 mm, length 80 mm). The injection molding was carried out in order
to minimize any change in the processing parameters (reported in Table 2) for a better
understanding of melt viscosity variation induced by the addition of different quantities
and different HSP typology (H0210 and HM200). Consequently, the temperature profile,
the mold temperature, the injection time, and the cooling time were fixed and only the
injection pressure was modified when necessary.
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Table 2. Injection-molding parameters.

Blend Name Temperature Profile
(◦C)

Mold Temperature
(◦C)

Injection Time and Cooling Time
(sec)

Injection Pressure
(bar)

PLA

185–190–190 60 5

120

PLA_20_H0210 90

PLA_30_H0210 90

PLA_40_H0210 95

PLA_20_HM200 70

PLA_30_HM200 70

PLA_40_HM200 70

PLA * 120

PLA_30_H0210 * 95

PLA_30_HM200 * 95

* Blends extruded with a semi-industrial COMAC twin-screw extruder (up-scaled).

2.4. Melt Flow Rate (MFR)

In order to evaluate the melt fluidity variation caused by the addition of HSP, the
melt flow rate (MFR) were measured on the biocomposites pellets by a CEAST Melt Flow
Tester M20 (Instron, Canton, MA, USA) equipped with an encoder. The standard ISO1133D
method was used: the sample was preheated without any weight for 30 s at 190 ◦C and
then a weight of 2.16 kg was applied. The molten material quantity that flows for 30 s was
then weighted and the MFR calculated. At least three measurements for each composition
were carried out and the mean MFR value reported. Before the test, the materials were
kept in a ventilated oven at 60 ◦C to avoid the pellets water uptake.

2.5. Mechanical and Thermal Characterization

Tensile tests were carried out on the ISO 527-1A extrusion molded specimen using an
MTS Criterion model 43 (MTS Systems Corporation, Eden Prairie, MN, USA) universal
testing machine. The MTS was equipped with a 10 kN load cell and the crosshead speed
was set at 10 mm/min. Tensile tests were performed, at room temperature, after 3 days
after the sample injection molding and during this time, the sample were stored in a dry
keep at 25 ◦C and 50% of relative humidity. At least six specimens for each composition
were tested.

Charpy impact tests were carried on the injection molded specimen pre-notched with
a V-notch of 2 mm. A CEAST 9050 machine (INSTRON, Canton, MA, USA) was used
and at least six specimens, at room temperature, were tested. The impact tests, also in
this case, were carried out after 3 days of the injection molding keeping the samples in a
controlled atmosphere.

The main biocomposites; thermal properties were calculated by differential scanning
calorimetry (DSC) using a Q200-TA DSC (TA Instruments, New Castle, DE, USA) equipped
with an RSC 90 cooling system. Nitrogen was used as purge gas set at 50 mL/min. Few mil-
ligrams (about 12 mg) were cut from the injection molded samples and the heating program
was set in order to consider the thermal history of the samples and thus considering the
injection molding history. In this way it was possible to calculate the crystallinity reached
by the samples after the injection molding process. The thermal program was: heating at
10 ◦C/min from room temperature up to 200 ◦C, the final temperature was kept for 1 min.
The melting and crystallization temperatures were calculated in correspondence of the
maximum and minimum of the melting peak and cold crystallization peak, respectively.
As far as the melting and cold crystallization enthalpies were concerned, they were calcu-
lated integrating the peak areas of the melting and crystallization peaks, respectively. The
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PLA crystallinity percentage of PLA was calculated according to the following equation
(Equation (1)) [27]:

Xcc =
∆Hm − ∆Hcc

∆H◦
m·wt.%PLA

(1)

where, ∆Hm and ∆Hcc are the melting and cold crystallization PLA enthalpies of PLA,
∆H◦

m is the theoretical melting heat of 100% crystalline PLA (taken equal to 93 J/g [35]).

2.6. Composite Morphology Investigation

The composites morphology was investigated on the fractured cross-sections of the
Charpy samples prior the sputtering with platinum. A FEI Quanta 450 FEG scanning
electron microscope (SEM) equipped with a Large Field Detector for low kV imaging
simultaneous secondary electron (SE) was used.

3. Theoretical Analysis

During the lab scale investigation, different analytical models were applied on the
HSP/PLA based composites to estimate the fiber/matrix adhesion and to predict the
tensile strength trend as a function of the HSPs volumetric content. The addition of rigid
particles into a polymeric matrix can affect the strength in two ways. The tensile strength
prediction of particulate filled composites is not easy because it is affected by different
parameters, such as interface adhesion, stress concentration, and defect size/spatial fillers
distribution [36].

For particulate fillers and for fibers with low aspect ratio, the prediction of the ten-
sile strength can be expressed quantitatively by the following equation, proposed by
Pukánszky [37]:

σc = σm

[
1 − Vf

1 + 2.5Vf

]
exp

(
BVf

)
(2)

where, σc and σm are the stress at break of the composite and matrix, respectively, while Vf
is the volume fiber fraction. The term in square bracket is correlated to a decrement of the
tensile strength of the composite caused by the fillers addition that reduce the load-bearing
cross-section of the composite. The parameter B is an interaction parameter that takes into
account the efficiency of the stress transmission between the matrix and the filler and can
be indirectly correlated to the filler/matrix adhesion [38]. Simplifying Equation (2), a linear
correlation can be obtained (Equation (3)) in which the B parameter is found as the slope of
the natural logarithm of reduced strength (σred) against the volume filler fraction.

lnσred = ln
σc

(
1 − Vf

)
σm

(
1 + 2.5Vf

) = BVf (3)

For particulate fillers, in the case that the stress cannot be transferred from the matrix to
the filler and the final composite tensile strength is determined from the effective sectional
area of the load-bearing matrix, the tensile strength of the composites lies between an upper
and lower bound [36]. Based on the hypothesis that poor adhesion exists between the filler
and the polymer and the load is sustained completely by the polymer matrix, the following
equation (Equation (4)) formulated by Nicolais and Nicodemo [39] gives the lower-bound
strength of the composite.

σc = σm

(
1 − 1.21V

2
3
f

)
(4)

The upper bound is immediately obtained as follows (Equation (5)):

σc = σm

(
1 − Vf

)
(5)
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Equation (5) generally has been considered as an ideal unattainable upper bound
since, in addition to a matrix area reduction, critical effects are also induced by the filler
particles in the system, with a further decrease of the composite strength.

4. Results
4.1. HSPs Characterization Results

The results of the HSP drying tests showed that H0210 had a humidity loss of about
9.05%, while for HM200 it was 7.64%. HSPs having lower particle size release less moisture
after the drying.

From the TGA results reported in Figure 2, it can be observed that, for both HSP
typologies, the thermograms are characterized by a first mass drop (completed below
100 ◦C) that is correlated to the humidity loss of the HSPs. The moisture loss is greater for
the H0210 sample, indicating that the HSP having higher particle size dimension releases
easily the up taken water. The second mass drop for H0210 corresponds to the thermal
degradation of the material and presents a similar magnitude for the two HSP typologies.
The final residue is also similar in magnitude for both samples. The residue includes both
inorganic compounds and carbon, normally generated when thermal degradation occurs
in a nitrogen atmosphere. The superimposed derivatives of the curve show the inflection
point (where the mass loss occurs) as a maximum. The main maximum peak is about the
same for the two samples; however, HM200 shows an additive peak at around 198 ◦C
probably indicating a major quantity of water highly linked on the surface or substances
with lower thermal resistance.
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overlay of the TGA curves derivative.

Hazelnut shells are composed of cellulose, hemicellulose, and lignin. However, there is
a significant amount of low molecular weight compounds. In literature [11], it was observed
that hazelnut shell contains about 10.6% of low molecular weight extractable substances,
about 30.1% of lignin and about 49.7% of polysaccharides (cellulose and hemicellulose).
From the ATR spectra reported in Figure 3, for H0210 a wide band at around 3327 cm−1 was
observed, attributed to the surface hydroxyl groups (-OH) mainly related to the presence of
water as well as alcoholic, phenolic groups but also amino acids and carboxylic derivatives.
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The peak at 2920 cm−1 is assigned to the asymmetric stretching band C-H; also, that
at 2850 cm−1 is related to the symmetrical stretching of the same bonds. These groups
are also present in the structure of lignin [40]. The peak associated with the stretching of
C=O (carbonyl compounds) is located at 1708 cm−1, but a shoulder is noted at 1743 cm−1.
While the main peak is attributable to carboxylic acids, the second is attributable to the
presence of ester groups. The presence of unsaturations and C=C bonds that occurred in
the widened bands between 1606–1640 cm−1 is attributable to alkenes, aromatic groups,
but also amide groups (C=O stretching); while the peaks at 1400 and 1240 cm−1 may be
due to C−O, C−H or C−C elongation vibrations. The peak observed at 1024 cm−1 is due
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to C–O, present in the ethereal, alcoholic, and carboxylic groups. The band of the C–O
group is more intense than that of the C=O group, and this shows that the polysaccharide
component is certainly dominated in the sample. The peak at 588 cm−1 is due to the folding
vibration in the aromatic compounds typical of lignin, highlighting their presence.

The spectrum of HM200 was acquired in a similar way to that of H0210, but the signals
are more intense. This is attributable to the lower particle size of the powder, which allows
better adhesion of the sample to the crystal. The observed bands are completely similar to
those of the H0210 sample, suggesting that the only difference between H0210 and HM200
is in the particle size.

The SEM micrographs (Figure 4) show, especially for H0210, the presence of irregularly
shaped particles having a rough surface attributed to the external part of the hazelnut
shell, which has a different morphology, depending on the filler layers. For smaller-sized
samples, the amount of rough surface particles is reduced.
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Also cavities and reliefs are visible that correspond to the cell walls and lumens. In
any case, for both HSPs, a greater variability in the filler shape and size can be observed.
The morphological results are consistent to what can be found in literature and despite
the different surface roughness, both HSPs can be considered as a typical particle-shaped
fillers [41,42]. The “elliptical approach” was adopted to determine the diameter distribution;
according to this model, the major axis of the ellipse corresponds to the length of the filler
while the minor axis corresponds to the width. With this method, the length and aspect
ratio are overestimated by about 10% for the fiber-shaped filler while this overestimation
is practically negligible for the particulate filler [34]. Since from the SEM images the
greater quantity of HSPs tends to be particle, with little presence of elongated fibers, it
was preferred to adopt this elliptical model. In Figure 5 the diameter distribution curves
are shown that confirm the great differences in diameters dimension between H0210 and
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HM200. In particular, an average diameter of 206.7 µm and 25.8 µm was obtained for
H0210 and HM200, respectively.
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4.2. Lab-Scaled Composites Results

The results of mechanical tests and MFR are summarized in Table 3. From the point
of view of tensile tests, the powders’ addition makes the material more brittle with a
decrement of both stress and elongation at break. The HSPs addition, on the other hand,
significantly increases the elastic modulus compared to pure PLA. This is a common
trend [43] and it is due to the introduction of fillers having higher elastic modulus than
pure matrix. In general, a decrement of the mechanical properties increasing the HSPs
amount can be observed; however, for H0210, the tensile decrement is less marked than
HM200 and the impact resistance is not worsened with respect to pure PLA.

Table 3. Mechanical and MFR results of lab-scaled composites with different amounts of H0210 and HM200 HSP.

Blend Name Elastic Modulus
(GPa)

Stress at Break
(MPa)

Elongation at
Break

(%)

Charpy Impact
Resistance (C.I.S.)

(kJ/m2)

MFR
(g/10 min)

PLA 3.56 ± 0.21 58.94 ± 1.16 2.30 ± 0.33 2.53 ± 0.29 3.80 ± 0.51

PLA_20_H0210 4.03 ± 0.15 40.85 ± 0.76 1.35 ± 0.15 2.60 ± 0.32 22.69 ± 1.76

PLA_30_H0210 4.16 ± 0.03 33.77 ± 3.16 0.95 ± 0.24 2.73 ± 1.22 13.78 ± 1.98

PLA_40_H0210 4.26 ± 0.12 27.38 ± 0.97 0.89 ± 0.10 2.94 ± 0.61 8.49 ± 1.82

PLA_20_HM200 3.88 ± 0.12 30.34 ± 1.85 1.11 ± 0.24 2.45 ± 0.20 32.91 ± 3.17

PLA_30_HM200 4.13 ± 0.30 26.85 ± 2.19 1.10 ± 0.11 1.74 ± 0.24 34.08 ± 3.26

PLA_40_HM200 4.44 ± 0.20 16.80 ± 4.60 0.45 ± 0.17 1.73 ± 0.26 33.41 ± 2.93

The better mechanical response achieved with H0210 can be attributed to several
factors. First of all, H0210 possesses a greater diameter distribution that represents a more
efficient obstacle towards the crack that advances during the Charpy test, compared to
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HM200 with a finer diameter distribution [36]. Furthermore, residual moisture content
must also be considered because it also affects the final mechanical response. H0210,
under the same drying conditions, lost a greater amount of moisture that could potentially
degrade the PLA (it must be considered that in this first lab-scale step, no venting for the
humidity stripping is present in the mini-extruder). Finally, the filler/matrix adhesion
must also be considered. It is well known from the literature that natural fibers have poor
adhesion with PLA [44]. However, comparing HM200 and H0210, the fillers with higher
grain sizes will have greater adhesion (the stress able to cause the fiber detachment is
in fact a function of various parameters, including the aspect ratio) [45]. The different
adhesion is also confirmed by the B parameter obtained as the slope of the Pukanszky’s
plot (Figure 6). A decrement of the B value (from 1.41 for H0210 to 0.56 for HM200) can be
observed, indicating a worsening of the matrix/filler adhesion.
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Observing in addition the experimental values of composites tensile strength (Figure 7),
a different interaction between H0210 and HM200 with the PLA matrix can be observed.
The experimental data in fact, lies between the upper and lower bound; however, HM200
are much closer to the Nicolais and Nicodemo lower-bound equation indicating a weaker
adhesion respect to H0210 that are closer to the upper bound. The particles with smaller
size have a great tendency to agglomerate, causing greater weakening of the matrix.
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Figure 7. Comparison between the experimental composite strength and the values predicted
according to the upper and lower bound equations.

The SEM images reported in Figure 8 confirm the prediction of the analytical models
and of the mechanical results obtained. A better adhesion is registered for H0210, respect
to HM200. In particular, for H0210, it can be observed that at 20 wt.% (Figure 8a), the
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fillers are fairly well distributed, and few agglomerations can be observed with 30 wt.%
of HSP (Figure 8b). At 40 wt.% however, a greater agglomeration tendency, due to the
greater HSPs amount introduced, is registered. The agglomerates are also less adherent to
the PLA matrix and in Figure 8c, holes due to the detachment of these agglomerates are
clearly visible; the presence of agglomerates is also responsible for the marked drop down
of the mechanical properties recorded for the PLA_40_H0210 composite. HM200 show
worse adhesion and already at 20 wt.%, voids can be observed due to HSPs’ detachment
(Figure 8d). However, for all the compositions (Figure 8d–f), a HSPs detachment can be
recorded, which is very marked compared to H0210, confirming the results of mechanical
tests and analytical models adopted.
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(b) PLA_30_H0210, (c) PLA_40_H0210, (d) PLA_20_HM200, (e) PLA_30_HM200,
(f) PLA_40_HM200.
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Regarding the MFR values, it can be observed that the viscosity increased (so the
fluidity decreased) on adding the HSPs (Figure 9). However, this occurred only for H0210.
For HM200 the MFR values are higher if compared to those obtained with H0210, but
no trend with the HSPs amount was detected. These results are in agreement with those
reported by Song et al. [28] and with the injection pressure, reported in Table 2, where
the injection pressure was increased with the H0210 content while it was decreased by
increasing the HM200 content. These MFR trends can be attributable to the probable
partial PLA hydrolysis caused by the filler moisture that is greater for HM200 due to its
larger surface area and thus humidity content. However, as reported in literature, the
general decrement of stress at break is mainly correlated to the poor interfacial adhesion of
lignocellulosic fiber with the biopolymeric matrix [45,46].
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From a thermal point of view, a decrement of both melting temperature and glass
transition temperature caused by the addition of HSPs can be observed (from Table 4); this
decrement seems to be correlated to the HSP content. However, the HSP typologies also
affect the melting temperature and glass transition temperature differently with a decre-
ment that is more marked with HM200. This behavior can be correlated to the different
granulometry between H0210 and HM200. HM200 have a higher surface area than H0210
and it adsorbs more moisture that can lead to decrease in the average molecular weight
(resulting in a decrement of the glass transition and melting temperatures). The HSPs’
addition increases the crystallinity of the PLA, causing a shift of the cold crystallization tem-
perature towards lower temperatures. HSP seems to act as a nucleating agent, providing
heterogeneous nucleation sites similar to other systems filled with natural fibers [27,47,48].
In particular, as the HM200 are finer and more homogeneous with a tighter diameter
distribution curve, they are more effective in crystallizing the PLA, when compared to their
H0210 counterparts.

4.3. Scaled-Up Composites Results

From the lab-scale data, 30 wt.% seems the most promising HSPs amount granting
both a high fiber content and acceptable mechanical properties. The results of the scaled-up
composites are summarized in Table 5.
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Table 4. DSC first heating results for H0210 and HM200 PLA-based composites.

Blend Name Tg (◦C) Tcc (◦C) Tm (◦C) ∆Hcc (J/g) ∆Hm (J/g) Xcc (%)

PLA 61.8 105.7 172.2 32.4 44.9 13.5

PLA_20_H0210 58.2 94.3 170.9 21.8 32.4 14.2

PLA_30_H0210 57.2 93.3 169.3 22.4 33.3 16.8

PLA_40_H0210 57.2 94.2 168.8 18.9 27.8 16.0

PLA_20_HM200 55.2 91.0 168.0 26.8 38.2 15.2

PLA_30_HM200 54.3 88.6 167.1 23.1 35.2 18.6

PLA_40_HM200 53.7 87.4 166.8 20.9 33.0 21.7

Table 5. Mechanical and MFR results of the scaled-up HSPs composites.

Blend Name Elastic Modulus
(GPa)

Stress at Break
(MPa)

Elongation at
Break

(%)

Charpy Impact
Resistance (C.I.S.)

(kJ/m2)
MFR (g/10 min)

PLA * 3.64 ± 0.19 64.60 ± 2.61 2.69 ± 0.14 2.51 ± 0.23 3.21 ± 0.55

PLA_30_H0210 * 4.30 ± 0.16 36.45 ± 1.00 1.09 ± 0.10 2.63 ± 0.35 6.23 ± 0.26

PLA_30_HM200 * 4.45 ± 0.11 38.42 ± 0.68 1.39 ± 0.18 2.29 ± 0.29 4.00 ± 0.59

* Blends extruded with a semi-industrial COMAC twin-screw extruder (up-scaled).

All scaled-up formulations show a lower MFR, respect to their corresponding lab-scale
formulations. This MFR decrement is also reflected in the injection pressure increment
during the injection molding process (Table 2). The marked viscosity decrement observed
during the lab-scale step is limited, thanks to the coupling of the low extruder residence
time and the presence of the venting system connected to a vacuum pump that guarantees
the humidity stripping during the melt extrusion, avoiding or limiting any eventual PLA
degradation [49,50]. The mechanical results are noteworthy. In fact, it can be observed that
the scaled-up composites show an increment of elastic modulus and tensile strength. In
particular, the reached tensile stress is very similar, confirming the efficiency of the venting
system in removing the fillers humidity.

The thermal properties (Table 6) of the scaled-up composite remains almost unchanged,
confirming the nucleation effect of HSPs.

Table 6. DSC first heating results of scaled-up HSPs composites.

Blend Name Tg (◦C) Tcc (◦C) Tm (◦C) ∆Hcc (J/g) ∆Hm (J/g) Xcc (%)

PLA * 63.4 101.7 174.6 29.2 38.8 10.3

PLA_30_H0210 * 57.5 94.5 172.5 17.1 29.0 18.2

PLA_30_HM200 * 55.7 93.8 169.9 18.8 27.6 13.5

* Blends extruded with a semi-industrial COMAC twin-screw extruder (up-scaled).

5. Discussion

In attempt to better correlate the obtained results with the mechanical properties, it
was noticed that in general the tensile strength of the prepared biocomposites decreased by
increasing the melt fluidity, as shown in Figure 10, where the data related to composites
containing 20, 30, and 40% of HSP are reported. Interestingly, for the 30% HSP biocompos-
ites, the data obtained for the scaled-up samples follow a similar trend, but as yet observed,
the tensile strength is higher and the MFR is lower. Moreover, finer HSP (HM200) results
in the highest value of tensile strength and lowest value of MFR. Hence, by avoiding
the chain scission of PLA thanks to the optimized processing conditions, the fluidity is
greatly decreased.
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The production of the biocomposites including PLA and HSP resulted in strong inter-
actions or reactions (Figure 11, reaction 1) between the polymer matrix and the functional
groups on the HSP surface. Hydroxyl groups, belonging to cellulose and hemicellulose,
that represent the major component of HSP, were mainly considered.
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solid particle.

Reaction 1’s occurrence depends on the surficial area of HSP and can induce an
increase in tensile strength, thanks to the improved matrix-filler adhesion. On the other
hand, reaction 2 (Figure 11, reaction 2) is PLA hydrolysis due to humidity, occurring more
in the composites containing the finer HSP. In a lab-scale extruder configuration, reaction 2
affects properties more than reaction 1 because of the higher residence time and absence
of devolatilization. Thus, as demonstrated by the study of B parameter obtained as the
slope of the Pukanszky’s plot (Figure 6), the dispersion in the matrix of the HSP with the
lowest dimension was less efficient. On the contrary, when the preparation is scaled-up,
reaction 1 as well as the fibre-matrix interaction are more significant. In good agreement,
the finer HSP, with the highest surface area, resulted in the highest tensile strength and
highest melt viscosity.

6. Conclusions

In this study the possibility to process successfully, at the semi-industrial scale, PLA-
based composites containing hazelnut shell powder (HSP) was investigated. A first lab-
scale production was carried out in order to individuate the best HSPs amount for the
subsequent scaling-up step. Two different HSPs typologies of different sizes were added
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from 20 up to 40 wt.%. The thermal, mechanical, and melt fluidity analysis showed poor
stress transfer, which led to a decrement in tensile strength. The fillers seem to act as
nucleating sites for PLA that increased its crystallinity; however, a marked decrement of
the melt viscosity was recorded, especially for fillers small in size due to their major water
uptake. The composition including 30 wt.% of HSP was selected for the successive scale-up
in a semi-industrial extruder. Interesting results were obtained considering the scaled-up
composites, as their melt fluidity was decreased thanks to the presence of the venting
system in the extruder that efficiently removed the residual humidity. The scaled-up
composites showed improved mechanical properties, respect to the lab-scaled composites,
demonstrating that these composites are effectively processable and can be easily scaled-up
The prepared biocomposites showed the possibility of achieving an optimized balance
between improvement of mechanical properties and the valorization of a significantly high
HSP content.

In future work, a further step towards more efficient exploitation of HSPs should
concern their functionalization. The HSPs’ superficial modification, coupled with the
optimization of the extrusion process parameters, would allow to obtain biocomposites
with further improved mechanical properties.
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