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Polynomial Mendelian randomization
reveals non-linear causal effects
for obesity-related traits
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Abstract
Causal inference is a critical step in improving our understanding of biological processes, and Mendelian randomization (MR) has

emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from bio-

banks. Although many extensions have been developed to address the three core assumptions of MR-based causal inference (relevance,

exclusion restriction, and exchangeability), most approaches implicitly assume that any putative causal effect is linear. Here, we propose

PolyMR, an MR-based method that provides a polynomial approximation of an (arbitrary) causal function between an exposure and an

outcome. We show that this method provides accurate inference of the shape and magnitude of causal functions with greater accuracy

than existing methods. We applied this method to data from the UK Biobank, testing for effects between anthropometric traits and

continuous health-related phenotypes, and foundmost of these (84%) to have causal effects that deviate significantly from linear. These

deviations ranged from slight attenuation at the extremes of the exposure distribution, to large changes in the magnitude of the effect

across the range of the exposure (e.g., a 1 kg/m2 change in BMI having stronger effects on glucose levels if the initial BMI was higher), to

non-monotonic causal relationships (e.g., the effects of BMI on cholesterol forming an inverted U shape). Finally, we show that the line-

arity assumption of the causal effect may lead to the misinterpretation of health risks at the individual level or heterogeneous effect es-

timates when using cohorts with differing average exposure levels.
Introduction

Identifying factors that cause disease or influence disease

progression is integral to both furthering our understand-

ing of disease pathophysiology and helping inform the

development of novel treatments and interventions. Ran-

domized controlled trials (RCTs) are the gold standard for

demonstrating such causality between an exposure and

outcome; however, they are expensive, time consuming,

and often unethical or infeasible. Mendelian randomiza-

tion (MR) has proven to be an extremely reliable, cost-effec-

tive, and feasible alternative to RCTs to assess causality us-

ing large-scale observational genetic data. MR takes

advantage of the fact that genetic variants are both deter-

mined at birth and inherited randomly and independently

of other risk factors of a disease, using genetic variants as

instrumental variables (IVs) to infer causality between an

exposure and an outcome. This random allocation of ge-

netic variants minimizes the possibility of reverse causality

and confounding. MR has not only identified thousands of

novel, causal relationships between risk factors anddiseases

buthas alsoprovided strong evidence for anon-causal effect

of many other exposure-outcome relationships.1

MR relies on three core assumptions: (1) relevance (i.e.,

IVs must be associated with the exposure), (2) exchange-

ability (i.e., IVs must not be associated with any

confounder in the exposure-outcome relationship), and

(3) exclusion restriction (i.e., IVs must not affect the
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outcome except through the exposure). While many ex-

tensions of MR have been developed to address potential

violations of the three core assumptions, nearly all MR ap-

proaches implicitly assume that any putative causal effect

is linear in nature. However, the association between an

exposure and an outcome is, in fact, often non-linear. For

instance, the observed relationship between BMI and all-

cause mortality has been repeatedly shown to be U shaped

in nature, where an increasedmortality risk exists on either

side of the 20–24.9 kg/m2 interval.2 Additionally, many

asymptotic relationships have been observed in the

context of public health, whereby an intervention or risk

factors appear to be beneficial or increase risk initially,

and, subsequently, the effect plateaus after a certain

threshold.3,4 Along these lines, weight loss may reduce

low-density lipoprotein (LDL) levels for only lean individ-

uals due to an inverted U-shape relationship.5 Currently, it

is unclear whether these observations aremerely an artifact

of confounding and/or reverse causation or whether there

is truly a causal relationship, non-linear in nature, underly-

ing these observations.

While identifying causal relationships is of high research

importance, of equal importance is a comprehensive un-

derstanding of the underlying mechanisms and dynamics.

A biased and naive characterization of these causal rela-

tionships can lead to a misinformed understanding of dis-

ease mechanisms and ultimately misguided treatments

and public-health recommendations and interventions.
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To date, few approaches have been developed to investi-

gate nonlinear causal relationships within an MR frame-

work. Most approaches are semiparametric in nature and

involve stratifying individuals based on the exposure

distribution6 or do not consider potential non-linear

confounder effects.7 The extra flexibility regarding the

shape of the causal function offered by these semi-para-

metric methods comes at a cost of increased variance of

the resulting estimator. To address these gaps, we devel-

oped PolyMR, an MR-based approach to assess non-linear

causal relationships in a fully parametric fashion.
Materials and methods

Let X and Y denote two random variables representing complex

traits. We intend to use MR to estimate a non-linear causal effect

of X on Y. The genotype data of the SNPs to be used as IVs are de-

noted by G. To simplify notation, we assume that EðXÞ ¼ EðYÞ ¼
EðGÞ ¼ 0 and VarðXÞ ¼ VarðYÞ ¼ VarðGÞ ¼ 1. The effect sizes

of the instruments on X are denoted by b. Let us assume the

following model:

X ¼ G$bþ ex
Y ¼ faðXÞ þ ey;

where the parametric function fað $Þ determines the shape of the

causal relationship between X and Y, and ex and ey are zero-

mean errors. For simplicity, we assume that fað $Þ is a polyno-

mial—even if it is not, it can be approximated by one with arbi-

trary precision over the range of the majority of values X can

take. For example, if we intend to test a quadratic causal relation-

ship, faðxÞ ¼ a0 þ a1$xþ a2$x
2. Thus, the model can be rewritten

as

X ¼ G$bþ ex

Y ¼
Xk
j¼0

aj$X
j þ ey:

The above equation can be expanded to

X ¼ G$bþ ex

Y ¼
Xk
j¼0

aj

 Xj

s¼0

 
j

s

!
ðGbÞs$ej� s

x

!
þ ey:

We rely on the INSIDE assumption,8 which ensures that covðGb;
eyÞ ¼ 0. The error terms ex and ey can nevertheless be correlated

because of a potential causal effect of Y on X (reverse causation)

and/or due to confounders. Let us split ey into ex-dependent and

-independent parts.

ey ¼ �
ey
��ex; e2x ;.; elx

�þ ty ¼
Xl

j¼0

rj$e
j
x þ ty

Since covðGb;exÞ ¼ covðGb;eyÞ ¼ 0, the residual noise ty is inde-

pendent of both Gb and ex. As a consequence, covðX; tyÞ ¼
covðX � Gb; tyÞ ¼ 0. This allows us to rewrite the main model

equations:

X ¼ G$bþ ex

Y ¼
Xk
j¼0

ajX
j þ
Xl

j¼0

rje
j
x þ ty ¼

Xk
j¼0

ajX
j þ
Xl

j¼0

rjðX � GbÞj þ ty:
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The advantage of this equation system is that the error terms (ex
and ty) are uncorrelated and independent of the respective explan-

atory variables.

Let the realizations of the random variables X;Y;G be denoted

by x; y; G, observed in a sample of size n. The parameters

fb;a; rg can be estimated by computing two ordinary least squares

estimates, first estimating b using the first equation and substitut-

ing this into the second equation:

bb ¼ ðG0
GÞ�1$G

0
x (Equation 1)

� babr
�

¼ ðM0

0
M0Þ�1$M0

0
y where M0 :

¼
h
1;x;.;xk; ðx � GbbÞ;.; ðx � GbbÞl i (Equation 2)

The special case of this approach when k ¼ l ¼ 1 is equivalent

to the standard control function approach. For higher orders, the

terms k and l are not required to be equal, as k represents the

powers of the fað $Þ function describing the causal relationship be-

tween X and Y, whereas l represents the order of the function

describing the effects of confounding and/or reverse causation,

i.e. residual correction.
Implementation
We implemented this method in R. For the polynomial approxi-

mation of fað $Þ function of the causal relationship, we included

terms up to the 10th power for the exposure (k ¼ 10) to allow suf-

ficient flexibility for the shape of the causal function and included

residual-correction terms up to the same order (l ¼ 10). We then

applied a backward model selection approach, iteratively elimi-

nating exposure coefficients (aj) that were not significant at a Bon-

ferroni-corrected level (0:05=k ¼ 0:005) by setting them to zero.

Residual-correction terms (rj) were retained up to the order of

the highest remaining exposure coefficient. This ensures that

any contribution of confounders to the high-order polynomial

terms of the exposure-outcome relationship are not erroneously

attributed to a causal effect. Once all remaining exposure coeffi-

cients were significant, the non-linearity p value was obtained

with a likelihood ratio test (LRT), comparing the full model with

that including only the linear effect but retaining all remaining re-

sidual correction terms. The causally explained variance was deter-

mined as the difference in explained variance (r2) between the full

model and that excluding all aj$xj terms (i.e., accounting only for

potential confounding).

The polynomial function was the result of a multivariable

regression, which also provided us with the variance-covariance

matrix of the coefficient estimates. From these, we can generate

causal polynomial functions whose coefficients are drawn from

the established multivariable distribution to obtain the 95% con-

fidence hull.

In order to avoid invalid IVs acting through reverse causation,

we filtered out IVs where the standardized effect estimate was

larger (in absolute value) in the outcome than in the exposure.

For comparison, LACE6 was also implemented, and polynomial

approximation was obtained in an analogous fashion. The piece-

wise linear LACE approach was not tested here but is considered

in the discussion. We examined the limitations of the standard

(1st order) control function approach by running PolyMR with

l ¼ 1, hereafter referred to as PolyMR-L1, in specific settings.

We chose not to compare with results from CATE7 as this method

enables the estimation of differences in causal effects based on



exposure (i.e., slopes) but does not provide an overall function and

makes comparison difficult. Furthermore, the implementation

available at the time of this writing was comparatively slow and

did not scale well when tested on biobank-size data: the estimated

run time for a single simulation using our parameters, repeated at

�100 exposure levels to model function shape, was several days

for fewer than 10 IVs.
Simulations
We simulated data according to the following model:

X ¼ G$bþ qx$U þ ex
Y ¼ a1Xþ a2$X

2 þ qy$U þ qy2$U
2 þ ey ;

where U is a confounder drawn from a standard normal distribu-

tion. Columns of G were drawn from a binomial distribution

with minor allele frequencies following a beta distribution with

shape parameters equal to 1 and 3, and then we normalized

each column to have zero mean and unit variance. The genetic ef-

fects bi were drawn from normal distributions based on the minor

allele frequencies, specifically bi � Nð0;ðpi � ð1 � piÞÞ�0:25Þ, where

pi is the minor allele frequency of SNP i, and scaled such that the

total explained variance matches the predefined heritability, i.e.,P
b2i ¼ h2. These effect sizes are realistic and are according to

the baseline LDAK heritability model (without functional cate-

gories) with a selection strength of � 0:25.9,10 For the basic set-

tings, we included moderate confounding (qx ¼ 0:2, qy ¼ 0:5,

qy2 ¼ 0) and a quadratic causal function ðfaðXÞ ¼
0:1Xþ0:05X2Þ. The heritability h2 was set to 0.5, explained by

m ¼ 100 causal SNPs, and the sample size was set to 100,000 in-

dividuals. Causal SNPs were filtered for genome-wide significance

of their marginal effects in the simulated data prior to their use as

IVs. Note that due to lack of statistical power, most of the causal

SNPs do not reach genome-wide significance and hence are not

used as instruments. Variations on these settings were tested, as

shown in Table 1. Each combination of parameters was used to

generate 1,000 sets of data, to which we applied both PolyMR

and LACE. We compared these with the performance of PolyMR-

L1 in the base settings and in the presence of weak quadratic con-

founding (qx 3 qy2 ¼ 0:04), as well as in the absence of quadratic

causal effect but with quadratic confounding (qx 3 qy2 ¼ 0:1),

creating a similar observed association between traits as in the

base settings.

The theoretical 95% confidence hulls were compared with the

empirical distribution of estimated models. At each percentile of

the exposure distribution, the size of the predicted 95% confi-

dence intervals (CIs) was compared with the empirical one.
Application to UK Biobank data
The UK Biobank is a prospective cohort of over 500,000 partici-

pants recruited in 2006–2010 and aged 40–69.11 We tested for

non-linear causal effects of anthropometric traits (body mass in-

dex [BMI], weight, body-fat percentage [BFP], and waist-to-hip ra-

tio [WHR]) on continuous health outcomes (pulse rate [PR], sys-

tolic blood pressure [SBP], diastolic blood pressure [DBP],

glucose, low-density lipoprotein [LDL], high-density lipoprotein

[HDL], and total cholesterol [TC] levels in blood), as well as the

reverse. We also tested for effects of both BMI and age completed

full-time education on life expectancy. To boost statistical power,

we applied the idea of the kin-cohort design, where parental life-

span is used as a proxy for the participant’s lifespan.12 Since

most participants in the UK Biobank are still alive, we scaled the
Hu
mother’s and father’s age of death (separately) and used the

mean of these standardized phenotypes as a proxy for the individ-

ual’s life expectancy. For participants with one parent still alive, we

used the other’s age of death. Participants with both parents still

alive were excluded for this particular analysis.

We selected 377,607unrelatedWhite Britishparticipants, and all

phenotypes were corrected for age, age2, sex, age3 sex, and age23

sex as well as the top 10 genetic principal components. With the

exception of WHR, IVs were selected using the TwoSampleMR R

package13 (v.0.5.5) with default settings (p < 5 3 10�8,

r2 < 10�3, d > 104 kb) from the genome-wide association study

(GWAS) in the ieugwasr R package14 (v. 0.1.5) with the largest num-

berof instrumentsoverlappingourdataset. ForWHR,weusedapre-

viously performed GWAS on the aforementioned sample from the

UK Biobank, adjusting for covariates as above.15

For the purpose of comparison, we also used inverse-variance

weighted MR and MR Egger on each of these exposure-outcome

pairs. These were performed with the same IVs and (in-sample) as-

sociation statistics using the TwoSampleMR R package13 (v.0.5.5).

We also compared the results of standard PolyMR with those Pol-

yMR-L1 to determine whether accounting for higher-order con-

founding is necessary in real data applications.
Results

Simulations

Wesimulatedavarietyof settings, includingmanycombina-

tions of heritability and polygenicity in the exposure, sam-

ple size, and shape of the causal function fað $Þ and con-

founding. Where the true underlying function was

polynomial, our approach correctly captured its shape

(Figure 1), although a slight bias from confounding was

introduced in certain settings with high polygenicity

(>1,000 causal SNPs) or strong confounding (where linear

confounding alone would lead to a correlation of 0.4 be-

tween the exposure and the outcome, i.e., qx ¼ 0:5; qy ¼
0:8) (Figure 2). The distribution of this bias was affected by

the shape of the confounding, i.e., in situations with

quadratic confounding, the bias was quadratic with respect

to exposure. In all simulation settings, this bias was orders

of magnitude smaller than both the causal effect and the

confounding (e.g., Figure 1A). Although this bias was mini-

mal with the standard PolyMR settings (l ¼ k), quadratic

confounding produced significant bias when higher orders

of the control function term (x � Gbb) were ignored (i.e.,

l ¼ 1 in PolyMR-L1; Figure S1), which is the standard

approach for control function use.

In the case of non-polynomial functions, PolyMR never-

theless provided reasonable estimates of the true shape of

the causal function (Figure 1B). The bias introduced in

these cases (Figures 1B and 2B) is consistent with expecta-

tions of polynomial approximation with limited power

and is dependent on the shape of the non-polynomial

function.

LACE also produced some bias in estimating the causal

function. The magnitude of the bias introduced by either

method was dependent on the settings used, with the

bias being generally larger when the per-SNP heritability
man Genetics and Genomics Advances 3, 100124, July 14, 2022 3



Table 1. Causal functions (fað ,Þ) and setting parameter combinations simulated for PolyMR

Causal functions faðXÞ

Base settingsa 0:1,Xþ 0:05,X2

Null 0

Linear effect 0:1,Xþ 0,X2

Stronger effect 0:3,Xþ 0:1,X2

Weak quadratic effect 0:1,Xþ 0:01,X2

Cubic effect 0:1,Xþ 0:05,X2 þ 0:05,X3

Fourth-order effect 0:1,Xþ 0:05,X2 þ 0:05,X4

Third- and fourth-order effects 0:1,Xþ 0:05,X2 þ 0:03,X3 þ 0:01,X4

Exponential effect 0:1,eX

Square root effect 0:1,sgnðXÞ, ffiffiffiffiffiffiffijXjp
Sigmoid effect (1)

0:1,
1

1þ e�X

Sigmoid effect (2)
0:1,

1

1þ e�2,X

Sigmoid effect (3)
0:1,

1

1þ e�3,X

Other settings

Strong confounding qx ¼ 0:5, qy ¼ 0:8

Negative confounding qy ¼ � 0:5

Quadratic confoundinga qy2,U
2 term added to Y, where qy2 ˛ f0:1;0:2g

alinear effect Quadratic confounding, 0:2,U2 term added to Y, faðXÞ ¼ 0:1,X

Heritability and polygenicity h2 ˛ f0:2;0:3;0:5;0:8g, m˛ f20;100;1K;5K;10Kg
aSettings where PolyMR-L1 was also applied for comparison.
was lower (i.e., settings with higher polygenicity). Another

key contributor to increased bias was the non-polynomial

nature of the underlying causal function. In some cases,

the coefficient selection procedure led to greater bias

from LACE due to lack of statistical power and fewer coef-

ficients being selected. In all settings tested, PolyMR still

provided lower bias (Figure S2) and root-mean-square er-

rors (RMSEs) than LACE (Figure 3), partly driven by greater

statistical power and smaller SEs.

To ensure that the variance estimated from the variance-

covariancematrix of themodel was correctly calibrated, we

assessed the coverage of the 95% CIs. We did so by

comparing the predicted 95% CIs of the curves with those

derived empirically from repeated simulations. We found

that in the case of most polynomial functions, the CIs

were properly calibrated, with the theoretical and empir-

ical CIs being almost equal across most of the exposure dis-

tribution. Note that under some simulation settings (e.g.,

weak quadratic effects, a2 ¼ 0:01), allowing the polyno-

mial degree to vary led to increased empirical variance

(see Figure S3A). However, if we consider only those simu-

lations where the second order was correctly inferred (920

simulation results out of 1,000), the empirical CIs were

close to those predicted by the method (Figure S3B).
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UK Biobank

Given its favorable performance throughout all simulation

settings, we applied the PolyMR method to data from the

UK Biobank. We set out to estimate the causal effects of

four anthropometric traits (BMI, weight, BFP, and WHR)

on each of seven continuous traits commonly used as

health biomarkers (SBP, DBP, PR, and the levels of glucose,

HDL, LDL, and TC in the blood). We also tested for reverse

causal effects for these trait pairs as well as any effects of

BMI or education on life expectancy.

The effects of the anthropometric traits were qualitatively

similar to one another and significant against all tested out-

comes, with significant non-linearity in most cases

(Figures S4–S31). Those of BFP and WHR tended to be

more similar to one another, monotonically increasing

DBP, SBP, and PR with linear to slightly non-linear effects.

BMI also increased these traits overall, though the effects

of BMI on DBP and SBP plateaued at around 2 SD above

the population mean (�36.9 kg/m2), and the causal func-

tion for BMI on PR showed a positive slope for values be-

tween approximately 1 SD below to 2 SDs above the popu-

lation mean (�22.7–36.9 kg/m2), with negative slopes

beyond these. The effects of weight were weaker but quali-

tatively similar to those of BMI. Glucose was increased by all
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Figure 1. PolyMR is able to recover the
shape of the causal function
The true causal function is shown in green
(solid line). The observed association model
is shown in orange (short dashed) while that
obtained using PolyMR is shown in purple
(long dashed). The hulls around the model
curves show the 95% coverage hull across
1,000 simulations. The hulls around the
observational effects represent the 95% con-
fidence interval estimated from the condi-
tional distribution of the outcome. The y
axis shows the expected association with/ef-
fect of the exposure on the outcome, relative
to the outcome level at themean population
exposure. (A) A setting representing high
polygenicity (10,000 causal SNPs account-
ing for a heritability of 0.3; see Table 1 for de-
tails). (B) Results for a sigmoid causal effect

(faðXÞ ¼ 0:1, 1
1þe�2,X scenario.
of these, though the effects of a change in exposure were

negligible below �1 SD for all traits and intensified at

higher values. For example, the estimated slope of the stan-

dardized effect of BMI was 0.17 at the population mean but

increased to 0.31 at þ2 SD. The strongest non-linearity in

the effects of anthropometric traits was found for TC,

mainly driven by the LDL fraction (Figure 4A), where the

causal function took a strong inverted U shape. In contrast

to this, their effects on HDL were all monotonic decreasing.

The consequences of PR were limited to weak linear ef-

fects on BFP and WHR. TC linearly decreased BMI, weight,

and BFP, with no detectable effect on WHR. SBP and DBP

both had inverted U-shaped causal functions for their ef-

fects on all anthropometric traits (p < 1.6 3 10�47), with

the effects on WHR being slightly weaker. Glucose levels

had nearly no effect on most traits across most of the dis-

tribution but drove strong reductions at higher values,

with the exception of WHR, which was in fact slightly

increased by glucose levels up to � 3 SD before being

decreased at higher levels. HDL had a slight U-shaped ef-

fect on these traits, with a stronger increase for high values

of the exposure on BFP and no increase in WHR.

Although the observational association of SBP/DBP and

the anthropometric traitswasmostlymonotonic increasing,

the estimated causal function on these had an inverted U

shape (Figure 4B), with slightly weaker effects on WHR.

The causal effects of PR on anthropometric traits show a

slight positive slope close to the population median, but

the directionality switches at either extreme of the distribu-

tion. LDL cholesterol decreased the outcomes near mono-

tonically, though the effect close to the population median

was weak to null (Figure 4C). The impact of glucose was

slightly different across the anthropometric traits. Both

BMI and weight were overall negatively affected by glucose

levels (with weaker effects around zero). BFP was also

decreased, although theeffectwasmuchweaker.WHR,how-

ever, was slightly increased by glucose levels up to � 3 SD
Hu
before being decreased at higher levels. Note that the effect

close to the population mean is likely driven by a decrease

in hip circumference rather than an increase in the waist’s,

similar to what we have shown previously for the effects of

diabetes risk and triglyceride levels on WHR-related

metrics.15

The effects of BMI andeducationon life expectancy are di-

rectionally as expected, but we found no evidence of non-

linearity. The BMI-life expectancy (causal) relationship was

decreasing, though the intensity of the effect was greater

than the observed association (Figure 4D). As expected,

higher education increased life expectancy, but we found

no evidence of non-linearity in the effect (Figure S32).

The exclusion of higher-order control function terms in

PolyMR-L1 produced somewhat different inferred causal

functions, with generally stronger non-linear components,

resulting in inferred causal functions that were closer to

the observed associations (Figures S33–S39). These linear

control functions are used in competing methods,7,16

which are outperformed by PolyMR in such settings.

Discussion

In this report, we present PolyMR, an MR-based approach

for the inference of non-linear causal effects. Through a va-

riety of simulations, we showed that it is robust to many

forms of confounding and is well powered to detect even

weak quadratic effects in biobank-size cohorts. Finally, by

applying our method to the UK Biobank, we showed that

causal effects across many anthropometric traits indeed

include strong non-linear components.

Despite statistically significant non-linearity for the

causal effects of many exposures on outcomes, some of

these were monotonic or even near linear around the pop-

ulation median. In these cases, the causal effect estimates

from traditional, linear, MRmethods will likely still be use-

ful, though non-linearity in the tails of the distribution
man Genetics and Genomics Advances 3, 100124, July 14, 2022 5
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Figure 2. Bias in the causal effect estimation as a function of exposure across settings
(A) In settings with a polynomial causal function fað $Þ, slight bias from non-genetic confounding was induced under certain combina-
tions of high polygenicity, high heritability, or strong confounding. (B) The bias found in non-polynomial settings was expected due to
the polynomial approximation approach.
may introduce varying amounts of bias for certain expo-

sure levels. Even where the overall causal effect is mono-

tonic and could therefore be described as ‘‘positive’’ or

‘‘negative,’’ knowing the shape of the curve can provide

insight into which strata of the population may benefit

most from public-health interventions. For example,

weight loss for individuals with average BMI is far more

beneficial in in terms of lowering SBP than it is for obese

individuals. The bias introduced by the assumption of line-

arity increases further with non-monotonic effects, such as

that of SBP on BMI, and the effect estimates vary greatly

based on the method used, but without proper consider-

ation of the non-linear components, it will not be particu-

larly meaningful. Although in certain contexts, a linear

approximation of the monotonic effects can be useful,

they will introduce bias. Specifically, different populations

with different mean values of exposure will yield different

linear estimates even in cases where there is true causality

and all IVs are valid.

There are a number of possible explanations for the non-

linear causal relationships we identified, particularly in the

case of the inverted U-shaped curves, where both the expo-

sure and outcome are presumed negative markers of health

(for example, BMI and cholesterol). The shape of these ef-

fects could arise from several mechanisms such as negative

feedback loops. The most obvious, but intangible, candi-

dates are biological feedbackmechanisms. Amore concrete

possibility is a lifestyle change in response to elevated risk,

by either doctor recommendation, medication, or personal

or social pressures. Either off- or on-target effects of these

changes could play a role on the inverted U-shaped curves

we identified. These latter effects, however, are expected to

be weak and explain only a small part of these phenomena.
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Another explanation may be interaction effects between

an exposure-associated environmental variable and the

exposure itself influencing the outcome.

We identified several benefits of our method compared

with existing tools such as LACE and CATE. PolyMR not

only demonstrated greater accuracy than LACE, but it

does not require arbitrary choices regarding bin numbers

and spacing like LACE does. The other competing method,

CATE, assumes that any sources of confounding are linear

and will introduce bias/false positives in the presence of

sources of non-linear confounding, whereas polyMR al-

lows for non-linear sources of confounding. Of note, while

CATE can estimate the change in outcome based on the

difference in exposure, it does not explicitly estimate the

shape of the causal function. More general methods, based

on kernel ridge regression,17 lack software implementation

and, due to their computational complexity, may not be

applicable to sample sizes >100,000.

Thisworkhas certain limitations that should be taken into

account. First, our method requires individual-level data.

While using classical summary statistics, non-linear causal

effects are undetectable; however, one could envision

approximating the polyMR method by using not only

G � X and G � Y association summary statistics but

higher-order (Gi � Y, Gi � Xj, Xi � Y, and Gi$Xj � Y

with i; j ¼ 0;1;2;.; kÞ associations. Although such an

approximationwould require additional summary statistics,

those are not generally available for any trait and hence

would not facilitate its use in practice. Secondly, the esti-

mates provided for the extremes of the distribution are less

reliable, and removing outliers may improve the reliability

of estimates across the entire distribution. Third, a small

amount of bias is introduced due to the fact that we use



A B

Figure 3. PolyMR provided greater accu-
racy in the estimation of causal functions
The root-mean-square errors (RMSEs) are
shown for both PolyMR and LACE. Each
point is the mean RMSE for a given setting,
with the error bars showing the 95% confi-
dence interval of the mean. (A) Settings for
polynomial causal functions. (B) Settings
for non-polynomial causal functions. Ar-
rows in (A) indicate RMSEs that exceed the
bounds of the plot.
G$bb instead ofG$b inourmodel fitting (Equation2). Tomiti-

gate this, maximum likelihood estimation (MLE) could also

be used to take into account the error in SNP-exposure asso-

ciations. Fourth, our approach still suffers from the weak-

nesses of classical MR methods, such as Winner’s curse and

invalidity of the instruments. Winner’s curse could be ad-

dressedby splitting the sample andusing one subset to select

instruments andestimate their effects,while theother subset

would be used for the rest of the polyMR algorithm. Such a

solution would reduce bias, along with decreased power.

Fifth, the true causal functionmay well be non-polynomial,

but still the polynomial approximation for the bulk of the

exposure range (e.g. [�2SD,2SD]) can provide a firm idea

about the shape of the curve, even if the actual coefficients

and the behavior of the curve beyond the exposure extremes
A B

C D

Figure 4. Most tested causal effects have strong non-linear components in the UK Biob
The red points show the mean outcome plotted against the median exposure for each of 1
level. The red curve (solid) is themultivariable regressionmodel, whereas the teal one (dash
tion obtained using PolyMR. The hulls around both curves correspond to the 95% confiden
LDL cholesterol, (B) SBP on BMI, (C) LDL cholesterol on BMI, and (D) BMI on life expecta

Human Genetics and Gen
are meaningless. Sixth, our simulations

have not explored violations of the

InSIDE assumption, which may have

more drastic consequences for non-
linear MR. Seventh, the backward selection process to settle

on the optimal polynomial may suffer from post-selection

inference, which could alter the coverage of the 95% CIs.

However, in our simulations, this did not seem tonoticeably

influence the coverage, and backward selection can be

disabled in the implemented function if preferred. Finally,

although this method could be generalized to binary out-

comes, it has limited utility. The shape of such non-linear re-

lationships would largely depend on the link function used

for the generalized linear models, while showing deviations

from a linear relationship for continuous outcomes reveals

not only a quantitatively better fittingmodel but also a qual-

itatively different one.However, for binaryoutcomes, even if

there is a non-linear term, the model class remains qualita-

tively similar (since any link function is already non-linear),
ank
00 bins, split by covariate-adjusted exposure
ed) corresponds to the estimated causal func-
ce interval. (A–D) Four trait pairs: (A) BMI on
ncy.
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and it only indicates that the causal relationship could be

better described with a different kind of link function. The

only exception to this is when the causal function is non-

monotonic, since link functions are strictly monotonically

increasing. Therefore, the method is best suited to contin-

uous traits but may also reveal interesting insights for non-

monotonic causal functions for binary outcomes.

In summary, we have developed an MR approach for the

estimation of non-linear exposure-outcome causal effects.

We have shown the utility of this approach when applied

to cardiovascular and anthropometric traits in the UK Bio-

bank, where we identified numerous relationships that

show significant deviations from linearity. Indeed, non-

linear effects are pervasive in biology and should be

considered appropriately when developing public-health

policies. Future studies should investigate the impact of

non-linear causal effects on the complete human phe-

nome to determine the prevalence of non-linear causal re-

lationships among other conditions and biological path-

ways. PolyMR allows for a more nuanced picture of

causal mechanisms beyond mere identification of causal

factors for disease. Better understanding of such complex,

non-linear relationships will help make better-informed

health interventions.
Data and code availability

There are restrictions to the availability of the UK Biobank data

due to ethical/privacy considerations, but they are available

through an application procedure (see web resources). The pub-

lished article includes all resulting data generated during this

study. The source code generated during this study is available at

https://github.com/JonSulc/PolyMR.
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