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Abstract: In this contribution, we compare basic neural networks with convolutional neural networks
for cut failure classification during fiber laser cutting. The experiments are performed by cutting
thin electrical sheets with a 500 W single-mode fiber laser while taking coaxial camera images for
the classification. The quality is grouped in the categories good cut, cuts with burr formation and
cut interruptions. Indeed, our results reveal that both cut failures can be detected with one system.
Independent of the neural network design and size, a minimum classification accuracy of 92.8% is
achieved, which could be increased with more complex networks to 95.8%. Thus, convolutional
neural networks reveal a slight performance advantage over basic neural networks, which yet is
accompanied by a higher calculation time, which nevertheless is still below 2 ms. In a separated
examination, cut interruptions can be detected with much higher accuracy as compared to burr
formation. Overall, the results reveal the possibility to detect burr formations and cut interruptions
during laser cutting simultaneously with high accuracy, as being desirable for industrial applications.

Keywords: laser cutting; quality monitoring; artificial neural network; burr formation; cut interruption;
fiber laser

1. Introduction

Laser cutting of thin metal sheets using fiber or disk lasers is now a customary process
in the metal industry. The key advantages of laser cutting are high productivity and
flexibility, good edge quality and the option for easy process automation. Especially
for highly automated unmanned machines, seamlessly combined in line with bending,
separation or welding machines, a permanent high cut quality is essential to avoid material
waste, downtime or damaging subsequent machine steps in mechanized process chains.
As a consequence, besides optimizing the cutting machine in order to reduce the influence
of disturbance variables, cut quality monitoring is also of utmost interest.

The most common and disruptive quality defects are cut interruptions and burr
formation [1]. To obtain high-quality cuts, process parameters, such as laser power, feed
rate, gas pressure, working distance of the nozzle and focus position, respectively, are to be
set appropriately. Imprecise process parameters and typical disturbance values like thermal
lenses, unclean optics, damaged gas nozzles, gas pressure fluctuations and the variations
of material properties may lead to cut poor-quality and, thus, nonconforming products.
To ensure a high quality, an online quality monitoring system, which can detect multiple
defects, would be the best choice in order to respond quickly and reduce downtime,
material waste or cost-extensive rework. Until now, most reviewed sensor systems for
monitoring laser cutting focus only on one single fault.

For detecting burr formation during laser cutting, different approaches using cameras,
phododiodes or acoustic emission were investigated. In [2,3] burr formation, roughness
and striation angle during laser cutting with a 6 kW CO2 laser are determined by using
a NIR camera sampling with 40 Hz. By using two cameras in [4], laser cutting with
a CO2 laser is monitored by observing the spark trajectories underneath the sheet and
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melt bath geometries and correlate this to the burr formation or overburning defects. A
novel approach is used in [5], employing a convolutional neural network to calculate burr
formation from camera images with a high accuracy of 92%. By evaluating the thermal
radiation of the process zone with photodiodes [6], the burr height during fiber laser cutting
can be measured from the standard deviation of a filtered photodiode signal. Results by
using photodiode-based sensors integrated in the cutting head [7] showed that the mean
photodiode’s current increases with lower cut qualities, while similar experiments revealed
increasing mean photodiode currents at lower cut surface roughness [8]. An acoustic
approach was investigated by monitoring the acoustic emission during laser cutting and
deducing burr formation by evaluating the acoustic bursts [9].

Also for cut interruption detection, most approaches are based on photodiode signals
or camera images. Photodiode-based methods for cut interruption detection are signal
threshold-based [10], done by the comparison of different photodiodes [11] or based on
cross-correlations [12]. However, all those methods have the disadvantage of requiring
thresholds that vary with the sheet thickness or laser parameters. In addition, an adap-
tation to other materials or sheet thicknesses requires a large engineering effort to define
respective threshold values by extensive investigations. To avoid this problem, [13] uses
a convolutional neural network to calculate cut interruptions from camera images dur-
ing fiber laser cutting of different sheet thicknesses with an accuracy of 99.9%. Another
approach is performed by using a regression model based on polynomial logistics [14] to
calculate the interruptions from laser machine parameters only.

This literature review reveals that for both burr formation monitoring and cut inter-
ruption, individual detection schemes have previously been reported, but a combined and
simultaneous detection for both failure patterns has not been reported so far. In addition,
many of the previous studies applied CO2 lasers, which are often replaced nowadays by
modern fiber or disk lasers, for which, in turn, fewer reports are available. To detect both
failures with the same system, we chose the evaluation of camera images with neural
networks, as they are able to achieve a high accuracy in detecting both cut failures [5,13].
The use of neural networks, especially for convolutional neural networks (CNN), has
been demonstrated for various image classification purposes, such as face recognition and
object detection [15,16], in medicine for cancer detection [17] and electroencephalogram
(EEG) evaluations [18] or in geology for earthquake detection [19]. For failure analyses in
technical processes, neural networks have also been successfully used for, e.g., concrete
crack detection [20], road crack detection [21] or detecting wafer error determinations [22].
In addition, detecting different failure types with the same system has been successfully
proven with neural networks, such as detecting various wood veneer surface defects [23]
or different welding defects [24] during laser welding.

The objective of this publication is to detect both burr formation and cut interruptions
during single-mode laser cutting of electrical sheets from camera images with neural
networks. The advantages of our system are, firstly, easy adaption to industrial cutting
heads, which often already have a camera interface. Secondly, images are taken coaxially
to the laser beam and are therefore independent of the laser cut direction. Thirdly, due
to the use of a learning system the engineering effort is low when the system has to be
adapted to other materials or sheet thicknesses. Two different neural network types are
used, namely a basic neural network and a convolutional neural network. The basic neural
network is faster and can detect bright or dark zones but is less able to extract abstractions
of 2D features and needs a lot of parameters when the networks get more complex. On
the other hand, convolutional neural networks are much better in learning and extracting
abstractions of 2D features and usually need fewer parameters. However, they require a
higher calculation effort due to many multiplications in the convolution layers [25,26].

The cutting of electrical sheets is chosen because it is an established process in the
production and prototyping of electric motors and transformers [27–30], i.e., it is a relevant
and contributing process step to foster e-mobility. In order to reduce the electrical losses
caused by eddy currents, the rotor is assembled of a stack of thin electrical sheets with
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electrical isolation layers in between the sheets. The sheet thickness varies typically between
0.35 mm to 0.5 mm, with the eddy currents being lower for thinner sheets. As a result, for
an electric motor, a large number of sheets with high quality requirements are necessary.
Especially burr formations result in gaps between sheets or the burr can pierce the electrical
isolation layer and connect the sheets electrically which both reduce the performance of
motors drastically. Therefore, quality monitoring during laser cutting is of great interest
for industrial applications.

2. Experimental
2.1. Laser System and Cutting Setup

In this study, a continuous wave 500 W single-mode fiber laser (IPG Photonics, Bur-
bach, Germany) is used to perform the experiments. The laser system is equipped with
linear stages (X, Y) for positioning the workpiece (Aerotech, Pittsburgh, PA, USA) and a
fine cutting head (Precitec, Gaggenau, Germany) is attached to a third linear drive (Z). The
assisted gas nitrogen with purity greater than 99.999% flows coaxially to the laser beam.
The gas nozzle has a diameter of 0.8 mm and its distance to the workpiece is positioned
by a capacitive closed loop control of the z-linear drive. The emitting wavelength of the
laser is specified to be 1070 nm in conjunction with a beam propagation factor of M2 < 1:1.
The raw beam diameter of 7.25 mm is focused by a lens with a focal length of 50 mm.
The according Rayleigh length is calculated to 70 µm and the focus diameter to 10 µm,
respectively.

The design of the cutting head with the high-speed camera and a photo of the laser
system are illustrated in Figure 1. The dashed lines depict the primary laser radiation
from the fiber laser, which is collimated by a collimator and reflected by a dichroic mirror
downwards to the processing zone. There the laser radiation is focused by the processing
lens through the protective glass onto the work piece, which is placed on the XY stages.
The process radiation from the sheet radiates omnidirectional (dash-doted line), thus partly
through the nozzle and protective glass and is collimated by the processing lens upwards.
The process radiation passes the dichroic mirror and is focused by a lens onto the high-
speed camera. The focus of the camera is set to the bottom side of the sheet in order to
have a sharp view of possible burr formations.
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2.2. Laser Cutting

The laser cuts are performed in electrical sheets of the type M270 (according to
EN 10106 this denotes a loss of 2.7 W/kg during reversal of magnetism at 50 Hz and
1.5 T) with a sheet thickness of 0.35 mm. This sheet thickness is chosen because it fits
well to the laser focus properties e.g., Rayleigh length and it is one of the most often
used sheet thicknesses for electrical motors and transformers, because it provides a good
compromise between low eddy currents and high productivity. Stacks of thicker sheets
are faster to produce because less sheets are required per stack but with increasing sheet
thickness also unwanted eddy currents increase. Thinner sheet thicknesses require a higher
production effort per stack and are more difficult to cut because they are very flexible, and
warp under the gas pressure and thermal influence. In these experiments only one sheet
thickness is used, but please note that in previous publications with similar systems an
adaptation of the results to other sheet thicknesses was possible with only minor additional
expenses [5,13].

As ad-hoc pre-experiments reveal, the parameter combination of a good quality cut is
a laser power of 500 W, a feed rate of 400 mm/s and a laser focus position on the bottom
side of the metal sheet. The gas nozzle has a diameter of 0.8 mm and is paced 0.5 mm above
the sheet surface and the gas pressure is 7 bar. For the experimental design, the parameters
are varied to intentionally enforce cut failures. Burr formations are caused by less gas flow
into the cut kerf due to higher nozzle to sheet distance, lower gas pressure, an overvalued
power to feed rate ratio or damaged nozzles. Cut interruptions are enforced by too high
feed rates or too low laser power.

In the experimental design, 39 cuts with different laser parameters are performed
for training the neural network and 22 cuts are performed for testing, with the cuts being
evenly distributed to the three cut categories (good cut, cuts with burr formation and cut
interruptions). A table of all cuts with laser machine parameters, category and use can be
found in the Appendix A. The cuts are designed from a straight line including acceleration
and deceleration paths of the linear stages. Exemplifying images of the sheets from all three
cut categories taken by optical microscope after the cutting process are shown in Figure 2.
Firstly, for a good quality cut, both top and bottom side of the cut kerf are characterized by
clear edges without damages. Secondly, for a cut with burr, the top side is similar to the
good quality cut, however on the bottom side drops of burr formation are clearly visible.
Thirdly, the images of the cut interruption reveal a molten line on the sheet top side and
only a slightly discolored stripe on the bottom side with both sides of the sheet not being
separated.
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Figure 2. Images of the top and bottom side of laser cuts with and without cut errors taken with an optical microscope after
laser cutting.

2.3. Camera and Image Acquisition

For image acquisition during laser cutting, we used a high-speed camera (Fastcam
AX50, Photron, Tokyo, Japan) with a maximum frame rate of 170,000 frames per second.
The maximum resolution is 1024 × 1024 pixels, with a square pixel size of 20 × 20 µm2

in combination with a Bayer CFA Color Matrix. For process image acquisition, videos
of the laser cutting process are grabbed with a frame rate of 10 kilo frames per second
with an exposure time of 2 µs and a resolution of 128 × 64 pixels. Even at this high
frame rate, no oversampling occurs and consecutive images are not similar, because the
relevant underlying melt flow dynamics are characterized by high melt flow velocities in
the range of 10 m/s [31] and vary therefore at estimated frequencies between 100 kHz and
300 kHz [32]. Please note, due to the lack of external illumination in the cutting head, the
brightness in the images are caused by the thermal radiation of the process zone.

Two exemplifying images of each cut category are shown in Figure 3 with the cut
direction always upwards. The orientation of the images is always the same because
the straight lines are cut in the same direction. For complex cuts, images with the same
orientation can be transformed from various oriented images by rotation based on the
movement direction of the drives. In these images, brightness is caused by the thermal
radiation of the hot melt. Good cuts are characterized by a bright circle at the position on
the laser focus, and below this, two tapered stripes indicating the flowing melt at the side
walls of the cut kerf, because in the middle the melt bath is blown out first. The cuts with
burr are similar to the good quality cuts but tapered stripes are formed differently. The
cut interruptions are very different to the other categories and are characterized by larger
bright areas and a more elliptical shape with no tapered stripes.
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Figure 3. Examples of camera images of the three cut categories taken during laser cutting with the high speed camera.

From the 39 laser cuts, the experimental design delivers the same number of training
videos with overall 52 thousand training images, while from the 22 testing cuts 34 thousand
test images are provided. It is worth to mention, that the size of several ten thousands of
training images is typical for training neural networks [33]. For both training and testing,
the images are almost evenly distributed on the three categories with cut interruptions
being slightly underrepresented. The reason for this underrepresentation is, that cut
interruptions only occur at high feed rates, i.e., images from acceleration and deceleration
paths can be used only partially and, in turn, less images per video can be captured.

2.4. Computer Hardware and Neural Network Design

For learning and evaluating the neural network, a computer with an Intel Core 7-
8700 processor with a 3.2-GHz clock rate in combination with 16-GB DDR4 RAM was
used. All calculations are performed with the CPU rather than the GPU to show that the
machine learning steps are also possible to run on standard computers, which are usually
integrated with laser cutting machines. The used software was TensorFlow version 2.0.0
in combination with Keras version 2.2.4 (Software available from: https://tensorflow.org
(accessed on 24 March 2021)).

In most publications about image classification with neural networks, the images have
major differences. In contrast, in the images captured in our experiments, the object to
analyze always has the same size, orientation and illumination conditions which should
simplify the classification when compared to classifying common, moving items like vehi-
cles or animals [34,35]. Furthermore, our images have a rectangular shape with 128 × 64
pixels, while most classification algorithms are optimized on square images sizes having
mostly a resolution of 224 × 224 pixels like MobileNet, SqueezeNet or AlexNet [36,37].
Because an enlargement of the image size slows the system drastically, two self-designed
and completely different neural network are used with many elements being adapted
to other, often used neural networks. The first network, as shown in Figure 4 is a basic
network without convolution and only consists of image flattening followed by two fully
connected layers with N nodes and ReLU Activation. To classify the three different cut
categories, a fully connected layer with 3 nodes and softmax activation completes the
network. The second network is a convolutional neural network with four convolution
blocks followed by the same three fully connected layers as in the basic network. Each
block consists of a convolution layer with a kernel size of 3 × 3 and M filters, which
the output of the convolution is added with input of the block. Such bypasses are most
common in, e.g., MobileNet [36]. To reduce the number of parameters, a max pooling layer
with a common pool size of 2 × 2 is used [26]. In contrast to often neural networks used
in the literature, we use a constant instead of an increasing filter number for subsequent
convolution layers and we use normal convolutions rather than separable or pointwise
convolutions. Because every block halves the image size in 2 dimensions, after 4 blocks
the image size is 8 × 4 × M. The fully connected layers after the flattening have the same
number of nodes as the number of parameters delivered by the flattened layer. The used
model optimizer is Adam, which according to [38], together with SDG (Stochastic Gradient
Descent) provides superior optimization results. Furthermore, we use the loss function

https://tensorflow.org
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“categorical crossentropy” to enable categorical outputs (one hot encoding), and the metrics
“accuracy”.
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2.5. Methodology

The methodology of our experiments is shown in the workflow diagram in Figure 5.
In a first step, the laser cuts are performed and during cutting videos are taken from
the process zone with the high speed camera, some of these images have been shown
in Figure 3. After cutting, the cut kerfs are analyzed by with an optical microscope and
categorized manually whether a good cut, burr formation or a cut interruption occurred
(examples of these images shown in Figure 2). Based on this classification, the videos
taken during laser cutting are labeled with the corresponding class. In case the cut quality
changes within one cut, the video is divided, so the quality is constant within a video. Then
the videos are separated in training videos and test videos, so the images for testing are
not from videos used for training. From the training videos, the single frame is extracted
and with these images the neural network is trained. Furthermore, the single frames are
extracted from the test videos, and the resulting images are used to test the trained neural
network.
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3. Results
3.1. Training Behaviour

The different neural networks are trained on the training dataset and the performance
is calculated on the test dataset. Exemplarily, the training behavior of the convolutional
neural network with 16 filters in each convolution is shown in Figure 6. Apparently, the
training accuracy rises continuously with the training epochs, reaching 99% after 10 epochs
and 99.5% after 20 epochs, respectively. On the other hand, the test accuracy reaches 94%
after three epochs and fluctuates with further training around this level, which is a typical
behavior for neural network training [39]. Even further training, above 20 epochs, results
only in a fluctuation of the accuracy rather than a continuous increase. To reduce the
deviation of the test results for comparisons between different networks, the mean of the
test results between 10 and 20 epochs is used.
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3.2. Basic Neural Network

To determine the performance of the basic neural networks, those with node numbers
N between 5 and 1000 are trained on the training dataset and tested on the test dataset.
The mean test accuracy between 10 and 20 training epochs and the required calculation
time per image are shown in Figure 7. It is obvious that the accuracy for a very small
network with only five nodes is quite high, being 92.8%, and the calculation time of 0.1 ms
per image being very fast. With an increasing number of nodes, the accuracy increases to
a maximum of 95.2% at 1000 nodes, which is accompanied by a higher calculation time
of 0.32 ms. Parallel to the calculation time, also the trainable parameters increase with
the number of nodes starting from 122 thousand parameters for five nodes and reaching
25 million parameters at 1000 nodes. A further increase of the parameters is not considered
to be useful, because the training dataset consist of 420 million of pixels (number of images
x pixels per image), so the neural network tend to over fit the training dataset rather than
developing generalized features. Generally, with the basic neural network accuracies of
94% (mean) are achievable.
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Figure 7. Accuracy of the basic neural network as a function of nodes per fully connected layer.

3.3. Convolutional Neural Network

Under the same conditions as the basic neural network, the convolutional neural
network is also trained and tested. The results of the accuracy and calculation time for
filter numbers between 4 and 64 are depicted in Figure 8. The accuracy of the neural
network is quite high for all filter numbers and fluctuates between 94.6% and 95.8% with
no clear trend. In addition, the accuracy also varies for the same network when it is
calculated several times. However, the calculation time increases clearly with the number
of filters from 0.36 ms per image to 1.77 ms. The number of trainable parameters start with
34 thousand for four filters and increases to 8.4 Million for the 64 filters (details how to
calculate the number of parameters are described in [25]). For the mean, the convolutional
neural network is able to classify about 95% of the image correctly.
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3.4. Comparison between Cut Failures

Since the literature is available for both burr detection and cut interruptions during
laser cutting, which vary strongly in accuracy, the performance of our neural networks
in detecting one cut failure is determined. Therefore, the accuracy in classifying good
cuts and cuts with burr as well as good cuts and cut interruptions is calculated separately.
For this investigation, the convolutional neural network with 16 filters is chosen, because
it provides high accuracy and a comparable moderate calculation time. The results of
the separated classification are shown in Figure 9. It is obvious that the detection of cut
interruptions is very reliable with the accuracy being 99.5%, as being compared to 93.1%
when detecting burr formation. The reason for this can also be seen in Figure 3, where good
cuts are much more similar to cuts with burr, while cut interruptions look very different to
both of the other failure classes. Both values individually agree with the literature values,
which are 99.9% for the cut interruptions [13] and 92% for the burr detection [5], yet for burr
detection in the literature a more complex burr definition is chosen. This shows that cut
interruptions are much easier to detect from camera images compared to burr formations.
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Figure 9. Comparison of the test accuracy between interruptions and burr formations.

3.5. Error Analysis

For the error analysis, single misclassified images and the distribution of misclas-
sifications are analyzed. For the temporal distribution, a video of a cut with different
cut qualities is produced. The measured quality obtained by the optical microscope and
the prediction of the convolutional neural network with 16 filters is shown in Figure 10.
Misclassifications are indicated by red dots that are not placed on the blue line and it can
clearly be seen, which misclassifications occur more often than others. The most frequent
misclassifications are cuts predicted as burr. Interruptions are rarely misclassified and
other images are seldom misclassified as interruptions, which accompanies the results in
Section 3.4. The distribution of the misclassifications reveals no concentration on a specific
sector but minor accumulations of several misclassifications are observed. In addition,
some areas without any misclassification or only single misclassifications can be found.
These results reveal that misclassifications do not occur all at once or at a special event but
are widely distributed.
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Figure 10. Measured image class and prediction by the neural network.

To analyze the misclassified images, two exemplified images from a good cut classified
as cut with burr are shown in Figure 11. In contrast to the images in Figure 3, where the
bright area is followed by two tapered stripes, in Figure 11, these stripes are hardly observed.
However, these following stripes are important for the classification, because in this area
the burr is generated. Therefore, in the case of missing stripes, the classification between
cuts with and without burr is difficult and thus characterized by many misclassifications.
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4. Discussion

With the classification in three different categories during laser cutting, good cuts
can be distinguished from cuts with burr and cut interruptions. The convolutional neural
network has, depending on the number of filters, a better classification accuracy by about
1% when compared to the basic networks. The maximum accuracy for the basic neural
networks (1000 nodes) is also lower, being 95.2% as compared to a 95.8% accuracy of
the convolutional neural network with 16 filters. Nevertheless, the difference between
both neural network types is small, which can be explained by the objects in the images
always having the same size, orientation and brightness, which is not usually the case for
many other classification tasks [34,35]. As a consequence, the basic neural network can
classify the images by bright or dark zones and does not necessarily require learning and
extracting abstractions of 2D features which is the main advantage of convolutional neural
networks [25,26].

For the required accuracy, the size of the cut failure has to be considered. Because of
the accuracy being below 100%, a post algorithm is necessary which should report an error
only when a certain amount of failures occurs in a sequent number of images. To detect
geometrically long failures, which can occur, e.g., by unclean optics, our classification
system is adequate. Very short failures, like single burr drops when cutting an edge, are
probably not be detectable with our system. It is remarkable for the results with both
neural networks, however, that at least 92.8% accuracy (cf. Figure 7) can be achieved
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with any network configuration independent from network type, number of nodes or
filters. This means that about 93% of the images are easy to classify because they differ
strongly between the categories. Furthermore, about 2% of the images can be classified by
more complex neural networks (cf. Sections 3.2 and 3.3). About 5% of the images, mostly
between the categories good cuts and cuts with burr formation, are very difficult to classify
because the images are quite similar (cf. Figure 3). For an industrial application, it has to
be further considered whether the intentionally enforced cut failures are representative for
typical industrial cut failures, e.g., as a result of unclean optics, which are not reproducible
in scientific studies.

The main advantage of the basic neural network is the much lower computation time
between 0.1 ms and 0.32 ms, while the convolutional neural network requires 0.36 ms to
1.7 ms, respectively. For typical available industrial cameras having maximum frame rates
in the range of 1000 Hz, a calculation time for the classification of about 1 ms is sufficient,
which is fulfilled by all basic and most of our convolutional neural networks. A similar
frame rate was also used by [5] when detecting burr formations during laser cutting. With
maximum cutting speeds of modern laser machines in the range of 1000 mm/s still a local
resolution of 1 mm is achieved which can clearly be considered as adequate for industrial
use.

Following this fundamental and comparative analysis, future investigations have to
address field trials of the proposed sensor system and classification scheme in industrial
cutting processes. Within such industrial environments additional error sources may
appear and further reduce the cut quality, such as damaged gas nozzles or partially unclean
optics which in turn are difficult to reproduce under laboratory conditions. The images
from these error sources can be added to the training data and improve the detection rate
of the classification system. To improve the detection rate it is also possible to classify not a
single image but a series of 3 to 10 subsequent images, which reduces the influence of a
single misleading image.

5. Conclusions

Overall, with our neural network approach, two cut failures during laser cutting can
be detected simultaneously by evaluating camera images with artificial neural networks.
With different neural network designs up to 95.8% classification accuracy can be achieved.
Generally, convolutional neural networks have only minor classification advantages of
about 1% over basic neural networks, while the basic neural networks are considerably
faster in calculation. The detection of cut interruptions is remarkably higher when com-
pared to the burr formation, because the images of cut interruptions are more different
from the good cuts compared to the images with burr formation. In general, the detection
rate is high enough to advance industrial applications.
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Appendix A

Table of all performed laser cuts with machine parameters, cut category and use for
training and test.

Nr: Laser Feed Rate
Nozzle

Distance
Focus

Position
Category Use

W mm/s mm mm

1 500 600 0.5 −1.25 Cut Training

2 300 400 0.5 −1.25 Cut Training

3 500 500 0.5 −1.25 Cut Training

4 500 300 0.5 −1.25 Cut Training

5 300 600 0.5 −1.25 Interruption Test

6 200 500 1,0 −1.75 Interruption Training

7 500 500 0.8 −1.55 Burr Training

8 500 600 0.5 −1.25 Cut Test

9 250 500 0.5 −1.25 Interruption Test

10 500 400 0.5 −1.25 Cut Test

11 500 600 0.5 −1.25 Interruption Training

12 500 500 1,0 −1.75 Burr Training

13 500 500 0.5 −1.25 Cut Test

14 500 300 0.5 −1.25 Cut Training

15 500 200 0.5 −1.25 Cut Test

16 500 500 0.5 −1.25 Cut Training

17 500 500 0.5 −1.25 Interruption Test

18 400 500 0.9 −1.65 Burr Training

19 500 500 0.8 −1.55 Burr Training

20 200 500 1,0 −1.75 Interruption Training

21 500 300 0.5 −1.45 Burr Training

22 150 500 0.5 −1.25 Interruption Test

23 500 400 0.5 −1.25 Cut Training

24 500 500 0.5 −1.25 Cut Test

25 500 400 0.5 −1.25 Training

26 400 500 0.8 −1.55 Burr Training

27 500 500 0.8 −1.55 Burr Test

28 150 500 0.5 −1.25 Interruption Training

29 200 500 1,0 −1.75 Interruption Test

30 400 500 0.9 −1.65 Burr Training

31 300 600 0.5 −1.25 Interruption Training

32 500 500 1,0 −1.75 Burr Training

33 500 300 0.5 −1.25 Cut Test
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Nr: Laser Feed Rate
Nozzle

Distance
Focus

Position
Category Use

W mm/s mm mm

34 400 500 1,0 −1.75 Burr Test

35 500 500 0.5 −1.25 Interruption Training

36 500 400 0.5 −1.25 Cut Training

37 150 500 0.5 −1.25 Interruption Training

38 400 500 0.5 −1.45 Burr Training

39 500 600 0.5 −1.25 Interruption Training

40 400 400 0.5 −1.25 Cut Training

41 500 600 0.5 −1.25 Cut Training

42 500 600 0.5 −1.25 Interruption Test

43 400 500 0.8 −1.55 Burr Test

44 400 500 0.5 −1.45 Burr Test

45 400 400 0.5 −1.25 Cut Test

46 500 500 0.5 −1.25 Cut Training

47 500 200 0.5 −1.25 Cut Training

48 300 400 0.5 −1.25 Interruption Training

49 400 500 0.5 −1.45 Burr Training

50 500 400 0.5 −1.25 Cut Test

51 500 500 0.8 −1.55 Burr Training

52 400 500 0.9 −1.65 Burr Training

53 400 500 0.9 −1.65 Burr Test

54 500 300 0.5 −1.45 Burr Training

55 300 400 0.5 −1.25 Cut Training

56 500 300 0.5 −1.45 Burr Test

57 250 500 0.5 −1.25 Interruption Training

58 300 400 0.5 −1.25 Cut Training

59 300 400 0.5 −1.25 Interruption Training

60 300 600 0.5 −1.25 Interruption Training

61 300 400 0.5 −1.25 Interruption Test
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