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It is well established that an individual lymphocyte can be affected by more than 
one immunologic stimulus. Thus, the net response of a lymphocyte may be determined 
by exogenous antigen, by major histocompatibility complex determinants present on 
the surface of antigen-presenting cells, and by positive and negative regulatory cells, 
and /or  their products. Exposure to one or more of these stimuli can have functionally 
distinct consequences for the lymphocyte, including cell division, functional differ- 
entiation, paralysis, and cell death. Thus, it seems apparent that the lymphocyte must 
have a mechanism for distinguishing, integrating, and responding to multiple stimuli. 
One possible mechanism for the integration of multiple stimuli by a lymphocyte 
would be through interactions between different cell surface molecules. 

Two methods have been used to evaluate the existence of such interactions between 
lymphocyte surface molecules. In the first method, specific ligand (usually antibody) 
is bound to molecule A and the ability to serologically detect molecule B is subse- 
quently evaluated. Using this method, interactions have been reported between Ia 
antigens and Fc IgG receptors (FcGR) 1 (1, 2) and LyM antigens and FcGR (3) on B 
lymphocytes, and between Ia antigens and FcGR (4, 5), H-2D b and Lyt 2.2 (6, 7), 
H-2K b and Lyt 1.2 (6, 7), H-Y and TL  (8), D b and TL  (6, 7), and H-Y and D b (8) on 
T lymphocytes. The simplest (but not the only) interpretation of these data is that the 
interacting molecules are specifically (nonrandomly) located in close proximity to 
each other on the lymphocyte surface membrane. Comparisons between fixed and 
unfixed cells have shown that in some cases the interaction existed before the 
introduction of the ligand, whereas in others it was induced by ligand (7, 8). 

In the second method, ligand is bound to molecule A and allowed to redistribute 
to one pole of the cell (capping). Cell surface molecule B is then evaluated for evidence 
of redistribution paralleling that of molecule A (cocapping). With this method, 
interactions have been reported between surface IgM (sIgM) and FcGR (9), the 

l Abbreviations used in this paper: BSA, bovine serum albumin; BSA-PBS, Na phosphate-buffered saline 
containing 2% BSA and 0.07% Na azide, pH 7.2; FcGR, Fc IgG receptor; FITC, fluorescein isothiocyanate; 
G, goat; H-aggregated IgG, FITC-conjugated heat-aggregated human Cohn fraction II IgG; HBSS-FCS, 
Hanks' balanced salt solution without phenol red containing 10% (vol/vol) heat-inactivated fetal calf 
serum; LPS, lipopolysaccharide; R, rabbit; S, sheep; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis; sIgD, surface IgD; sIgM, surface IgM; SPA-Sepharose, staphylococcal Protein A- 
Sepharose; TMRITC, tetramethylrhodamine isothiocyanate; TNP, trinitrophenyl. 
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lipopolysaccharide (LPS) receptor and s lgM (10), and surface IgD (slgD) and the 
LPS receptor (10) on B lymphocytes.  The  simplest (but again, not the only) interpre- 
tation of  these da ta  is that  the two molecules physically interact with each other 
directly or indirectly on the cell surface. 

T he  purpose of  the present studies was to further characterize the interaction 
between two B lymphocyte  surface molecules, sIgM and FcGR. The  results indicate 
that:  (a) thee is a specific interaction between s lgM and  F c G R  on the B lymphocyte  
surface that  requires occupancy  of  both receptors; and  (b) occupancy of  the F c G R  by 
monomeric  IgG produces a reversible alteration of  this receptor. It is likely that  
whenever s lgM is involved in vivo in a B lymphocyte  response to an immunologic  
stimulus, the F c G R  is also involved. 

M a t e r i a l s  a n d  M e t h o d s  
Animals and Cells. Adult male mice of strains C57BL/10Sn (B10) and B10.A/SgSn were 

purchased from The Jackson Laboratory, Bar Harbor, Maine. Single cell suspensions from 
spleen were prepared by density flotation as previously described (1). The cells were resuspended 
at 20 × 106/ml in Hanks' balanced salt solution without phenol red containing 10% (vol/vol) 
heat-inactivated fetal calf serum (HBSS-FCS) for capping studies or in Na-phosphate-buffered 
saline containing 2% bovine serum albumin and 0.07% Na azide, pH 7.2, (BSA-PBS) for 
noncapping studies. 

Fluorescent Reagents 
FLUOROCHROME-CONJUGATED F(ab')2 AND F(ab') ANTI-Ig REAGENTS. Rabbits and goats were 

immunized with purified myeloma proteins by standard techniques. The antisera obtained 
were absorbed using solid-phase immunoabsorbents prepared by covalently coupling purified 
myeloma proteins or normal or newborn mouse serum to Sepharose or agarose via cyanogen 
bromide (11). The IgG fractions of the various antisera were obtained either by affinity 
purification using solid-phase immunoabsorbents or DEAE cellulose chromatography. F(ab')2 
fragments were prepared by digestion of the IgG with pepsin (12), followed by chromatography 
on Sephadex G-150 to isolate the F(ab')2 fraction. Finally, these were absorbed with staphylo- 
coccal Protein A-Sepharose (SPA-Sepharose; Pharmacia Fine Chemicals, Div. of Pharmacia 
Inc., Piscataway, N. J.) to remove minor amounts of contaminating intact IgG. Certain of the 
F(ab')2 preparations were analyzed for contaminating IgG by sodium dodecyl sulfate-polyacryl- 
amide gel electrophoresis (SDS-PAGE). The F(ab')2 preparations were conjugated to fluorescein 
isothiocyanate (FITC; 13) or tetramethylrhodamine isothiocyanate (TMRITC) as described 
(14). The preparations were evaluated for specificity by the fluorescent staining of spleen cells, 
thymocytes, myelomas, and hybridomas of known Ig isotype, as well as Sepharose beads 
coupled with various purified myeloma proteins. All reagents were specific inthat no inappro- 
priate fluorescence was observed. F(ab') fragments were prepared by reduction and alkylation 
(15) of the fluorochrome-conjugated F(ab')z preparations with subsequent isolation of the F(ab') 
fraction by Sephadex G-150 chromatography. 

(a) Rabbit F(ab')2 and F(ab') Anti-Mouse Mu [R-F(ab')~ and R-F(ab') Anti-Mu]. Fluoro- 
chrome-conjugated R-F(ab'), anti-mu was prepared under contract NCI-CB-53912-31, except 
for the absorption with SPA-Sepharose, which was done in our laboratory. The immunogen 
was MC774 (IgMk) and the absorbents were MOPC141 (IgG2bk) and newborn mouse serum. 
The concentration used was 250 #g/ml. The preparation was 0.5% contaminated with intact 
IgG, which would not bind to SPA-Sepharose. In certain experiments (see Results) the 
R-F(ab')z anti-mu was absorbed with R-anti-TNP-TNP-BSA-Sepharose. 

(b) Goat F(ab')2 Anti-Mouse Mu [G-F(ab')z Anti-Mu]. Absorbed and affinity-purified goat 
IgG anti-mouse mu was a kind gift of Dr. Richard Asofsky, National Institutes of Health, 
Bethesda, Md. The immunogens were MOPC 104 (IgM~) and MC471B (IgMk). The absorbents 
were MOPC70A (IgGlk), MOPC173 (IgG2ak), and MOPC195 (IgG2bk). The antibodies were 
affinity-purified on TEPC183 (IgMk). The concentration used was 15-60 #g/ml. It was 2% 
contaminated with intact IgG, which would not bind to SPA-Sepharose. 
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(c) Rabbit F(ab')2 Anti-Mouse Kappa [R-F(ab')~ Anti-k]. Fluorochrome-conjugated 
R-F(ab')2 anti-kappa was prepared under contract NCI-CB-53912-31, except for absorption 
with SPA-Sepharose, which was done in our laboratory. The immunogen was PC5 (IgG2ak) 
and the absorbent was HOPC1 (IgG2a~). The concentration used was 200 #g/ml. 

(d) Rabbit F(ab')2 and F(ab') Anti-Mouse Delta [R-F(ab')2 and F(ab') Anti-Delta]. Fluoro- 
chrome-conjugated F(ab')2 anti-delta was given and prepared (except for Sephadex g-150 
chromatography, which was done in our laboratory) by Dr. Fred D. Finkelman, Uniformed 
Services University of the Health Sciences, Bethesda, Md. The immunogen was TEPC1017 
(IgDk; 16) and the absorbents were normal mouse serum and TEPCI83 (IgMk). It was affinity- 
purified with TEPC1033 (IgDk; 16) and was used at a concentration of 20 #g/ml for F(ab')2 
and 150 #g/ml for F(ab'). 

(e) Rabbit F(ab')z Anti-Mouse IgG2 [R-F(ab')2 Anti-lgG2]. Fluorochrome-conjugated R- 
F(ab')2 anti-IgG2 was prepared under contract NCI-CB-53912-31 except for absorption with 
SPA-Sepharose, which was done in our laboratory. The immunogen was PC5 (IgG2ak) and the 
absorbents were MOPC21 (IgGlk) and MC774 (IgMk). It was used in conjunction with anti- 
I-A antibody (see below). 

Igo ^NTI-MOtJSE xg. Rabbit  IgG anti-mouse Ig conjugated with FITC (R-IgG anti-Ig) was 
purchased from N. L. Cappel Laboratories, Inc., Cochranville, Pa. (lot 7282). It was ultracen- 
trifuged before use (17) and was used at a dilution of 1:8. 

ANTH-^ ^wrmovv. IgG2b anti-I-A k was purified by affinity chromatography on SPA- 
Sepharose from tissue culture supernatant fluids of hybridoma 10-2.16 (18; obtained from The 
Salk Institute, San Diego, Calif.). For the present experiments, it was necessary to prevent this 
antibody from binding to FcGR via the Fc portion of the molecule. It was found in preliminary 
experiments that preincubation for 30 min at 4°C with sufficient (> 17/1, wt/wt) fluorochrome- 
conjugated R-F(ab')2 anti-IgG2 would prevent binding of IgG2a (HOPC1) to the FcGR on 
P388Dt cells (David M. Segal and Howard B. Dickler, unpublished observations). Therefore, 
equal volumes of 10-2.16 (4.5 pg/ml) and fluorochrome-conjugated RF(ab')2 anti-IgG2 (125 
pg/ml) were preincubated for 30 min at 4°C for use in the experiments. The R-F(ab')2 anti- 
IgG2 also provided labeling for fluorescent detection of I-A k, and sufficient cross-linking to 
produce capping (see Results). 

Igo COMPLEXES. Two types of complexes were utilized for detection of FcGR on B lympho- 
cytes. 

(a) Antigen-Antibody Complexes. The methodology for preparation of the soluble antigen- 
antibody complexes and their cross-linking and indirect fluorescent detection has been described 
in detail (19). Briefly, affinity-purified rabbit anti-trinitropbenyl (R-anti-TNP) and TNP- 
conjugated bovine serum albumin (TNP-BSA) were mixed at fourfold antigen excess to produce 
soluble complexes that were used at 10 #g/ml (antibody). Further cross-linking and fluorescent 
detection were obtained with FITC- or TMRITC-labeled affinity-purified sheep (S)-anti-TNP 
or R-anti-TNP (125-250 pg/ml).  The affinity-purified anti-TNP antibodies were the kind gift 
of Dr. Pierre Henkart, National Institutes of Health, Bethesda, Md. 

(b) Heat-aggregated IgG. FITC-conjugated, heat-aggregated human Cohn fraction II IgG 
(H-aggregated IgG) was prepared as previously described (1) and used at 2 mg/ml.  

MONOMERm MOUSE Igo. Mouse IgG was purchased from Miles Laboratories, Elkhart, Ind. 
This IgG was chromatographed on Sephadex G-150 and the second half of the 7S peak was 
isolated, concentrated, and ultracentrifuged immediately before use to remove material _>10S 
(17). The concentration used was 5 mg/mi.  In certain experiments (see Results), the IgG was 
absorbed with FITC-R-IgG-Sepharose. 

Fluorescence. Cells (5 × 105 in 25 pl) and reagent (100 pl for R-anti-TNP-TNP-BSA and 
mouse IgG, 25 #1 for all others) were incubated for 30 min at 4°C and then washed thoroughly 
with 4°C medium. In protocols involving more than one reagent, the reagents were used 
sequentially in the order noted in Results with thorough washing between each reagent. BSA- 
PBS (which contained Na azide) was the medium used in protocols not requiring capping, 
whereas in those that required capping, HBSS-FCS was used until capping was ended with 
BSA-PBS. Cells were kept at 4°C throughout, except during capping. Capping was induced by 
resuspen~ling the cells in 1 ml of HBSS-FCS and incubating at 37°C for 15-20 min. Wet mount 
slides were prepared at the end of each protocol and read under alternate fluorescent and phase 
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microscopy as previously described (20). A minimum of 200 small lymphocytes per preparation 
were evaluated. The criterion for fluorescence positivity for each of the molecules evaluated was 
punctate staining over the entire surface of the cell (except when using monomeric F(ab') 
antibodies where the pattern was a smooth ring). The fluorescence was considered capped when 
it was concentrated on < 1/2 of the cell surface at one pole of the cell. 

R e s u l t s  

Lack of Interaction between slgM and FcGR if Only One of the Receptors Is Ligand- 
occupied. B lymphocy te  s IgM a n d  F c G R  were eva lua ted  for in terac t ions  by  b ind ing  
l igand  to one of  the  two receptors.  T h e  cells were subjec ted  to c a pp ing  or  n o n c a p p i n g  
condi t ions ,  fol lowed b y  immunof luoreseent  eva lua t ion  o f  the  second receptor  for 
de tec tab i l i ty  a n d  dis t r ibut ion .  F luorochrome- labe led  F(ab ' )2 f ragments  o f  r abb i t  IgG 
specific for mouse  m u  [R-F(ab ' )2  an t i -mu]  were used for s IgM. Soluble  ant igen-  
a n t i b o d y  complexes composed  of  T N P - B S A  and  r abb i t  IgG specific for T N P  (R-ant i -  
T N P - T N P - B S A ) ,  fol lowed by  f luorochrome- labe led  sheep IgG specific for T N P  (S- 
a n t i - T N P ,  used for bo th  detec t ion  a n d  fur ther  cross-linking) were used for F c G R  
(Table  I). T h e  percen tage  of  spleen cells posit ive for F c G R  and  the d i s t r ibu t ion  o f  
F c G R  on those cells were unaffec ted  by  b ind ing  of  l igand  to s IgM or  l i gand- induced  
red is t r ibu t ion  of  s IgM (parts  5 a n d  6 vs. pa r t  1). Similar ly ,  the  percen tage  o f  cells 
posit ive for s IgM a n d  the d i s t r ibu t ion  of  s IgM were unaffected by  b ind ing  of  

TAaLE I 
Lack of Interaction between B Lymphocyte slgM and FcGR under Capping and Noneapping Conditons 

When Only One of the Receptors Is Ligand-Occupied 

Part 
Incubation* sIgM FcGR 

1 2 3 Positive Capped~ Positive Capped 
% % 

1 R-anti- S-anti- - -  61.5 4 
TNP- TNP§ 
TNP-BSA 

2 R-F(ab')2§ - -  - -  55.0 2 
anti-ran 

3 R-anti- S-anti-TNP R-F(ab')2 54.0 6 61.0 5 
TNP- anti-mu 
TNP-BSA 

4 R-anti- S-anti-TNP ~-~ R-F(ab')2 56.0 5 60.0 77 
TNP- anti-mu 
TNP-BSA 

5 R-F(ab')2 R-anti- S-anti-TNP 52.0 2 58.5 3 
anti-mu TNP- 

TNP-BSA 
6 R-F(ab')2 ~ R-anti- S-anti-TNP 56.0 89 58.5 4 

anti-mu TNP- 
TNP-BSA 

* All incubations were at 4°C for 30 rain, and cells were washed thoroughly with iced medium between 
each incubation. The arrow means that between the indicated incubations the cells were subjected to 
capping conditions (37°C for 15-20 rain in HBSS-FCS). This same medium was used for incubations 
and washes before capping conditions, whereas BSA-PBS was used for incubations and washes after 
capping conditions and throughout parts without capping conditions. 
Percentage of positive cells with fluorescence visible on ~ 1/2 of the cell surface at one pole of the cell. 

§ S-anti-TNP was labeled with TMRITC and R-F(abt)2 anti-mu was labeled with FITC. 
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complexes to FcGR or ligand-induced capping of FcGR (parts 3 and 4 vs. part 2). 
These results, with one exception, are consistent with the observations of a number of 
laboratories (reviewed in reference 21) and indicate that the two receptors are 
independent molecules that are not in close enough proximity on the cell membrane 
for steric inhibition of detection to occur. However, the result obtained in part 6 
differs from that reported by Forni and Pernis (9), who observed that capping of 
sIgM with F(ab')2 anti-mu resulted in redistribution (cocapping) of FcGR, and from 
the result of Abbas and Unanue (22), who found cocapping of FcGR after capping 
with F(ab')2 anti-kappa. 

To resolve this discrepancy, sIgM was capped with several different anti-Ig reagents 
and FcGR were evaluated with two types of complexes (Table II). Capping of sIgM 
with F(ab')2 fragments of two different anti-mu antibody preparations (one rabbit 
and one goat) and of an anti-kappa antibody preparation (which would also bind to 
sIgD) failed to induce redistribution of FcGR (experiment A, parts 1, 2, and 4). 
Moreover, evaluation of FcGR with different complexes (heat-aggregated IgG) also 
failed to reveal any cocapping (experiment A, part 3). In contrast, capping with intact 
rabbit IgG anti-mouse Ig both inhibited FeGR detection and induced FcGR redistri- 
bution (experiment A, part 5), presumably due to the Fc portion of the anti-Ig 
antibodies binding direct to FcGR. In addition, capping with F(ab')2 fragments of 
anti-mu IgG purified after pepsin digestion by chromatography on Sephadex G-150 
but not absorbed with staphylococcal Protein A to remove residual contaminating 
intact IgG (a procedure not available when the earlier studies [9, 22] were done) also 
induced some FcGR redistribution (experiment B, part 2). This latter result suggests 
the possibility that the earlier results (9, 22) were due to small amounts of intact IgG 
contaminating the F(ab')2 preparations used. Alternatively, it was conceivable that 
Protein A had leaked from the Protein A-Sepharose, was present in the F(ab')2 anti- 

TABLE II 
Effect of Redistributing B Lymphocyte slgM with Various Anti-Ig Reagents on FcGR 

Experiment Part 
Incubation* slgM:~ FcGR 

l 2 3 Positive Capped§ Positive Capped 

% % 

A l R-F(ab')2 ~ R-anti-TNP- S-anti-TNP 52.0 88 64.0 9 
anti-mu TNP-BSA 

2 C,-F(ab')2 ~ ,  R-anti-TNP- S-anti-TNP 54.0 91 59.0 8 
anti-mu TNP-BSA 

3 G-F(ab% ~ H-aggregated - -  56.0 84 66.0 6 
anti-mu IgG 

4 R-F(ab% ~ R-anti-TNP- S-anti-TNP 51.5 76 60.0 7 
anti-kappa TNP-BSA 

5 R-IgG anti-lg ~ R-anti-TNP- S-anti-TNP 58.0 83 22.0 91 
TNP-BSA 

B 1 R-F(ab')2 *-* R-anti-TNP- S-anti-TNP 66.0 82 62.5 4 
anti-mu TNP-BSA 

2 R-F(ab')~ ~ .  R-ami-TNP- S-anti-TNP 60.5 86 62,0 23 
anti-mu TNP-BSA 

3 R-anti-TNP- S-anti-TNP ~ ,  - -  64.0 91 
TNP-BSA 

* See footnote to  Table  L R-F(ab% anti-mu, R-F(ab')2 anti-kappa, R-IgG anti-Ig, H-aggregated IgG, and S-anfi-TNP (experiment A, part 2) 
were labeled with FITC. G-F(ab')2 anti-mu and S-anti-TNP (experiment A, parts 1, 4, and 5, and experiment B) were labeled with T M R I T C .  

:~ Anti-kappa and anti-Ig would also bind to slgD. 
§ See footnote to Table  L 
][ Not absorbed with SPA-Sepharose. 
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mu, and in some fashion artifactually obviated the sIgM-FcGR interaction. However, 
this possibility was quite unlikely for several reasons: (a) the SPA-Sepharose was 
always washed with 6 M guanidine to remove any protein not covalently coupled to 
the Sepharose before equilibration with the filtration buffer (PBS); (b) no protein 
(<3 #g/ml) was detected in the PBS, which passed through the SPA-Sepharose; and 
(c) SDS-PAGE of the R-F(ab')2 anti-mu for contaminants failed to show any protein 
in the molecular weight range of SPA (42,000) or SPA-IgG complexes even with the 
gels overloaded (see Materials and Methods). Thus, it was concluded that sIgM and 
FcGR did not interact if only one of the receptors was occupied by ligand. It was 
therefore of interest to determine whether the two receptors would interact if they 
were simultaneously occupied by their respective ligands. 

Redistribution of B Lymphocyte slgM Induces Redistribution of FcGR Independently Occupied 
by IgG. The experimental approach was to occupy both sIgM [with R-F(ab')2 anti- 
mu] and FcGR (with antigen-antibody complexes, R-anti-TNP-TNP-BSA) simulta- 
neously, subject the ceils to capping conditions, and determine whether capping of 
sIgM affected the distribution of occupied FcGR (Table III). For this approach to be 
informative, it is necessary that the antigen-antibody complexes themselves not induce 
capping of FcGR within the time period analyzed. As previously documented (23), 
the soluble complexes used in this study induced capping of FcGR on only a minority 
of the B lymphocytes (experiment A, part 2). This is presumably a reflection of the 
degree of cross-linking obtained, because if further cross-linking is produced with R- 
anti-TNP before capping, FcGR capped to approximately the same degree as ligand 
cross-linked sIgM (experiment A, part 1 vs. 3). When cells were analysed that had 
both sIgM and FcGR occupied and had been subjected to capping conditions, it was 
observed that the FeGR had capped nearly as well as when highly cross-linked 
(experiment A, part 4). Because neither capping of sIgM alone (part 1) nor the soluble 

TABLE III 
Redistribution of B Lymphocyte slgM Induces Redistribution of FcGR Occupied by Antigen-Antibody 

Complexes 

Experiment Part 

Incubation* s lgM FcGR 

1 2 3 Positive Capped$ Positive Capped 

% % 

A 1 R-F(ab')2 ~ .  R-ant i -TNP- R-ant i -TNP 63.0 76 62.0 3 

ant i -mu TNP-BSA 
2 R-ant i -TNP- ~ R-ant i -TNP - -  61.0 20 

TNP-BSA 
3 R-artti-TNP- R-ant i -TNP ,,--, - -  65.5 72 

TNP-BSA 
4 R-F(ab% R-ant i -TNP- ,,-* R-ant i -TNP 64.0 78 64.0 63 

ant i -mu TNP-BSA 
B§ 1 R-F(ab')a ~ R-ant i -TNP- R-ant i -TNP 60.0 73 63..5 2 

ant i -mu TNP-BSA 
2 R-ant i -TNP- ~ R-an t i -TNP - -  60.0 18 

TNP-BSA 
3 R-ant i -TNP- R-an t i -TNP ~ - -  60.5 69 

TNP-BSA 
4, R-F(ab~)~ R-ant i -TNP- ~ R-an t i -TNP 60.0 80 60.0 62 

ant i -mu TNP-BSA 

* See footnote to Tab le  I. R-F(ab% ant i-mu was labeled with F ITC and R-ant i -TNP was labeled with  T M R I T C .  

:1: See footnote $, Table  I. 
§ In experiment B, R-F(ab')2 ant l -mu was pre-absorbed with R-anti-TNP-TNP-BSA-Sepharosc,  and R-ant i -TNP (in the complex) was pre- 

absorbed with FITC-R-IgG-Sepharose.  
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complexes alone (part 2) produced this capping,  this result suggested an interaction 
between sIgM and  F c G R  when both  were occupied. One  artifact that  could also have 
produced this result was a cross-reaction between the ligands themselves. Al though 
the protocols for preparat ion o f  these ligands (see Materials and  Methods) should 
have precluded such cross-reactions, the R-F(ab')2 ant i -mu was absorbed with insol- 
ubilized complexes, the R-an t i -TNP  used in the complexes was absorbed with 
insolubilized rabbit  IgG conjugated with F ITC,  and  the experiment was repeated 
(experiment B). The  results were identical, making it very unlikely that  l igand cross- 
reactions were the explanation.  In  a series of  12 independent  experiments, 86% of  the 
B lymphocytes  whose sIgM was redistributed into a cap also had  capped FcGR,  
provided the latter were occupied at the t ime by complexes. The  same result was also 
obtained with spleen cells from other  strains including C 3 H / H e J ,  A / J ,  and  C B A / N  
(data not shown). It was concluded that  s IgM and F c G R  interact if both  are ligand- 
occupied. 

Because F c G R  are constantly exposed in vivo to monomer ic  IgG, it was of  interest 
to determine whether  F c G R  occupied by monomer ic  IgG would also interact with 
sIgM. The  experimental  approach  was similar to that  used for complexes with two 
modifications necessitated by the low binding  avidity o f  monomeric  IgG to B 
lymphocyte  FcGR. First, the monomer ic  IgG was continuously present dur ing the 
capping  period, and  second, the distribution o f  F c G R  was subsequently detected by 
labeling with complexes and fluorochrome-labeled R-an t i -TNP (Table IV). When  
cells labeled with R-F(ab')2 ant i -mu were subjected to capping  conditions in the 
cont inuous presence of  monomer ic  IgG and  then analyzed for the distribution of  
FcGR,  it was observed that  approximately  hal f  of  the B lymphocytes  had all their 

TABLE I V  

Redistribution of B Lymphocyte slgM Induces Redistribution of FcGR Occupied by Monomeric IgG 

Part 
Incubation* FcGR 

1 2 3 4 Positive Capped:~ 
% 

1 R-F(ab')2 ~ R-anti-TNP- R-anti-TNP --  54.0 11 
anti-mu TNP-BSA 

2 R-F(ab')2 R-anti-TNP- ~ R-anti-TNP --  54.0 81 
anti-mu TNP-BSA 

3 R-F(ab')2 R-anti-TNP- ~ R-anti-TNP- R-anti-TNP 60.0 47 
anti-mu TNP-BSA TNP-BSA 

4 R-F(ab')z Mouse IgG§ ~ R-anti-TNP- R-anti-TNP 56.0 46 
anti-mu TNP-BSA 

5 R-F(ab')2 Mouse IgG§ ~ R-anti-TNP- R-anti-TNP 54.0 15 
anti-mu TNP-BSA 

6 Mouse IgG§ ~ R-anti-TNP- R-anti-TNP --  55.0 11 
TNP-BSA 

* See footnote to Table I. R-F(ab')z anti-mu was labeled with FITC and R-anti-TNP was labeled with 
TMRITC. 

:I: See footnote to Table I; sIgM was 53.0% positive and 75% capped. 
§ Mouse IgG was pre-absorbed with FITC-R-IgG-Sepharose, ehromatographed on Sephadex G-150, and 

ultracentrifuged immediately before use (see Materials and Methods). In parts 4 and 6, the IgG was 
present during capping conditions at a final concentration of 0.5 mg/ml. In part 5, the IgG was washed 
away before capping. 
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FcGR redistributed into a cap (part 4). Neither capping of sIgM alone (part 1) nor 
monomeric IgG alone (part 6) induced this redistribution. The fact that FcGR were 
redistributed into a cap on only half the B lymphocytes is more apparent than real. 
First, because of the subjective nature of the assay, only cells in which all FcGR are 
at one pole of the cell are counted as capped. In fact, although many of the B 
lymphocytes in part 4 had most of their FcGR in a cap, some were elsewhere on the 
cell surface and so were counted as noncapped. Second, previous studies have shown 
that after capping of  FeGR directly by highly cross-linked complexes, reexposure to 
complexes shows some FcGR outside the cap (24, 25). It is thought that this is due to 
rapid reexpression of FcGR. A similar phenomenon was apparent in the present 
experiments. Thus, FcGR occupied by soluble complexes during capping of sIgM 
were found capped on 81% of the positive cells (part 2). However, if the cells were 
reincubated with complexes after capping, all the FcGR were in the cap on only 47% 
of the cells (part 3), a result equivalent to that obtained with monomeric IgG. It was 
concluded that occupancy of FcGR by monomeric IgG is sufficient to lead to 
interaction with sIgM on the majority of B lymphocytes, although for technical 
reasons this can only be directly demonstrated on half of the B cells. 

Several other points are worth noting. Cross-reactions between the ligands were 
excluded by absorptions (see Materials and Methods and Table IV, footnote §). Also, 
every effort was made to insure that the IgG was monomeric i.e., Sephadex G-150 
chromatography was planned so that the material obtained (second half of the 7S 
peak) was not stored before use and was ultracentrifuged to remove dimers or larger 
immediately before use. In addition, fresh normal mouse serum produced a similar 
result (data not shown). The concentration of IgG required (0.5 mg/ml) is considerably 
less than is present in serum and titration experiments indicated that as little as 0.01 
mg/ml  produced some effect (data not shown). Finally, the effect of the monomeric 
IgG on FcGR is completely reversible because if it is washed away immediately before 
capping, redistribution of FcGR does not occur (part 5). 

Lack of Interaction between Immune Complex-occupied FcGR and sIgM Occupied by Monomeric 
Anti-Mu. To further characterize the interaction between sIgM and FcGR, we asked 
whether the capping of FcGR by highly cross-linked complexes would induce redis- 
tribution of sIgM occupied by monomeric anti-mu (Table V). Lymphocytes were 

TABLE g 
Redistribution of B Lymphocyte FcGR Does Not Induce Redistribution of sIgM Occupied by Monomeric 

F(ab ') Anti-Mu 

P a r t  

I n c u b a t i o n "  s l g M  FcC, R 

! 2 3 Posi t ive Capped:~ Posi t ive C a p p e d  

% % 

1 R - F ( a b ' )  an t i -  ~ - -  - -  55.0 4 

m u  

2 R - F ( a b ' ) 2  ~ - -  - -  54.5 85 

a n t i - m u  

3 R - a n t i - T N P -  R - a m i - T N P  ~ - -  57.0 89 

T N P - B S A  

4 R - a n t i - T N P -  R - a n t i - T N P  R - F ( a b ' )  an t i -  *-* 54.0 4 53.0 92 

T N P - B S A  m u  

* See  foo tno te  to  T a b l e  I. R - F ( a b  ~) a n t i - m u  a n d  R - F ( a b %  a n t i - t o o  w e r e  l abe led  w i t h  F I T C  a n d  R L a n t i - T N P  was  l abe led  w i t h  T M R I T C .  

:~ S¢¢ foo tno te  to  T a b l e  I. 
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allowed to bind soluble R-ant i -TNP-TNP-BSA complexes, which were then further 
cross-linked by additional R-anti-TNP. The  sIgM was then labeled with R-F(ab') 
anti-mu and the cells were subjected to capping conditions (part 4). Although the 
FcGR were capped on 92% of the positive cells, no redistribution of sIgM occurred. 
The  control (part 2) indicated that sIgM would cap normally if cross-linked by 
divalent F(ab)z ant i-mu (from which the monomer was prepared by reduction and 
alkylation). This result conflicts with that reported by Unanue  and Abbas (26). 
However, it was later found that the latter result was due to a cross-reaction between 
ligands (E. R. Unanue,  personal communication).  Thus, an interaction between sIgM 
and FcGR could not be demonstrated if sIgM was occupied by monomeric ligand. 
The  simplest explanation would be that sIgM must be cross-linked in order to interact 
with FcGR. Because cross-linked sIgM caps very rapidly, this possibility could not be 
directly investigated with the present experimental approach. 

Specificity of the Interaction between sIgM and FcGR. It was of interest to determine 
whether interactions would occur between any two ligand-occupied cell surface 
molecules on B lymphocytes, as opposed to the possibility that the sIgM-FcGR 
interaction was unique. Ligand-induced capping o f s IgM failed to elicit redistribution 
of sIgD occupied by monomeric anti-delta (Table VI, part  5). Moreover, no evidence 
of any interaction between sIgM and sIgD was obtained. Thus, binding of ligand to 
one of these molecules did not inhibit detection of the second molecule, nor did 
capping of one of the molecules induce redistribution of  the other, irrespective of 
whether the second was ligand-occupied (Table VI). Capping of sIgM also did not 
induce significant redistribution of antibody-bound I-A antigens (Table VII ,  part  5 
vs. part  2). It is worth noting that  the antibody for I-A was at least divalent. This was 
possible because even when highly cross-linked, this molecule capped slowly. It would, 
however, cap on the majority of B cells, given sufficient t ime (part 3). Thus, capping 
of sIgM induced redistribution of ligand-oceupied FeGR but not ligand-occupied 
sIgD or I-A antigens. 

Experiments were also carried out to determine whether capping of another B 
lymphocyte surface molecule (sIgD) would induce redistribution of ligand-occupied 
FeGR. It was found that  capping of sIgD induced redistribution of ligand-occupied 
FcGR but the interaction was distinct from that with sIgM in that (a) it occurred 

TABLE VI  

Lack ofInt~actwnBetweenBLympho~u slgMandslgD 

Part 
Incub~ion* 

1 2 

slgM slgD 

Positive Capped~ Positive Capped 
% % 

1 G-F(ab')2 anti-mu R-F(ab')2 anti-delta 50.0 4 47.0 4 
2 R-F(ab')2 anti-delta G-F(ab')z anti-mu 48.0 3 49.5 2 
3 G-F(ab')2 anti-mu ~ R-F(ab')2 anti-delta 50.0 84 49.4 5 
4 R-F(ab')2 anti-delta ~ G-F(ab')~ anti-rnu 49.0 5 51.0 87 
5 G-F(ab')a anti-mu R-F(ab') anti-delta ~ 51.0 84 49.0 7 
6 R-F(ab')2 anti-delta R-F(ab') anti-mu ~ 51.0 6 50.0 87 

* See footnote to Table I. O-F(ab')2 anti-mu and R-F(ab')2 anti-delta (part 6) were labeled with TMRITC. 
R-F(ab')2 anti-delta, R-F(ab') anti-delta, and R-F(ab') anti-mu were labeled with FITC. 

:l: See footnote to Table I. 
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TABLE VII 
Redistribution of B Lymphocyte slgM Does Not Induce Redistribution of Antibody-bound I-A Antigens 

Part 
Incubation* sIgM I-A k 

1 2 Positive Capped:]: Positive Capped 

% % 

1 Anti-I-A - -  54.0 0 
2 Anti-I-A ~-~ - -  54.0 7 
3 Anti-I-A§ ~ - -  55.0 69 
4 G-F(ab')2 anti-mu ~ Anti-I-A 51.0 82 54.0 0 
5 G-F(ab')z anti-mu Anti-I-A ~ 52.0 78 53.0 12 

* See footnote to Table I. Spleen cells were B10.A. Anti-I-A -- IgG2 anti-I-A k (10-2.16) preincubated with 
27 times (wt/wt) of R-F(ab')2 anti-lgG2 labeled with FITC. The latter reagent prevents the anti-Ia 
antibody from binding to FcGR (see Materials and Methods) in addition to producing cross-linking and 
labeling. G-F(ab')2 anti-mu was labeled with TMRITC.  

:~ See footnote to Table I. 
§ The capping conditions in part 3 were maintained for 120 min. 

only with immune complexes and not with monomeric IgG; and (b) it occurred only 
on a subpopulation of B lymphocytes. These results were unexpected and will be 
reported in detail separately (H. B. Dickler and F. D. Finkelman, manuscript in 
preparation). It was concluded that the slgM-FcGR interaction was specific. 

Discussion 

The experimental results presented indicate an interaction between two independ- 
ent B lymphocyte surface membrane receptors, the IgM receptor for antigen, and the 
receptor specific for the Fc portion of IgG. This interaction required simultaneous 
occupancy of both receptors by independent ligands. Monomeric ligand (IgG) bound 
to FcGR induced interaction, whereas divalent ligand was required for slgM. The 
interaction was specific in that it did not occur between other pairs of ligand-occupied 
B cell surface molecules, e.g., slgM-slgD and slgM-I-A antigen. Although the inter- 
action was demonstrated via the phenomenon of cocapping, the results in no way 
suggest, nor do we believe, that capping itself is important in B cell differentiation or 
function. Two major questions raised by these results are (a) what is the nature of the 
slgM-FcGR interaction? and (b) what is its physiologic significance? 

It is likely that slgM and FcGR interact physically, directly or indirectly. The 
strongest evidence for this conclusion comes from the observation that FcGR occupied 
by monomeric IgG can be induced to cap by simultaneously capping slgM. This is, 
to our knowledge, the first example of a membrane molecule capping when occupied 
by ligand that is itself unable to produce capping. Because the capping process 
depends on cross-linking in a variety of systems (reviewed in reference 27), it seems 
likely that the ligand-occupied slgM is inducing cross-linking of the IgG-occupied 
FcGR. This could take place via a direct slgM-FcGR binding or could be mediated 
by an intermediate molecule. Although the present experiments do not exclude an 
intermediate, we favor a direct binding between slgM and FcGR because this would 
be more economical and because of the apparent specificity of the interaction. The 
binding of ligand-occupied slgM to ligand-occupied FcGR would presumably be 
noncovalent because the interaction induced by monomeric IgG was completely 
reversible. The requirement of ligand occupancy for both slgM and FcGR suggests 
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that the binding of ligands alters these receptors, leading to the exposure of binding 
sites. Such alterations could be conformational or due to exposure of sites previously 
not available, e.g., hidden in the membrane. At present, there is no evidence to favor 
either of these possibilities. Our  view of the interaction between sIgM and FcGR is 
presented schematieaUy in Fig. 1. 

In view of the fact that the sIgM-FcGR interaction occurs in the presence of 
monomeric IgG at concentrations present in vivo, it appears likely that whenever 
sIgM is involved in a B lymphocyte response via interaction with antigen, the FeGR 
would also be involved. Based on evidence that the ligand anti-mu antibody can 
induce proliferation o r b  lymphocytes (28, 29), i.e., signal the B cell, this suggests that 
the sIgM-FeGR interaction is important in signaling the B lymphocyte. We would 
like to propose that this interaction can provide either positive or negative signals to 
the B cell, depending on the nature of the ligand occupying the FcGR. 

In terms of a negative signal to the B lymphocyte, there is a substantial amount of 
evidence implicating the FcGR. It has been known for several years that antigen- 
antibody complexes can inhibit the antibody response in an antigen-specific manner, 
and that this inhibition requires an intact Fc portion of the antibody (30). However, 
because such antibody responses require several collaborating cell types, many of 
which bear FcGR, it has been difficult to demonstrate that this effect was mediated 
by the FeGR of the B lymphocyte (31). In contrast, other model systems have more 

Y Y 

' - " - -Unoccup ied  FcGR--- - - " "  

+ Monomer ic  IgG "1" 

+ Anti-/~ /x  

Fro. 1. Hypothetical model for direct interaction between B lymphocyte slgM and FcGR when 
both are occupied by their respective ligands. The surface membrane, for simplicity, is shown as a 
single line that represents the external side of  the lipid bilayer. The major portions of  both sIgM 
and FeGR that are not exposed are presumed to be within the lipid bilayer. After binding of their 
respective ligands, both FcGR (ligand = IgG) and slgM (model ligand = anti-mu) expose sites 
previously bidden in the lipid bilayer. These sites then interact directly. Although this interaction 
is shown diagrammatically as a solid line, the evidence suggests that this interaction is noncova|ent 
(see Results). 
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directly implicated the FcGR of B lymphocytes in negative signaling. Both LPS and 
anti-mu antibody-induced proliferation of B lymphocytes can be inhibited by anti- 
bodies bound to the B cell surface and this inhibition requires an intact Fc portion of 
the antibody (32, 33). slgM has also been implicated in negative signaling. Under 
circumstances in which slgM is the predominant Ig isotype (neonatal B cells or B cells 
from the CBA/N strain) or the exclusive isotype (due to removal of slgD by enzymes 
or modulation with anti-delta antibodies) on the majority of B lymphocytes, then 
tolerance induction (a type of negative signal) is greatly facilitated (34-36). Thus, the 
available evidence is consistent with the possibility that the sIgM-FcGR interaction 
would provide a negative signal to the B lymphocyte when the FcGR is occupied by 
antibody. 

In terms of positive signaling, two groups of workers have proposed (37, 38), on the 
basis of indirect evidence, that the FcGR is the site of binding for T lymphocyte 
helper factor. Moreover, it has recently been demonstrated that B lymphocytes in the 
presence of F(ab')2 anti-mu and T cell helper factor will both proliferate and 
differentiate into antibody-forming cells (39). Thus, it seems possible that the slgM- 
FcGR interaction could provide a positive signal to the B lymphocyte if the FcGR 
was occupied by T cell helper factor. 

The proposal that the interaction of slgM and FcGR can provide both positive and 
negative signals to the B cell depending on the nature of the ligand bound to the 
FcGR requires two further elements. First, how does the FcGR know which ligand to 
bind? The simplest mechanism would be competition for the receptor based on 
relative affinities of the ligands, and the order (a) monomeric IgG, then (b) T cell 
helper factor, then (c) complexed IgG would seem the most reasonable. Second, how 
does the cell know which ligand is bound to the FcGR? Two mechanisms could 
accomplish this. Either IgG and T cell helper factor bind to different sites on the 
FcGR (in which case the competition mentioned above would be steric), or the cell 
possesses a recognition mechanism that distinguishes FcGR-IgG from FcGR-T cell 
helper factor. No evidence is available to distinguish these possibilities. 

The hypotheses put forward above appear to be testable with available experimen- 
tal techniques. It will also be of interest to examine other cell surface molecules for 
interactions and determine whether such interactions have general importance in cell 
signaling. 

S u m m a r y  

The independent B lymphocyte surface membrane receptors IgM and Fc IgG 
receptors were evaluated for interactions using immunoflourescence. Ligand [F(ab')2 
anti-mu]-induced capping of surface IgM resulted in capping of Fc IgG receptors 
only if the latter were occupied during the capping process by: (a) soluble antigen- 
antibody complexes that themselves provided insufficient cross-linking to result in 
capping; or (b) monomeric IgG at physiologic concentrations (or less) either purified 
or as normal serum. Ligand-induced capping of Fc IgG receptors did not result in 
capping of surface IgM occupied by monomeric F(ab') anti-mu. Control experiments 
showed that ligand binding to or capping of only one of these two receptors has no 
effect on the other, and that there were no cross-reactions. The interaction appears 
specific in that ligand-induced capping of surface IgM did not induce capping of 
ligand-occupied surface IgD or I-A antigens. Thus, there appears to be a specific 
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interaction between ligand-bound surface IgM and ligand-bound Fc IgG receptors on 
the B lymphocyte surface. The results also indicate that binding of monomeric IgG 
produces a reversible alteration in the Fc IgG receptor leading to association with 
ligand-bound surface IgM. Because Fc IgG receptors are continuously exposed to 
monomeric IgG in vivo, these results suggest that whenever surface IgM is involved 
in a B lymphocyte response to an immunologic stimulus, the Fc IgG receptor is also 
involved. 

Received for publication 1 December 1980 and in revised forra 9 February 1981. 
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