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The Singapore Integrative Omics Study provides valuable insights on establishing population

reference measurement in 364 Chinese, Malay, and Indian individuals. These measurements

include > 2.5 millions genetic variants, 21,649 transcripts expression, 282 lipid species

quantification, and 284 clinical, lifestyle, and dietary variables. This concept paper introduces

the depth of the data resource, and investigates the extent of ethnic variation at these omics

and non-omics biomarkers. It is evident that there are specific biomarkers in each of these

platforms to differentiate between the ethnicities, and intra-population analyses suggest that

Chinese and Indians are the most biologically homogeneous and heterogeneous, respectively,

of the three groups. Consistent patterns of correlations between lipid species also suggest

the possibility of lipid tagging to simplify future lipidomics assays. The Singapore Integrative

Omics Study is expected to allow the characterization of intra-omic and inter-omic

correlations within and across all three ethnic groups through a systems biology approach.
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Knowledge of the genetic determinants of common human
diseases has increased tremendously in the past decade,
mostly from discoveries made by genome-wide association

studies (GWAS)1–3. The efficient design of GWAS for querying
the entire genome benefitted from the arrival of the HapMap
resource, which produced a genomic map that outlined the
correlation patterns in the human genome for identifying tagging
single-nucleotide polymorphisms (SNPs)4, 5. The HapMap
resource also provided a public database on how prevalent
specific alleles are in different ancestry groups in the world6. The
subsequent development of national genome variation projects
has thus produced numerous public databases that have been
instrumental at enabling genetics as a forerunner in precision
medicine7–10. For instance, the predecessor of Singapore
Integrative Omics Study (iOmics), the Singapore Genome
Variation Project7, which only focused on making static genetic
SNP and Human Leukocyte Antigen (HLA) measurements,
indeed facilitated numerous investigations into the population
genetics and genetics of common diseases in Asian communities,
while at the same time allowing cost-effectiveness assessments
and burden estimation of pharmacogenetic testing prior to
initiate drug treatments11, 12, which consequentially influenced
policies on governmental subsidies for the costs of genetic tests13.

Technological advances have facilitated the measurement of
biological states other than genetics, such as quantifying the
extent of messenger RNA (mRNA) transcription by expression
hybridization profiling14–17 or in assessing the abundance of
different lipid molecules with mass spectrometry18–20. When the
transcriptome or lipidome of multiple individuals are measured,
the expression or quantification of specific sub-units (whether
gene or lipid molecule) can segregate between subgroups of
individuals, rendering these segregating sub-units as effective
biomarkers for the subgroupings21–27, not unlike what is
currently happening in GWAS. However, unlike the plethora of
public genetic databases, there is presently an absence of systems-
level maps to properly characterize the transcriptome and
lipidome in the general population.

In this paper, we introduce the iOmics, which aims to establish
population reference measurements across multiple omic tech-
nologies in three major populations in Singapore (see Table 1),
and to interrogate the extent that different omic and lifestyle
measurements differ between the three populations. The
demography of Singapore is made up of three main ethnic

communities comprising the Chinese, the Malays, and the
Indians. The genetics of these populations has been previously
systematically characterized by the Singapore Genome Variation
Project7, 28–30, which mapped the predominant genetic ancestries
of these populations, respectively, to southern Han Chinese, a
cosmopolitan admixture of Malays from Indonesia and Malaysia,
and Tamil Indians from south India, respectively. In the present
setup, measurements have been made in the iOmics to investigate
the baseline genetics, transcription, lipid levels, and miRNAs
expression. Each technology was selected for the purpose of
evaluating the value of information in the biological cascade from
DNA to RNA, and to biological units (cellular lipids) that are
close surrogates to expressed phenotypes. The iOmics is expected
to facilitate biomedical science experiments, investigating
the impact of an omic measurement on biological processes or
outcomes by interrogating the presence and extent of intra-omic
and inter-omic correlation. In addition to the unprecedented
collection of omic measurements made on the same individuals,
the design and ethical set-up of the iOmics specifically offers the
unique opportunity to recall participating subjects back for
additional experiments according to the desired biological
profiles. The data for the iOmics resource is publicly available at
//phg.nus.edu.sg/#iomics.

Results
Quality control (QC) of samples and variants. The iOmics
surveyed 122 Chinese (72 females), 120 Malays (77 females), and
122 Indians (79 females) from the longitudinal Multi-ethnic
Cohort of the Singapore Population Health Studies (SPHS)
(https://www.sph.nus.edu.sg/research/sphs), with specific ethical
approval and informed consent obtained for re-contacting the
participants according to their biological and omic profiles. Each
individual was genotyped on the Illumina 2.5M and Exome
microarrays to yield a genetic resource of 2,527,458 SNPs, as well
as on a customized pharmacogenetics microarray with 4032 SNPs
after QC. Classical HLA alleles on all eight Class I and Class II
loci were obtained from sequence-based allelotyping, yielding an
allelic resolution of at least four digit for all the samples.
Expression levels were available for 21,649 gene transcripts, and
lipidomics profiling successfully measured the content of 282
unique lipid species. The normalized counts for 274 non-coding
RNAs (miRNAs) were also measured. As all 364 subjects were

Table 1 Spectrum of omics and non-omics measurements available in the iOmics

Details Sample size per
ethnicity (C/M/I)

Omics
Genomics ● Illumina 2.5M microarray genotyping ● 110/108/105

● Illumina exome chip genotyping ● 110/108/105
● Pharmacogenomics SNP typing (4032 SNPs) ● 106/112/115
●HLA typing (-A, -B, -C, -DPA, -DPB, -DQA, -DQB, -DRB) ● 111/119/120
●Deep (30×) whole-genome sequencing ● 0/62/38

Lipidomics ●Mass spectrometry with Multiple Reaction Monitoring of 282 lipid molecules in three major lipid classes
(glycerophospholipids, sphingolipids, sterols)

● 122/117/120

Transcriptomics ●Affymetrix HumanGene 1.0 ST array ● 98/75/96
MicroRNA ●mSMRT-qPCR miRNA assay of 274 circulating miRNAs ● 117/115/119
Non-omics
Nutrition ●Validated interviewer-directed Food Frequency Questionnaire (199 dietary variables) ● 122/116/120
Lifestyle and
environment

● Interviewer-directed questionnaire, including smoking, alcohol consumption, and physical activity (46
lifestyle variables)

● 122/116/120

Clinical
measurements

● Clinically assessed measurements and assays, including age, sex, height, weight, BMI, HDLc, LDLc, TG, BP,
total cholesterol, HbA1c, fasting glucose (39 clinical variables)

● 122/116/120

Note: The sample sizes stated here refer to the number of subjects that remained after assessment for data quality
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participants of an ongoing longitudinal cohort study, there were
296 non-omic variables that were related to clinical, lifestyle,
and dietary indicators of each participant. A subset of the 364
individuals (62 Malays, 38 Indians) has also undergone deep
whole-genome sequencing to a target depth of 30-fold coverage,
although the resultant coverage was in excess of 40-fold for most
subjects31, 32 (Supplementary Table 1). The number of subjects
that remained after QC differed for each omic platform, and
details can be found in Supplementary Table 2.

Principal component analyses (PCAs) of cryptic relatedness.
A series of PCAs were performed in order to derive the extent of
similarity between the subjects, using information from each of
the four omic technologies and from the clinical, lifestyle, and
dietary measurements. Unsurprisingly, the PCA with genetic
data (101,099 SNPs) yielded distinct clusters corresponding to the
self-reported ethnicities, with the first axis of variation distin-
guishing the Indians from the Chinese (FST with Indians= 3.0%)
and Malays (FST with Indian= 2.0%), and the second axis
separating the Chinese from the Malays (FST= 1.0%, Fig. 1a).
In contrast, the PCA with transcriptomics data (21,649 gene
transcripts) and the 274 miRNAs did not yield any discernible
separation between the ethnic groups (Fig. 1b, c). The PCA
with the lipidomics data (282 lipid species) revealed marginal
separation between the Chinese and non-Chinese on the second
axis of variation, although it was not possible to separate between
the three populations on the leading axis of variation (Fig. 1d).
While the PCA using 284 non-omic clinical, lifestyle, and dietary
variables did not yield any striking differentiation between
the three ethnic groups (Fig. 1e), the PCA using only the 199
dietary variables was able to distinguish between the Chinese and

non-Chinese (Fig. 1f, Supplementary Fig. 1), despite the dietary
variables being a smaller subset of the non-omic variables in the
former analysis.

Genetics. The Wright FST metric was used to quantify the extent
of allele frequency difference at each SNP across the three ethnic
groups, and we searched for contiguous stretches of the genome
where there was an over-representation of SNPs with high FST
values. A total of 520 regions were identified to exhibit significant
evidence of inter-ethnic difference (Supplementary Data 2), and
all of these regions were driven by allele frequency differences
between Indians and non-Indians. We observed 479 regions to be
driven by frequency differences between Indians and Chinese,
and the remaining 41 regions were driven by differences between
Indians and Malays.

For the 4032 pharmacogenomic SNPs, we identified six SNPs
that were differentiated between the ethnic groups (Table 2,
Supplementary Fig. 2), including four tightly linked SNPs in
VKORC1 that have been established to correlate with optimal
warfarin dosaging33–35. Similar to the genome-wide evidence seen
previously, the differentiation of these six SNPs was most striking
between Indians and Chinese. The remaining two SNPs were
located in the alcohol dehydrogenase 4/5 genes (ADH4/5) and in
the ATP-binding cassette sub-family B member 5 gene (ABCB5),
respectively; the former are genes responsible for the metabolism
of alcohol substrates, while the latter gene is involved in the
development of drug (doxorubicin) resistance to melanoma
treatment.

When we interrogated the extent of inter-ethnic variation
at the 198 HLA alleles across 8 HLA loci, 20 alleles exhibited
FST≥ 0.05 of which 12 were driven by frequency differences

Genetics Transcriptomics MiRNA
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Fig. 1 PCAs of omics and clinical/lifestyle/diet data. Biplots are shown for five distinct PCAs using the respective first two axes of variations from each
PCA. The five PCAs correspond to the analysis of: a 101,099 autosomal SNPs pseudo-randomly chosen to minimize linkage disequilibrium between the
SNPs; b 21,649 gene transcript probesets; c 274 miRNAs; d 282 lipid species; e a set of 284 clinical, lifestyle, and dietary variables; and f only the 199
dietary variables. Each circle represents an individual from the iOmics and is assigned a color corresponding to the self-reported ethnicity of the subject,
according to the color legend on the top right panel in a
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Table 2 Six candidate pharmacogenomic variants of most differentiated between three ethnic groups

SNP CHR POS Alleles Gene
region

Frequency
(Chinese)

Frequency
(Malay)

Frequency
(Indian)

Clinical PGx implicationa Wright
FST

Pempirical

rs2359612 16 31011297 A/G VKORC1,
intron

0.118(G) 0.263(G) 0.900 (G) (i) Patients with AA
genotype who are treated
with warfarin may require
lowest dose as compared
to patients with the AG or
GG genotype (ii) Patients
with the AG genotype
who are treated with
warfarin may require
lower dose as compared
to patients with the
GG genotype (iii) Patients
with the GG genotype
who are treated with
warfarin may require
higher dose as
compared to patients with
the AG or AA genotype

0.471 1.23E-
05

rs749671 16 30995848 A/G VKORC1
ZNF646,
coding
SYN

0.118(G) 0.273(G) 0.900 (G) NA 0.466 1.31E-05

rs8050894 16 31012010 C/G VKORC1,
intron

0.118(C) 0.263 (C) 0.868 (C) (i) Patients with the CC
genotype who are treated
with warfarin may require
a higher dose as compared
to patients with the CG
or GG genotype (ii) Patients
with the CG genotype who
are treated with warfarin
may require a lower dose
as compared to patients
with the GG genotype
(iii) Patients with the GG
genotype who are treated
with warfarin may require
the lowest dose as
compared to the
patients with the CG or CC
genotype

0.434 2.33E-
05

rs7294 16 31009822 C/T VKORC1,
flanking
UTR

0.109(T) 0.272 (T) 0.822(T) (i) Patients with the CC
genotype who are treated
with warfarin may require a
lower dose as compared to
patients with the CT or TT
genotype (ii) Patients with
the CT genotype who are
treated with warfarin may
require a higher dose as
compared to patients with
the CC genotype (iii) Patients
with the TT genotype who are
treated with warfarin may
require a higher dose as
compared to patients with
the CC genotype

0.387 4.79E-
05

rs1238741 4 100202335 C/T ADH4/5,
flanking
UTR

0.179 (T) 0.272 (T) 0.865 (T) NA 0.375 5.78E-
05

rs11974407 7 20695644 C/G ABCB5,
intron

0.038 (C) 0.165 (C) 0.670(C) NA 0.361 7.08E-
05

aInformation were retrieved from PharmGKB®, only clinical implication with level 2a, 2b, or 1 were retrieved
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between Chinese and Indians, 5 by differences between
Malays and Indians, and the remaining 3 by differences between
Chinese and Malays (Fig. 2, Supplementary Table 3). The list of
20 alleles included B*40:01, which is present at a higher frequency
in Chinese (20.8%) compared to the non-Chinese (4.3% in
Malays, 2.5% in Indians), and the carriage of this allele has been
linked to a decreased risk of carbamazepine-induced severe
cutaneous adverse reactions such as Stevens-Johnson syndrome
and toxic epidermal necrolysis36, 37. There were five other
HLA alleles known to be pharmacogenetically important due
to their strong associations with adverse drug responses, and
we observed that B*38:02 exhibited low degree of differentiation
in our populations, although the remaining four (A*31:01,
B*15:02, B*57:01, B*58:01) exhibited modest degree of variation
(FST≥ 1.5%, Table 3).

Transcription. Of the 21,649 transcription probesets, 280
probesets were identified to be differentially expressed across the
three ethnic groups, although the majority (276) were attributed
to expression differences between Indians and non-Indians,
especially against the Chinese (Supplementary Data 3). The
three leading differentially expressed genes corresponded to:
(i) Urotensin II (UTS2), where the levels of gene expression
for Indians were almost three-fold lower in Chinese and Malays
(PBonferroni = 1.98 × 10−24, Fig. 3a); (ii) Homo sapiens phospho-
lipased B1 (PLB1) where Indians and Chinese exhibited
the highest and lowest level of gene expression, respectively
(PBonferroni = 1.52 × 10−13, Fig. 3b); and (iii) TRAF-interacting

protein with forkhead-associated domain (TIFA) where similarly
Indians and Chinese presented the highest and lowest level of
gene expression, respectively (PBonferroni = 6.76 × 10−12, Fig. 3c).
Notably, we observed that BRCA1 expression levels were different
between Chinese and non-Chinese (Supplementary Fig. 3,
PBonferroni = 1.27 × 10−3), and this intriguingly concurred with the
trend that Singapore Chinese possessed an almost 11% higher
age-standardized incidence rate for breast cancer compared to
Singapore Indians (https://www.nrdo.gov.sg/publications/cancer,
NRDO Singapore Cancer Registry Interim Report 2010–2014,
accessed 18 August 2016). A functional enrichment pathway
analysis of the 280 probesets against the DAVID 6.7 Biological
Database38 revealed that 44 probesets (16%) were significantly
enriched in immune response and regulatory pathways
(PFDR< 0.05), and all of these 44 probesets were differentially
expressed between Indians and non-Indians.

miRNA. Of the 274 miRNAs, we observed 5 miRNAs to be
differentially expressed across the three ethnic groups, of which 4
were driven by expression differences between the Chinese and
Malays and the remaining miRNA (hsa-miR-375) was driven
by differences between Indians and non-Indians (Table 4,
Supplementary Fig. 4A–E).

Lipidomics. The set of 282 lipid species came from 4
lipid categories (glycerophospholipids, sphingolipids, sterol
lipids, glycerolipids), of which there were 20 lipid classes
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Fig. 2 Distribution of the Wright FST value across three ethnic groups at the eight HLA loci. The distribution of the Wright FST value across three
populations at the eight HLA loci. The alleles shown in the plot are the top three FST alleles at each HLA loci. The triangular shape indicates the HLA alleles,
where the FST values are driven by differences between Chinese and Indians. The diamond shape indicates the HLA alleles, where the FST values are driven
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Table 3 Drug-associated HLA alleles

HLA allele Drug Adverse reaction Allele frequency (%) Wright FST value

Chinese Malay Indian

A*31:01 Carbamazepine Rash 0.9 0 5.0 0.025
B*15:02 Carbamazepine Phenytoin SJS 7.4 12.4 3.8 0.017
B*13:01 Dapsone HSS 10.2 3.0 0.8 0.036
B*38:02 Sulfomethoxazole SJS/TEN 4.6 4.3 2.9 0.001
B*57:01 Abacavir Flucloxacilin HSS DILI 0 0.9 7.5 0.041
B*58:01 Allopurinol SJS 10.2 3.0 0.8 0.036

DILI drug-induced liver injury, HSS hypersensitivity syndrome, SJS Stevens–Johnson syndrome, TEN toxic epidermal necrolysis
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(Supplementary Table 4). We identified 107 lipid species where
the lipid levels were differentiated between the 3 ethnic groups,
and there are 20 lipid species that were either 1.5 fold-change
higher or lower in their lipid levels with respect to Chinese
(Supplementary Data 4 and Supplementary Fig. 5). Of the
107 differentiated lipid species, 91 were the low abundant of
the lipids on a molar basis (nmol/ml), whereas 16 were
observed among the major abundant species with mean lipid
concentration >10 nmol/ml (Supplementary Data 4). Majority
(86 lipids) belonging to the glycerophospholipid category, which
comprised the main component of the biological membrane,
serving to (i) stabilize and isolate the intracellular environment
from the external environment; (ii) regulate the transportation
of the molecules through the membrane; and (iii) organize
membrane component into localized areas involved in
specific processes such as signal transduction39. Of the 107
differentiated lipid species, 88 were driven by lipid-level differ-
ences between Indians and non-Indians, and the remaining
19 were driven by differences between Chinese and Malays. In
fact, the three most differentiated lipid species were due to
differences seen between Indians and non-Indians (Supplemen-
tary Fig. 6A–C), at (i) PC(O-40:7) (PBonferroni= 5.78 × 10−24);
(ii) PC 38:3 (PBonferroni= 3.84 × 10−21); and (iii) PE(O-40:7)
(PBonferroni = 3.54 × 10−20).

Our analyses also suggested that lipid species with similar
chemical properties that were categorized in the same lipid class
have a tendency to be correlated. As a result, we investigated the
extent of correlation between lipid molecules within each ethnic
group, both within lipid class and between lipid classes in each
of the three ethnic groups (Fig. 4). We identified 29 lipid species
in the Chinese that can effectively represent the information
from the measurements of 71 lipid species (defined as r2> 0.8).
For the Malays, there were 26 tagging lipids for 61 species; and 26
tagging lipids for 60 species for the Indians (see Supplementary
Tables 5–7). Notably, lipid classes in the sterol (free cholesterol
(COH), cholesteryl ester (CE), and glycerolipids (diglycerides
(DG) and triglycerides (TG))) categories were highly correlated
within and between classes, with lipids from DG and TG
accounting for 22% (28/125), 16% (21/125), and 3% (2/65) of the
observed lipid pairings. This meant that the 282 lipid species can
be summarized by 240, 247, and 248 ‘tagging’ lipids in the
Chinese, Malays, and Indians, respectively. Of the 107 lipid
species identified to be differentially expressed between the three
groups, these could be simplified into assaying 98 lipids for the

Chinese, 99 lipids for the Malays, and 97 lipids for the Indians
(Supplementary Table 8).

Clinical, lifestyle, and diet. Of the 284 clinical, lifestyle,
and dietary variables, 199 variables were food item composition
from the Food Frequency Questionnaire, with 46
lifestyle indicators on physical activity, and usage of
alcohol and tobacco. The analysis of the 39 clinical variables
identified 16 variables to be significantly different across the
three populations (Fig. 5), with para-umbilical skinfold mea-
surement, body mass index (BMI), and waist circumference
emerging as the three most significantly differentiated measure-
ments (PBonferroni= 8.80 × 10−13, PBonferroni= 2.26 × 10−12, and
PBonferroni = 3.37 × 10−12, respectively, Supplementary Fig. 7A and
Supplementary Table 9). Chinese exhibited the lowest average
para-umbilical skinfold measurement (mean= 23.4 mm,
SE= 0.50 mm) compared to the Malays (mean= 26.7 mm,
SE= 0.53 mm) and Indians (mean= 29.2 mm, SE= 0.50 mm),
and this trend was similarly observed in BMI (Supplementary
Fig. 7B) and in waist circumference measurement (Supplemen-
tary Fig. 7C). Unsurprisingly, there were noticeably high
levels of correlation between most of the 16 variables, especially
among anthropometric traits as well as variables predictive
of metabolic health. This pattern of correlation was also
consistent across all three ethnic groups (Supplementary
Fig. 8A–C). The proportion of ever-smokers was significantly
higher in Malays (34.5%) than to the Chinese (27.9%) and
Indians (22.5%).

The first three principal components from the eigen-
decomposition of the information from the 199 dietary variables
accounted for 10.0% of the variation, even though it will require
115 principal components to explain at least 90% of the variation
in the 199 variables. When we inspected the loadings for the first
principal component, larger positive loadings were observed in
food items common in the diet of Indians (such as dhal, fish/meat
curry without coconut and dosai), whereas larger negative
loadings were observed in food items common of Chinese diet
(such as dim sum, roasted/grilled/BBQ meat, stir-fried dishes
with oyster sauce, Supplementary Table 10). The second principal
component was positively loaded at food items representative of
Chinese cuisine (such as chicken broth, steamed dishes, and soup
dishes) and negatively loaded at a mixture of Malay and Indian
food items (such as nasi lemak and nasi briyani, Supplementary
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Table 11). The third axis was positively loaded for a mixture of
Malay and Chinese food items (such as deep-fried dishes, dishes
in assam pedas/curry with coconut, innards and braised/stewed/
roasted dishes) and negatively loaded at Indian food items
(such as dhal, Indian bread, and dishes in curry without coconut,
Supplementary Table 12).

Discussion
This concept paper has introduced the iOmics, which recruited
364 subjects from the three major ethnic groups in Singapore and
assayed each of them across a variety of omics technologies which
included genomics, transcriptomics (including miRNAs), and
lipidomics. Clinical measurements as well as lifestyle data around
physical activity and nutrition were similarly available for each
of these individuals. In this paper, we have investigated a
fundamental hypothesis: to what extent do ethnic differences
explain the variation in the expression of the different omic and
phenotypic measurements; and subsequently to identify the
specific sub-units that segregate between the ethnicities. In many
instances, this reduces to the problem of identifying the sub-unit
where the expression of a product is more likely to be higher or
lower in one ethnic group compared to another, where the
product may be a SNP or HLA allele, gene transcriptome activity,
lipid species spectrometry measurement, or miRNA count. This
is similarly the case in pinpointing the clinical, lifestyle or
environmental measurements that are different between the
ethnicities. Understanding the extent that populations cluster
according to product expression is a foundational assumption
that underpins many of the existing databases such as those from
the International HapMap Project4, 1000 Genomes Project6, and
ENCODE40.

While PCAs were used to illustrate the extent of clustering
between samples of different ethnicities, it is important to
recognize there were overwhelmingly more datapoints available
in the genetic data than in the rest of the omics and non-omics
data. A reduced subset of 101,099 SNPs was used in the
genetic analysis, which was already more than the 21,649 gene
transcripts, 282 lipid species, and 284 non-omic measurements
on clinical phenotypes, lifestyle, and diet. What is surprising,
however, is that the use of 199 dietary variables alone was able to
elucidate clearer patterns of ethnic membership which the larger
data sets of transcriptomics and lipidomics were unable to. This
perhaps suggests that downstream biological activities such as
gene or lipid expression generally tend to be conserved across
populations, except of specific sub-units that may have differed
owing to biological adaptation to different environmental
(including dietary) exposures. This is perhaps unsurprising,
as upstream molecular changes in DNA may not necessarily
culminate to impact consequential downstream products such
as mRNA transcription, protein translation, and eventually
influence catalytic reactions affecting metabolites and lipids.

One finding that is consistent across almost all the omics
(except miRNAs) and non-omics comparisons is the greater

heterogeneity seen between Indians and non-Indians (particularly
Chinese), than between Chinese and Malays. While this
concurred with previous reports7, 33, 41, what the iOmics has
shown is that even among just the Indians, there is a lot more
biological heterogeneity than within the Chinese or the Malays
separately. This was hinted in an earlier article looking at the
genetic diversity exhibited by whole-genome sequencing a subset
of the Indians in the iOmics31, where when adjusted for the
sample size, the same number of South Asian Indians was
considerably more heterogeneous genetically compared to the
same number of Southeast Asian Malays or Han Chinese. The
iOmics confirmed that the greater intra-population diversity
exhibited by the Indians is not simply confined to genetics, but is
similarly seen in the lipidomics profiles, as we observed the
correlations between lipid species were weaker in the Indians than
in the Chinese and Malays.

Data resources in the life sciences have been instrumental in
driving the progress biomedical and clinical research. Such data
infrastructure can often be benchmarked against three kinds of
impact that they deliver42, 43: (i) scientific impact—information
from such databases typically provides foundational knowledge
that aids the design of future experiments44–47; (ii) translational
impact—information from such databases typically guides the
changing of practices in clinical medicine, highlighting clinical
validity and industry relevance48–50; and (iii) implementation
impact—information from such databases offer insights that
guide the development and evaluation of healthcare institutional
or governmental policies, by enabling and/or facilitating health
services and health systems research, especially those pertaining
to financing and regulatory approvals51. Notably, the impact that
a data resource delivers is not necessarily exclusive to a single
category, and well-designed and curated databases can often
deliver impact spanning all three categories. It is with this in mind
that the iOmics was designed, particularly with the ability to
recall subjects according to their omics and non-omics profiles,
allowing the further expansion of the iOmics database whenever
newer technologies have been proven to deliver information of
value.

This paper has only scratched the surface on what the iOmics
resource can deliver. Evidently there is considerable potential in
the use of this data set to investigate the degree of co-expression
that exists between the different omics measurements. The
relatively small sample size will undoubtedly hinder the discovery
of networks with modest levels of co-expression. In addition,
there is a dire need for novel methodologies to be designed with
the specific intent of addressing the problem of multiple tests,
which invariably is present in such cross-omics analyses. But
like the HapMap before this, identifying clear patterns of
co-expression that are ubiquitously present across all three ethnic
groups is a real possibility. The aspiration for the iOmics will
be to integrate the present resource with longitudinal and
prospective clinical records, where clinical decisions can be made
not only to address clinical needs, but also with reference to the
baseline omics, lifestyle, and nutritional profiles.

Table 4 Five most differentiated miRNAs between three ethnic groups after adjusted for RT plate effect

miRNA P-value lsmChinese lsmMalay lsmIndian FC (Malay–Chinese) FC(Indian–Chinese)

has_miR_4732_3p 9.50E-04 18.01 18.17 17.42 1.12 0.67
hsa_miR_375 9.40E-03 18.04 17.52 17.38 0.70 0.63
hsa_miR_140_3p 1.10E-02 21.82 22.00 21.40 1.13 0.75
hsa_miR_378a_3p 2.92E-02 20.81 20.87 20.48 1.04 0.79
hsa_miR_378a_5p 3.13E-02 15.10 15.35 14.69 1.19 0.75

Note: Least squares mean (lsm) was calculated for each ethnic groups and fold change was also calculated with respect to Chinese FC is calculate in this way: since the lipid data was log-2-transformed,
i.e., log2 FC(Malay–Chinese) = lsmMalay − lsmChinese; FC= 2log2FC(Malay–Chinese)
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Methods
Samples. Subjects enrolled in the iOmics were originally recruited for a
community-based multi-ethnic prospective cohort that is part of the SPHS
project (formerly Singapore Consortium of Cohort Studies), where 122 Chinese,
120 Malays, and 122 Indians were randomly selected. Subjects in SPHS were
recruited to participate in the National Health Survey, which involved a random
age-stratified and gender-stratified sampling of Singapore residents living across
the country in order to generate a representative sample to understand the health
status of Singapore residents in the country. All subjects were between 40 and
65 years old at the point of recruitment in 2008, and did not possess any
pre-existing major health conditions, defined in this study to include
cardiovascular disease, mental illness, diabetes, stroke, renal failure, hypertension,
and cancer. However, no detailed clinical assessments were performed to confirm
the absence of above-stated diseases, and ascertainment depended on self-reports.
The ethnic membership of each subject was assigned after verbal confirmation that
all four grandparents belonged to the same ethnicity. Blood sampling for the
lipidomics and transcriptomics assays was performed after at least 12 h of fasting.
All study subjects provided written informed consent for the participation, and all
protocols associated with this study were approved by the National University of
Singapore Institutional Review Board.

Clinical, lifestyle, and diet data. All participants were required to complete a
health survey, a health screening, and a food frequency questionnaire, all of which
were administered by trained interviewers and nurses. Clinical measurements such
as weight, height, fasting glucose, glycated hemoglobin (HbA1c), blood pressure,
and lipids were recorded, and blood and urine samples were taken after at least
12 h of fasting. The food frequency questionnaire comprises a 199-question survey
that was validated for use in Singapore across the three ethnic groups52, while the
health survey covered a total of 79 questions on tobacco use, health status, and
physical activity. A total of 335 variables were measured across clinical, lifestyle, and
diet, although we excluded variables with > 20% missing entries across all the
iOmics individuals, and we excluded individuals who possessed > 20% non-valid or
missing entries across the remaining variables. The final data set for clinical lifestyle
and diet comprised 122 Chinese, 116 Malays, and 120 Indians measured across
284 variables, of which there were (i) 39 clinical variables; (ii) 46 variables related to
lifestyle; and (iii) 199 variables related to diet. The data for these 284 variables across
all 358 individuals is publicly available at //phg.nus.edu.sg/#iomics.

Genetics—genome-wide SNP genotyping. Genomic DNA of 350 individuals
(111 Chinese, 120 Malays, 119 Indians) and 348 individuals (111 Chinese, 119
Malays, 118 Indians) were assayed on the Illumina Omni 2.5 and Illumina Exome
microarrays, respectively. QC of both sets of genetic data were performed in the
following four phases in sequential order: (1) SNPs from both arrays were
combined to yield a single data set for every individual, where for overlapping
SNPs, the genotypes from the microarray with the least amount of missingness
were retained; (2) sample duplicates, related samples, or samples with missingness
> 2% were removed; (3) samples with inconsistent population membership
between the self-reported ethnicity and genetically inferred ethnicity were removed;
(4) SNPs with high degree of missingness (> 5%) and gross departure from
Hardy–Weinberg equilibrium within each ethnic group (PHWE< 10−3) were
removed. This produced a final set of 2,527,458 unique SNPs (2,299,708 from
Omni 2.5, 227,750 from the Exome chip) across 110 Chinese, 108 Malays, and
105 Indians.

Genetics—pharmacogenomics SNP genotyping. In addition to genome-wide
genotyping using the commercial Illumina microarrays, a customized Infinium
genotyping assay (Illumina, San Diego, CA, USA) was also designed to probe
4534 SNPs in 350 selected genes involved in drug absorption, distribution, and
excretion33. Genotypes were called using the proprietary Illumina Genome Studio
software package. QC procedures included removing duplicate samples with the
lower call rate, or samples with less than 90% of the SNPs successfully called. SNPs
were excluded if the call rates were less than 90%, or if concordance was less than
95% for SNPs that were also found on the post-QCed data for Omni 2.5 or the
Exome chip. The post-QC data comprised 4032 pharmacogenomic variants across
106 Chinese, 112 Malays, and 115 Indians.

Genetics—HLA classical alleles typing. A high-resolution sequence-based HLA
typing was performed on the three Class I loci (-A, -B, -C) and five Class II loci
(-DPA1, -DPB1, -DQA1, -DQB1, -DRB1) with a target resolution of at least four
digits using a sequence-based typing method with taxonomy-based sequence
analysis53, 54. A total of 198 HLA alleles were observed across 111 Chinese,
119 Malays, and 120 Indians.

Lipidomics. The plasma samples preparation and lipid extraction were followed
according to what were previously described55. Lipid sample of all individuals was
injected into an Agilent 1200 LC system with combined of an Agilent 6490 triple
quadrupole (QQQ) instrument (Agilent Technologies, Santa Clara, CA) for liquid
chromatography electrospray ionization-tandem mass spectrometry method. The
lipid species measured in this study can be found in Supplementary Data 1. The liquid
chromatography was performed on 1 µl of lipid extract using a Agilent Zorbax C18,
1.8 µm, 50 × 2.1mm column at 400 µL/min using the following gradient condition:
(i) 0% B to 40% B over 2min, then 100% B over the next 6.5min, (ii) 0.5min at 100%
B, (iii) a return to 0% B over 0.5min then 0.5min at 0% B prior to the next injection.
Both solvent A and B consisted of 10mM NH4COOH with tetrahydrofuran:
methanol:water in the ratio of (i) 20:20:60 and (ii) 75:20:5. Subsequently, precursor
ion scans and neutral loss scans were conducted as to identify the lipid species present
in human plasma. Next, multiple-reaction monitoring in positive mode56 was con-
ducted to quantify lipid species (Supplementary Data 1). The concentrations of the
lipid were then calculated by relating the peak area of each lipid species to the peak
area of the corresponding internal standard. The Phosphatidylinositols (PI), alke-
nylphosphatidylethanolamines (PE(P)), cholesterol esters (CE), DG, and TG
species were corrected for response factors that determined for each species57. The
nomenclature was used for lipid species, for instance, a lysophosphatidylcholine with
a Fatty Acid that contains 22 carbons and 6 double bonds as 22:6, which followed the
LIPID MAPS nomenclature58 and recent revisions by Liebisch et al59. The mass
spectometry data was acquired on Agilent Mass Hunter Acquisition software and
extraction of the lipid data was processed using Agilent Mass Hunter QQQ
Qualitative and Quantitative Analysis software vB.07.000 (Agilent Technologies
Corp., Santa Clara, CA). The QC was performed in two steps: (1) lipid species with
signal-to-noise ratio of greater than three, compared to lipid species signals in blank
samples were retained; (2) common lipid species with coefficient of variation
percentage of less than 25%, which were widely accepted standard were retained. No
instrumental drift was observed during the course of the MS analytical run (data not
shown). In this study, lipid concentrations were reported as relative concentrations,
the detailed description has previously been described56. It is an indication of the
relative abundance of each lipid species or class56. The relative concentrations of lipid
classes and subclasses were subsequently calculated from the sum of individual lipid
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species within each class57. A total of 282 lipid species were measured in 122 Chinese,
117 Malays, and 120 Indians, where the lipid data in pmol per ml plasma were log2-
transformed for downstream analyses.

Transcriptomics—mRNA transcripts experimental analysis. Whole blood of
all 364 individuals was used for RNA isolation using the Tempus 12-Port RNA
Isolation Kit (Applied Biosystems/Ambion, Carlsbad, CA), according to the
manufacturer’s instructions. Total RNA yield was quantified using a Nanodrop ND
1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE), and RNA
integrity number was measured with the Agilent 2100 Bioanalyzer using RNA 6000
Nano chips (Agilent Technologies Inc., Santa Clara, CA). cDNA was synthesized
and amplified from 200 ng RNA using the Applause WT-Amp System (NuGEN
Technologies Inc., San Carlos, CA) and hybridized to Affymetrix Human Gene 1.0
ST arrays (Affymetrix Inc., Santa Clara, CA). All sample labeling, hybridization,
and image scanning were performed according to the manufacturer’s instructions.
The quality of the gene expression data was assessed in the following two phases in
sequential order: (1) probesets QC to remove non-autosomal probes and to identify
a set of unique probes that were expressed in at least one sample; (2) sample QC to
remove low-quality samples, outliers, and ambiguous samples (see Supplementary
Methods for details). This produced the post-QC data set of 21,649 probesets at
98 Chinese, 75 Malays, and 96 Indians.

Non-coding RNAs (miRNAs) profiling. miRNA biomarker profiling was
performed with a patented mSMRT-qPCR miRNA assay (MIRXES) in a highly
controlled workflow. The miRNAs profiling process was performed in the
following phases: (i) total serum RNA (up to 200 µl) was extracted using the
miRNeasy serum/plasma miRNA Isolation kit (Qiagen, Hilden, Germany) on a
semi-automated QiaCube system; (ii) a set of three proprietary spike-in control
RNAs (~20 nt, MIRXES) with sequences distinct from annotated mature human
miRNAs (miRbase version21) was added into the sample lysis buffer prior to RNA
isolation; (iii) the quantified levels of the spike-in control RNAs were used to
normalize RNA isolation efficiency; (iv) the isolated miRNAs were then reverse
transcribed using miRNA-specific RT primers per manufacturer’s instruction
(MiRXES); (v) a 6-log serial dilution of synthetic templates for each miRNA and a
non-template control were concurrently reverse transcribed; (vi) sample and
template cDNAs were then pre-amplified through a 14-cycle PCR reaction using
Augmentation Primer Pools (MiRXES). In each amplified cDNA sample, a total of
300 candidate miRNAs were measured by qPCR using miRNA-specific qPCR
assays (MIRXES), with technical replicates on ViiA7-384-well qPCR system
(Applied Biosystems). Upon the completion of profiling, raw threshold cycle (Ct)

values were determined using the ViiATM 7 RUO software with automatic baseline
setting and a threshold of 0.5 and absolute copy numbers of each miRNA were
determined through interpolation of the Ct values to that of the synthetic miRNA
standard curves and adjusted for RT-qPCR efficiency. Technical variations
introduced during RNA isolation and the process of RT-qPCR were normalized
using the spike-in control RNAs. We excluded any miRNAs with ≤90% call
rate across all 364 samples, resulting in a final panel of 274 miRNA variants across
117 Chinese, 115 Malays, and 119 Indians for downstream analyses. All subsequent
analyses were performed on normalized (via global mean normalization) and log-2
transformed miRNA expression values.

Principal component analysis. A series of PCAs were performed using the
different sources of omic data as well as with a combination of clinical, lifestyle, and
diet data to identify the presence of cryptic relatedness between the subjects. The
PCA with the genetic data was performed with smartPCA and EIGENSOFT60

using a subset of 101,099 pseudo-randomly chosen SNPs selected across the 22
autosomal chromosomes to minimize linkage disequilibrium between the SNPs.
The remaining PCAs were performed using eigen-decomposition of the respective
N × K matrices, where: (i) for lipids, N= 359 samples and K= 282 lipid species;
(ii) for transcriptomics, N= 269 samples and K= 21,649 transcript probesets;
(iii) for miRNA, N= 351 samples and K = 274 miRNAs; (iv) for the combination of
clinical, lifestyle, and diet, N= 358 samples and K= 284 variables. A separate PCA
was also performed for the 358 samples using only the 199 dietary variables to
evaluate the extent that the individuals cluster according to their dietary responses.

Identifying inter-ethnic variation with analysis of variance (ANOVA). An
ANOVA was used to identify the sub-units within each omic technology that
segregated across the three ethnic groups, testing the null hypothesis that the mean
levels of the sub-unit were exactly identical across all three ethnic groups, against
the alternative hypothesis that at least one of the three ethnic groups exhibited a
different mean. Gender was adjusted in the analyses with the lipid, transcription,
and clinical/lifestyle/diet data. Owing to the different number of tests considered
in each technology, we declared statistical significance if the within-omic
Bonferroni-corrected P-value was less than 0.05.

Identifying inter-ethnic variation with genetic data. The Wright’s FST61, 62 was
used to quantify the extent of allele frequency differences between the ethnic
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groups at each genetic variant, as measured by

FST ¼ k� 1ð Þ:σ2
k:p:ð1� pÞ ;

where σ2 denote the variance of the frequency of a particular SNP or HLA allele
across the three populations, p denote the mean frequency of the same allele in the
three populations, and k denote the total number of populations. Here, each of the
HLA classical alleles at every Class I (HLA-A, -B, -C) and Class II (-DPA1, -DPB1,
-DQA1, -DQB1, and –DRB1) loci was considered as a distinct allele from a biallele
SNP in order to calculate the FST value for that HLA allele. The FST values of the
2,527,458 SNPs from the Omni 2.5 and Exome microarrays were used to derive a
genome-wide distribution, and the FST values of the 4032 pharmacogenomics SNPs
were mapped against the genome-wide distribution to derive the empirical P-value,
calculated by

Pempirical ¼ Number of genome� wide SNPwith FST >Observed FST
Total number of SNPs

:

In order to identify contiguous stretches of the genome that are most
differentiated across the three populations, we derived a region-based statistic
based on the degree of over-representation of high FST SNPs in a pre-defined
genomic window (100 kb non-overlapping window), and quantified the degree of
over-representation with a Binomial probability63. For the 4032 pharmacogenomic
SNPs, we identify SNPs that exhibited empirical P-values < 10−4, where the
threshold is conservatively chosen to account for both multiple testing and linkage
disequilibrium between the SNPs.

Mapping correlation patterns in lipidomics profiling. To assess the pattern of
correlation in the lipidomics expression, we calculated the Pearson correlation
coefficient (r) for the lipid profiles of every pair of the 282 lipid molecules. This
analysis of correlation pattern was performed separately in each of the three
populations, and we considered a lipid species to be ‘tagged’ in a population if it
exhibited a squared correlation coefficient r2> 0.80 as calculated by the software
CLUSTAG64.

Data availability. The entire set of post-QCed iOmics data is available publicly for
download at //phg.nus.edu.sg/#iomics, and the raw data for the different omic
platforms are also available upon request to statyy@nus.edu.sg. The genotype data,
gene expression data, lipid data, and miRNA data have been deposited at the
European Genome-phenome Archive (//www.ebi.ac.uk/ega/), which is hosted by
the EBI, under accession number EGAS00001002527.
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