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Abstract: The functionality of RNA is fully dependent on its structure. For the influenza A virus
(IAV), there are confirmed structural motifs mediating processes which are important for the viral
replication cycle, including genome assembly and viral packaging. Although the RNA of strains
originating from distant IAV subtypes might fold differently, some structural motifs are conserved,
and thus, are functionally important. Nowadays, NGS-based structure modeling is a source of new
in vivo data helping to understand RNA biology. However, for accurate modeling of in vivo RNA
structures, these high-throughput methods should be supported with other analyses facilitating
data interpretation. In vitro RNA structural models complement such approaches and offer RNA
structures based on experimental data obtained in a simplified environment, which are needed for
proper optimization and analysis. Herein, we present the secondary structure of the influenza A
virus segment 5 vRNA of A/California/04/2009 (H1N1) strain, based on experimental data from
DMS chemical mapping and SHAPE using NMIA, supported by base-pairing probability calculations
and bioinformatic analyses. A comparison of the available vRNA5 structures among distant IAV
strains revealed that a number of motifs present in the A/California/04/2009 (H1N1) vRNA5 model
are highly conserved despite sequence differences, located within previously identified packaging
signals, and the formation of which in in virio conditions has been confirmed. These results support
functional roles of the RNA secondary structure motifs, which may serve as candidates for universal
RNA-targeting inhibitory methods.

Keywords: RNA structure; influenza A virus; RNA conserved motifs; chemical mapping

1. Introduction

The family of RNA viruses is of great concern as one of the most threatening to
humans. Their evolutionary volatility facilitates crossing interspecies barriers, followed
by fast adaptation to a new host and efficient avoidance of its immune system [1,2]. A
recently published, comprehensive study of the characteristics of pathogens with high
pandemic risk showed that RNA viruses were, and perhaps will be, responsible for the most
dangerous pandemics [3]. Currently, many zoonotic IAV strains have been described, which
are the most dangerous within the influenza family. Notably, the avian (A/H5N1) and
swine (A/H1N1) influenza strains cause severe respiratory diseases and are characterized
by high human mortality rate, when compared to the mild seasonal strains [4–6]. The
genome of IAV (13 kb) consists of eight single-stranded, negative-sense RNA segments
(vRNAs) [7]. Error-prone replication systems create a mutational potential called antigenic
drift [8]. Meanwhile, the segmented genome structure allows the exchange (antigenic
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shift) of vRNA between two co-infecting strains, and is a basis for the production of new
influenza subtypes with potential to cause global pandemics [8].

The vRNA has been shown to fold into complex secondary structures and to contain
motifs which play many important roles within the cell. Hence, every stage of the IAV
replication cycle is RNA-structure dependent [9–12]. To date, in vitro secondary structure
models based on experimental data have been proposed for full-length vRNA5, vRNA7,
and vRNA8 of A/Vietnam/1203/2004 (H5N1) [13–15]. In virio selective 2′-hydroxyl acyla-
tion analyzed by primer extension and mutational profiling (SHAPE-MaP) of the whole
influenza genome of A/WSN/1933 (H1N1) strain has also been published [16]. Recently,
in virio studies using a number of high throughput methods provided new information
on the structures and interactions of A/Puerto Rico/8/34 (H1N1) and A/WSN/1933
(H1N1) [17,18]. In vitro and in virio studies complement each other, as the mapping results
in in virio conditions may be affected by multiple factors (e.g., interactions with other
RNAs and proteins) which do not occur in in vitro analyses, making the latter easier to
identify and interpret [19]. Since all these factors also influence secondary structure pre-
dictions, it is essential to thoroughly analyze and couple data from different experimental
approaches to increase accuracy. It has been proposed that the secondary structure motifs
take part in vRNA-vRNA interactions which are important for virion assembly and which
affect reassortment outcome [20–25]. Although the evolution of new strains is in constant
progress, many similarities between strains exist that are necessary for their functionality
and genome compatibility [21,23,26]. Secondary structure motifs which are conserved
among distinct strains are important for the influenza virus to maintain its integrity and
replication potential. The importance of the RNA structure was confirmed by mutagenesis
and reverse genetics [17,21–23,27,28]. The identification of these motifs facilitates our un-
derstanding of the replication cycle and viral biology, and allows us to identify potential
new targets of antiviral therapy. The recent SARS-CoV-2 pandemic showed that more
universal antiviral therapies are a high priority, as developing new vaccines is very time-
consuming, labor-extensive and the production is still very low-throughput [29]. Moreover,
therapies depending on protein might quickly become useless due to the potential of RNA
viruses to evade such drugs through evolved resistance [30–33]. Our previous studies
concerning RNA structure contributed to the development of anti-influenza inhibitors
directly targeting the RNA structural motifs that showed high antiviral potential when
tested in cells [15,34–37].

In this study, we determined the secondary structure of the influenza A virus vRNA5
of the A/California/04/2009 (H1N1) strain. The structure prediction was based on exper-
imental data from dimethyl sulfate (DMS) chemical mapping and selective 2′-hydroxyl
acylation analyzed by primer extension (SHAPE) using N-methylisatoic anhydride (NMIA),
supported by base-pairing probability calculations and comparative sequence analyses.
This revealed that a number of motifs present in the proposed secondary structure model
are highly conserved among distinct influenza strains and present also in in virio con-
ditions. Furthermore, the distribution of these motifs in the regions known to take part
in the genome packaging suggests their role in the process. Similarities in the vRNA
structure of the NP-coding segment 5 between distant and highly pathogenic IAV strains,
despite sequence variability, support its function. The experimentally determined structure
of influenza RNA and knowledge regarding its conservation can serve as indicators of
important targets for new inhibitory approaches. Our study not only deepens our under-
standing of vRNA structure and its function, but may also lead to the development of
universal antivirals targeting distant IAV strains that possess structural homologs of these
revealed motifs.

2. Materials and Methods
2.1. Oligonucleotide Synthesis and Labeling

All the oligonucleotides used in the study were synthesized on a MerMade12 syn-
thesizer, deprotected, purified via PAGE electrophoresis and fluorescently labelled as
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described previously [15,38]. For the reverse transcription reaction, four different fluo-
rophores were used (FAM, ROX, TAMRA and JOE). All the oligonucleotides sequences are
presented in the Supplementary Data.

2.2. Synthesis of DNA Template of vRNA5 A/California/04/2009

The DNA template for in vitro transcription of A/California/04/2009 vRNA5 was
prepared as follows. The MDCK cells were infected with the viral stock (a gift from Prof.
Luiz Martinez-Sobrido, University of Rochester) with MOI = 0.1. The infected cells were
incubated for 24 h at 33 ◦C (5% CO2, 95% humidity). Then, the total RNA was isolated with
Trizol reagent according to manufacturer’s protocol, followed by the reverse transcription
reaction (SuperScript III, Invitrogen, Carlsbad, CA, USA) using specific primer matching
3′ end of vRNA5. During the next step, the PCR reaction (PfuPlus! polymerase, EurX,
Gdansk, Poland) with the specific primers containing EcoRI (on 5′ end) and PstI (on 3′

end) was carried out. All primers are listed in Table S1 in Supplementary Materials. The
PCR product was purified using a purification kit (PCR/DNA Clean-up, Eurx). The final
template was cloned into pUC19 plasmid. The sequence of vRNA5 was confirmed via
Sanger sequencing.

2.3. Transcription In Vitro

A template for the in vitro transcription was prepared via PCR reaction with primers
containing T7 promoter sequence. Next, 1 µg of PCR product of vRNA5 was transcribed
with Ampliscribe T7 Transcription Kit (Epicentre, Madison, WI, USA) according to man-
ufacturer’s protocol, followed by on-column purification (Rneasy MinElute, QIAGEN,
Hilden, Germany). Before the experiment, the transcription product was checked for in-
tegrity via agarose gel electrophoresis according to RiboRuler High Range RNA Ladder
(ThermoFisher, Waltham, MA, USA).

2.4. Chemical Mapping

First, 2 pmol of RNA was folded in 1× folding buffer (300 mM NaCl, 5 mM MgCl2,
50 mM HEPES pH 7.5) at 65 ◦C for 5 min and slowly cooled down to 37 ◦C before mapping.
Chemical mapping was performed at 37 ◦C with NMIA (3.3 mM) for 40 min or DMS
(4.6 mM) for 15 min, respectively. For the negative control, RNA was treated with DMSO
(NMIA control) or 96% ethanol (DMS control) only. The reactions were ethanol precipitated
before the next step.

2.5. Reverse Transcription and Primer Extension

The reverse transcription (RT) reaction was performed as described previously [15].
For the reaction, a set of eight primers was used to read whole vRNA5 (Supplementary
Materials Table S2), as a few premature reverse-transcription stops were observed. The
reactions were performed separately in at least three independent replicates in vitro. For
the reaction (+), FAM-labelled primer was used and JOE-labelled primer for the control
reaction (−). Two ddNTP sequencing ladders were prepared with TAMRA or ROX labelled
primers as described in Michalak et al. [15]. All the reactions (reaction (+), control (−) and
two ddNTP ladders) were combined and separated on single-capillary electrophoresis.

2.6. Data analysis
2.6.1. Primer-Extension Data Analysis

The results of capillary electrophoresis (ABI files) were analyzed with ShapeFinder
software [15,39]. The data were normalized using a 2–8% normalization method. Briefly,
the reactivity values were sorted decreasing from the highest, and 2% of them were ex-
cluded from the latter calculation, while 8% of the remaining values were used for average
reactivity calculation. For normalization, all reactivities were divided by the average value.
Reactivities ≥0.700 were considered strong, 0.700–0.500 medium and <0.500 weak. Nu-
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cleotides with no reactivity data were indicated as −999. Independent primer-extension
reactions were compared to calculate the average reactivities of every nucleotide.

2.6.2. Secondary Structure Prediction and Base-Pairing Probability Calculation

The secondary structure of vRNA5 was predicted using the RNAStructure 5.8.1
software [40]. Three approaches were used for the determination of vRNA5 secondary
structure. At first, experimental data from vRNA5 chemical mapping were used: con-
straints from SHAPE as pseudo-energies and DMS constraints including strong reactiv-
ities together with conserved panhandle base-pairs. Secondly, experimental data from
chemical mapping of A/California/04/2009 (H1N1) and A/Vietnam/1203/2004 (H5N1)
(from Michalak et al. [15]) were used simultaneously to determine the vRNA5 structure
with Dynalign algorithm [41,42]. Finally, pseudo-energy constraints from SHAPE-mapping
as well strong DMS mapping constraints were implemented to the RNAStructure 5.8.1
program. For more accurate structure prediction, the consensus base-pairs with 100%
probability, as calculated previously [15], were also constrained in the prediction. Aver-
age SHAPE data constraints, as well as DMS mapping results and base-pairs used in
the prediction, are provided in Supplementary Materials (Tables S3 and S4). Base-pairing
probabilities of vRNA5 structure model were calculated according to experimental SHAPE
pseudo-energy constraints and DMS constraints (used for folding) via partition function
(RNA Structure 5.8.1). The generated dot plot file was visualized in IGV (version 2.8.9) [43].

2.6.3. Conservation of Canonical Base-Pairing Calculation

For canonical base-pairing calculation, 39,364 sequences of segment 5 coding RNA
from the NCBI Influenza Virus Database were used [44]. Sequences were converted to
reverse complement and aligned via MAFFT program (FFT-NS-1) [45]. The vRNA5 struc-
ture model was mapped to the alignments before base-pairing calculation, giving the
percentage conservation of canonical base-pairing (GC, AU and GU, respectively). The
number of inconsistent, or potentially noncanonical, pairs was counted, followed by
percentage calculation of conservation. The results were manually checked to identify po-
tential structure-preserving changes by recognizing consistent or compensatory mutations
(Supplementary Materials Table S4).

3. Results and Discussion
3.1. Results of Chemical Mapping

Chemical mapping experiments with DMS and NMIA enabled us to identify reactive
nucleotides in vRNA5. The results showed that 125 nucleotides were strongly modified
with DMS, meaning that 16.5% of all adenosines and cytidines in vRNA5 were single
stranded and accessible. Distribution of nucleotides modified with NMIA was even for
the most part of vRNA5. Only a few regions showed stronger reactivity, manifesting in
short stretches of several modified nucleotides in a row: 182–198 nt, 259–264 nt, 547–553 nt,
854–867 nt, 1071–1081 nt, 1377–1383 nt. Two rather long RNA regions were identified in
which no modification was observed: 131–181, 1235–1288 nt. To date, some structural
data on vRNA5 originating from different influenza A strains have been published. One
of the reports concerns the entire vRNA5 secondary structure of A/Vietnam/1203/2004
(H5N1) [15]. The structure was determined in vitro on the basis of chemical mapping
experiments supported by isoenergetic microarray mapping, free energy minimization and
bioinformatic analysis. Sequence identity between these two strains is 83.3%. The distribu-
tion of the most and least reactive regions in vRNA5 from A/Vietnam/1203/2004 (H5N1)
strain is comparable to vRNA5 from A/California/04/2009 (H1N1) strain (Figure 1).
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Figure 1. Nucleotide reactivities across vRNA5 in two subtypes of IAV strains (A,B)—A/California/04/2009 (H1N1)
(California) and A/Vietnam/1203/2004 (H5N1) (Vietnam). The colors indicate the reactivity strength–red indicates strong
reactivities ≥0.7, medium reactivities are marked with yellow 0.7–0.5, while low or no reactivity <0.5 is marked with white.

3.2. Global Folding of vRNA5 A/California/04/2009

The prediction of the RNA secondary structure of long molecules is challenging. The
implementation of experimental data obtained for vRNA5 (1565 nt) resulted in the predic-
tion of many structures with subtle free energy differences, with no indication of which
among them was most likely to occur in native conditions. Hence, we performed several ap-
proaches for structure folding. Finally, for the conclusive structure prediction, we decided
to additionally implement data from a bioinformatic analysis of the base-pairing conser-
vation in type A influenza. These were published already by Michalak et al [15]. In our
view, experimental data coupled with a bioinformatic structure conservation/homology
analysis resulted in a more accurate secondary structure prediction, as proved in previous
reports [46–48].

To determine the secondary structure of vRNA5, firstly, the experimental SHAPE
data as constraints and strong DMS mapping (0.7≥) along with base-pairing of con-
served promoter (panhandle) region were implemented in the RNAStructure 5.8.1 pro-
gram. The obtained structure is presented in Figure S1. Next, to determine the lowest
free energy vRNA5 structure according to experimental data from independent chemi-
cal mapping of vRNA5 from distant strains, we performed an additional analysis with
the Dynalign algorithm. In detail, Dynalign is able to predict common secondary struc-
tures for two RNAs on the basis of the sequence alignment and experimental constraints
coupled with calculation of free energy minimization with nearest neighbor parameters.
It is worth noting that the Dynalign algorithm makes it possible to introduce chemical
mapping constraints alone (DMS data), without soft constraints from SHAPE data (Mate-
rials and Methods). Globally, the structure predicted with Dynalign (Figure S2) showed
domain conservation and indicated the presence of structural motifs common for both
A/Vietnam/1203/2004 and A/California/04/2009 vRNA5. Interestingly, the initially pre-
dicted structure of A/California/04/2009 vRNA5 (Figure S1) was globally different, with
preservation of few common structural motifs.

For the final structure prediction, we decided to combine the empirical data (SHAPE
and DMS constraints) with base-pairing data of the conserved base-pairs from our sequence-
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structure bioinformatic analysis of type A influenza. Importantly, we restricted the base-
pairing data to those having 100% conservation within all IAV strains [15]. The used
base-pairing constraints were in agreement with experimental reactivities from chemical
mapping of A/California/04/2009 vRNA5 (Figure 2).

The predicted vRNA5 secondary structure is complex and consists of three domains
(Figure 2). Domain I contains the motifs between nucleotides 1–65 nt and 1290–1565 nt.
Additionally, nucleotides 1–16 and 1565–1551 form a panhandle motif, recognized by
viral RNA-dependent RNA-polymerase, which is conserved among all segments and IAV
strains [11]. Domain II and III encompass nucleotides 67–810 and 811–1289, respectively.
The secondary structure of vRNA5 is characterized by helices interrupted by bulges and
internal loops, which generally correspond with modification sites identified by chemical
mapping. There are 28 hairpins found in the structural model.

Figure 2. The secondary structure of vRNA5 A/California/04/2009 predicted using experimental data. Strong modifications
of DMS and NMIA were marked on the structure. The canonical base-pairs with 100% of probability used in structure
prediction are marked with red.
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In comparison to the folding of A/Vietnam/1203/2004, for both strains, the organization
of the domains in the secondary structure model is preserved. Sequence changes result in
some of the base pairs being abolished, but new base pairs are also formed. As a consequence,
the secondary structure undergoes subtle rearrangements. In general, A/California/04/2009
(H1N1) vRNA5 lacks the long helical fragments found in A/Vietnam/1203/2004 (H5N1),
which consist of up to nine uninterrupted base-pairs (e.g., 40–47/1309–1316, 165–172/740–747,
327–334/622–629, 843–850/1031–1038, 1079–1087/1101–1103). Despite these differences, a
number of motifs present in the secondary structure of A/Vietnam/1203/2004 (H5N1) vRNA5
are still preserved in A/California/04/2009 (H1N1). The panhandle motif and hairpins in
regions 87–115 nt, 975–987 nt, 1256–1265 nt, 1363–1375 nt, 1527–1550 nt are present in both
strains. Some of the hairpins differ only by the presence or lack of one base pair: 241–251 nt,
460–476 nt, 1183–1193 nt and 1483–1497 nt. Identification of common structural features is
consistent with reports that RNA structure correlates with function. Some of the motifs are
conserved to take part in processes which are important for the viral replication cycle. The
panhandle motif, as an example of a known structure-function correlation, may also serve
conserved hairpins 87–115 nt and 1483–1497 nt (99.5 and 87.2% conserved, respectively),
identified in 5′ and 3′ terminal packaging signals [49]. These hairpins were predicted in
previous studies and present in the secondary structure models of both strains. Beyond
the terminal packaging signal, two other hairpins were predicted and identified as highly
conserved in previous studies of A/Vietnam/1203/2004 (H5N1) vRNA5—975–987 nt (96.9%
conserved, calculated for nucleotides 974–988 nt) and 460–476 nt (83%)—which are also
present in A/California/04/2009 (H1N1) vRNA5.

3.3. Base-Pairing Probabilities Based on Experimental Data

The experimental data from the previously described vRNA5 A/Vietnam/1203/2004
structure, as well as data from this study for vRNA5 structure of A/California/04/2009,
were used for accurate visualization of global base-pairing profile. The comparison of
probability of pairing also revealed (Figure 3) similarity in the overall global structure of the
vRNA5 for both strains. In both structures, there are several regions of higher (>80%) prob-
ability of pairing including hairpin structures as well as long-distance interactions. These
hairpins are in regions 87–115 nt, 1077–1112 nt, 1133–1164 nt, 1460–1522 nt, 1527–1550 nt,
whereas long-distance interactions with high probability of pairing are observed in regions
37–65/1290–1318 nt and 810–839/1039–1064 nt in A/California/04/2009.

Figure 3. Visualization of vRNA5 global base-pairing profile and base-pairing probability based on experimental data from
chemical mapping for strains A/Vietnam/1203/2004 and A/California/04/2009. The colors indicate the percentage of the
base-pairing probability.
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3.4. Conservation of Canonical Base-Pairing in vRNA5

The conservation of canonical base-pairing of the presented secondary structure model
was calculated based on an analysis of 39,364 sequences of genomic vRNA5 within different
IAV subtypes available in the database. The vRNA5 secondary structure is characterized
by high base-pair conservation within IAV, on average 89.6%, confirmed by compensatory
and consistent mutations (Figure 4, Supplementary Materials). There are many struc-
tural motifs and helixes with base-pairing probability higher than 95%, which are further
supported by the observed structure preserving sequence variations. There are several
hairpins with lower probabilities: 509–525 nt (88.8%), 911–954 nt (86.1%), 992–1002 nt
(67.0%), 1194–1209 nt (77.6%) and helix 628–634/666–660 nt (64.7%). There are two hair-
pins with nearly 100% conservation: 1527–1550 nt and 87–115 nt. Two helixes, spanning
regions 892–901/1003–1013 nt and 859–870/1027–1018 nt, are conserved within different
IAV subtypes.

Figure 4. Conservation of determined vRNA5 secondary structure across influenza A viruses. Colors indicate percentage
of canonical base pairing preserved among influenza A sequences for segment 5 vRNA. The analysis was done on
39,364 sequences.
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3.5. Secondary Structure of vRNA5 and Antisense Oligonucleotides (ASOs) Inhibitory Potential

In our previous study, we tested the inhibitory potential of ASOs against vRNA5
A/California/04/2009 (H1N1) [15]. At the time of publication, in the absence of exper-
imental mapping data for this particular strain, the target regions were selected on the
basis of structure predicted for vRNA5 A/Vietnam/1203/2004 (H5N1). The assumption
was made that secondary structure motifs important for viral replication are conserved
among strains. This conclusion was supported by a structure conservation analysis, us-
ing available influenza A sequences, showing that the proposed secondary structure of
vRNA5 is 87% conserved. Potential compensatory and consistent mutations supporting
predicted base pairing were found in the sequences. The current, experimentally informed,
secondary structure model of vRNA5 A/California/04/2009 (H1N1) allowed us to con-
front the obtained results. The most effective tested antisense oligonucleotide 883–11L
showed 88% replication inhibition of A/California/04/2009 (H1N1), according to the
IFA assay. Interestingly, 883–11L was targeting a fully single-stranded RNA region pre-
served in both strains, upon which the secondary structure was modeled. The target
sequence for another potent oligonucleotide (64% inhibition)—474–21M—was overlap-
ping conserved hairpin 460–476 nt. Also, conserved hairpin 1256–1265 nt was a target
for oligonucleotides 1253–13M and 1253–13L, causing 48% and 43% reduction in virus
titer, respectively. These motifs were confirmed to exist in both strains. The last of the
effective oligonucleotides—79–18GP—targeted the 5′ terminal packaging region, adjacent
to the conserved hairpin 87–115 nt, with a high proportion of unpaired nucleotides in
predicted vRNA5 A/California/04/2009 (H1N1) secondary structure. Together, these data
provide structural foundation for the inhibition of the influenza virus and confirm previous
assumptions. Efficient targets are conserved and accessible. The results are consistent
with the expected functional role of conserved motifs, which may be targeted by antisense
oligonucleotides causing a reduction of viral titer.

3.6. Mirror Structures in vRNA5 within Distant IAV Strains

A previous report on the vRNA5 A/Vietnam/1203/2004 (H5N1) secondary structure
also confirmed the presence of previously predicted “mirror structures” in segment (−)
and (+) strand [23]. Recently, a secondary structure model was also published for (+)RNA5
A/California/04/2009 (H1N1), enabling additional comparisons to be made concerning
this particular strain. Current data show that two of the predicted motifs are present in
both (+) and (−)RNA5 of this strain, as it was in A/Vietnam/1203/2004 (H5N1). One is a
hairpin 1527–1550 nt in the (−) strand that corresponds to the 16–39 in (+) strand, which is
conserved across influenza A strains and likely plays a role in the packaging of vRNA. The
second is a highly conserved (96.9%) hairpin 975–987 nt in (−) and 579–591 nt (+) strand.
Other proposed mirror structures include hairpins 1462–1476 nt and 626–643 nt, while
pseudoknot/hairpin 36–90 nt which do not appear in the A/California/04/2009 (H1N1)
vRNA5 secondary structure model, as also observed for A/Vietnam/1203/2004 (H5N1).
However, there are some additional mirror structures in segment 5 A/California/04/2009
(H1N1) which were also present in A/Vietnam/1203/2004 (H5N1). In (−) and (+) strands,
there are the following corresponding motifs: 1341–1454 nt and 109–225 nt, 89–113 nt and
1453–1477 nt, 460–476 nt and 1090–1106 nt, 1243–1273 nt and 293–323 nt, 1472–1506 nt and
60–94 nt, respectively. Mirror structures characteristic for A/California/04/2009 (H1N1)
strain were also found: 1194–1209 nt and 357–372 nt, 409–420 nt and 1146–1157 nt in (−)
and (+) strand, respectively. The functions of these motifs still remain to be elucidated. The
mirror structures are presented in Figure S3.

3.7. NP-Binding Profile In Vivo Influences ASOs Inhibitory Potential

Previous studies concerning the A/California/04/2009 (H1N1) strain revealed an
irregular NP-vRNA5 binding profile in vRNP complexes [50]. This feature allows functional
secondary structure motifs to form predominantly in the RNA regions with reduced NP
binding. Besides the panhandle motif, the following sites with poor NP association were
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identified in vRNA5: 330–490 nt, 600–640 nt, 750–950 nt and 1140–1400 nt. Despite some
differences in NP-association observed between A/California/04/2009 and A/WSN/1933
strains in the report, the abovementioned regions show similar reduced NP binding. These
regions were targets for four out of the five antisense oligonucleotides which were found
to be most potent in the A/California/04/2009 (H1N1) inhibition (883–11L, 474–21M,
1253–13L, 1253–13M) [15]. Other tested oligonucleotides were targeting regions presenting
medium association with NP; among them was also 79–18GP, which inhibited influenza
virus replication by more than 40%. Therefore, it is possible that uneven the binding of NP
in these regions leaves specific sites accessible for oligonucleotides.

3.8. The Structure of the vRNP5 Complex Revealed Interacting Regions

The exposed RNA fragments in the vRNP may have a role in RNA interactions at
intramolecular (e.g., in formation of higher order structures) and intermolecular levels with
other RNAs (e.g., during viral progeny packaging). This is also supported by analyses
indicating that the RNA within the identified interaction loci is highly structured, which
emphasizes the functional role of structural motifs [16]. Moreover, the interactions are
energetically highly favorable. At the same time, experimental data show that RNA inter-
actions present some degree of plasticity. A comparison of the interaction loci between
A/WSN/1933 and A/Puerto Rico/8/34 (H1N1) strains demonstrated a common core
of the network, while investigation of the distantly related A/Udorn/72 (H3N2) strain
revealed more differences. However, the distribution of the most prevalent interactions
between segments, even for one particular strain, may vary. To date, according to experi-
ments carried out on the abovementioned strains, vRNA5 was reported to interact with
vRNA1, vRNA2, vRNA3, vRNA4, vRNA6 and vRNA7 [16]. However, according to a
recently published study, vRNA5 is characterized by the greatest number of interactions
among other segments, and RNA-RNA contacts are formed with each of the vRNAs [17].
The most predominant interaction site was detected in the vRNA5 central region, adjacent
to a strong NP-binding region. The presence of NP does not preclude RNA-RNA contacts,
since interactions were also identified in the NP-abundant regions. In general, multiple
interactions were associated with vRNA5 regions 57–81, 82–106, 482–506, 657–687, 682–706,
907–931, 957–981, 1432–1456, and 1482–1506. Interestingly, some of these regions are known
to encompass previously identified, highly conserved hairpins, recurrent in different strains
(87–115, 975–987, 1483–1497). Mutagenesis of region 656–705 using synonymous codons
caused the loss of the hotspot and interaction rearrangements. As a consequence, new
prevalent loci were formed in vRNA3, 4, and 6 to create thermodynamically favorable
duplexes. It is expected that sites of interactions contain functional RNA structural motifs
which take part in the packaging of progeny virions. As part of the interaction, loci are
common, regardless of strain; also, secondary structure motifs may be preserved. It was
also shown that prominent interaction loci can determine the reassortment process due to
their influence on segment cosegregation [16]. The interactions present in the reassorted
viruses overlap with those observed in parental strains. This observation led to the con-
clusion that RNA structure is an important factor affecting the ability of segments from
different viral strains to undergo reassortment and produce new strains.

3.9. The Secondary Structure of vRNA5 within Different IAV Strains

Recently, an in virio and ex virio SHAPE-MaP analysis of the influenza A virus
A/WSN/1933 (H1N1) strain genome structure was published [16]. The secondary struc-
tures presented in the abovementioned paper lacked long-distance base-pairing. RNA
folding predictions were set up to predict local constrained RNA structures at a maximum
base pairing distance limited to 150 nucleotides. Such restrictions were not considered
in the modeling of vRNA5 secondary structure presented herein. Different approaches
to RNA structure analysis obviously affect the obtained results and limit the scope of
comparison. However, among the vRNA5 local motifs, there are some which are consistent
with the herein determined secondary structure of A/California/04/2009 (H1N1) vRNA5
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(described in Table 1). Hairpins 460–476 nt, 993–1001 nt, 1194–1209 nt, 1527–1550 nt are
preserved in virio with base-pairing probability of more than 80%. Additionally, a pseu-
doknot was also predicted in region 79–154 nt. This pseudoknot was also proposed by
other authors [18,22,23]. However, the base-pairing probability in this region does not
exclude the formation of a hairpin at 91–111 nt, as determined in our structural model,
which may play a role in packaging. Moreover, there are also hairpins predicted with lower
base-pairing probability in stem regions 406–422 nt, 931–941 nt, 976–986 nt, 1363–1375 nt,
1484–1496 nt. From these 10 motifs found to be preserved in the in virio investigated
structure of vRNA5, eight were additionally confirmed by chemical mapping in ex virio
conditions. Among structures predicted in both analyses (in virio/ex virio), there were
differences in base-paring probabilities for certain motifs. Hairpins 976–986 and 1527–1550
were also determined in previous studies [23]. A region of low reactivity spanning nu-
cleotides 87–130 in vRNA5 was also detected and confirmed in a recent comprehensive
study of structure and interactions of A/Puerto Rico/8/34 (H1N1) strain [18]. The consis-
tency of the results obtained for naked vRNA, vRNA in vRNP complex, and within virion,
suggested secondary structure conservation across these forms. This region was identified
as being engaged in the intersegment interactions with vRNA3, 6, and 8, supporting the
functional role of RNA structural motifs. Mutations designed to disrupt the RNA structure
within this region caused impaired propagation of the virus, replication and packaging of
vRNA3, segment bundling, and rearrangement of vRNA-vRNA interactions.

Most of the abovementioned common motifs are located in regions known to be low
NP-binding or close to 5′ and 3′ ends of the segment. The existence of the other two
motifs, covering regions 976–986 nt and 993–1001 nt, support the idea that intermediate
NP-binding does not exclude the formation of local secondary structures, which may be
targeted by antisense oligonucleotides. Among the above listed motifs, hairpins 91–111 nt,
406–422 nt, 460–476 nt, 976–986 nt, 1363–137 nt5, 1484–1496 nt and 1527–1550 nt were
previously determined also in A/Vietnam/1203/2004 (H5N1) vRNA5 in vitro secondary
structure. Hairpins 460–476 nt and 976–986 nt were characterized as highly conserved,
while conserved hairpins 91–111 nt and 1484–1496 nt were postulated to have a role in
virion packaging. The first of them (hairpin 460–476) was mentioned previously as a
potent target for antisense oligonucleotide 474–21M. Additionally, chemical mapping of
three strains (A/WSN/1933 (H1N1), A/Puerto Rico/8/34 (H1N1), A/Udorn/72 (H3N2))
showed that segments with high sequence identity preserve similar RNA conformation [16].
Together, these results indicate that viral genomic RNA, regardless of the strain, shares
structural features that have an important impact on its function and viral replication cycle.

Table 1. Secondary structure motifs predicted in the in vitro mapping experiments of A/California/04/2009
(H1N1) and preserved according to in virio and ex virio mapping of A/WSN/1933 (H1N1).

Predicted Motif Nucleotide
Region (nt)

Base-Pairing Probability According to Dadonaite, et al. [16]

In Virio Ex Virio

91–111 <10% none
406–422 30–80% >80%
460–476 >80% >80%
931–941 30–80% 10–30%
976–986 30–80% 30–80%

993–1001 >80% <10%
1194–1209 >80% 30–80%
1363–1375 30–80% 10–30%
1484–1496 10–30% none
1527–1550 >80% >80%

Current reports on the RNA structure of the influenza virus show a spectrum of
unique and common features. To some extent, discrepancies can arise from methods used
in the experiments and constraints applied to structure modeling (e.g., maximum base-
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pairing distance of nucleotides). There are also experimental conditions which affect the
results. In vitro, in vivo and other structure mapping methods have both advantages and
limitations. This aspect can cause difficulties in the interpretation of data coming from
many sources. The overall organization of RNA may also differ among strains. Searching
for similarities and patterns among the structures may be helpful. Stable, conserved RNA
structures are important for the viral replication cycle and may guide many processes which
are crucial for the virus, such as packaging and reassortment. Therefore, investigation of the
structural motifs of influenza RNA will improve our understanding of viral infection and
evolution, and support the development of new therapeutic approaches against influenza
targeting RNA.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
915/13/3/525/s1, Figure S1: The secondary structure of vRNA5 A/California/04/2009 predicted
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mapping, and panhandle conserved base-pairs., Figure S2. The secondary structure of vRNA5
A/California/04/2009 predicted by Dynalign algorithm in RNAStructure 5.8.1 program, Figure S3.
Mirror structures present in segment 5 A/California/04/2009 (H1N1) RNA (−) and (+) strand,
respectively, Table S1: DNA primers used for construction of vRNA5 DNA template in pUC19,
Table S2: DNA primers used for reverse transcription, Table S3: vRNA5 nucleotide reactivities,
Table S4: Base pairs counts for secondary structure of vRNA5.
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